
V K P S
V K P SV K P S

3.0 (08.00)

by Victor Kohn
Russian Research Centre

"Kurchatov Institute",

Moscow, Russia

http://www.chat.ru/~kohnvict

POSTSCRIPT based program for creating the

publication quality DOCUMENTS including scientific

GRAPHICS. The result is achieved by means of simple

programming from ZERO level (direct postscript) to

HIGH level of macroprocedures with parameters.

Introduction to VKPS and PostScript

Victor G. Kohn

Russian Research Centre "Kurchatov Institute", 123182, Moscow

DOCUMENT: A tutorial on the program VKPS

which allows one to present scientific results like

figures inside the box of axes or topographs or a

publication quality text with figures as a postscript

document and an introduction to the PostScript

language

VERSION: 3.0 (August 2000)

AUTHOR: Victor Kohn

E-MAIL: kohn@kurm.polyn.kiae.su

URL: http://www.chat.ru/~kohnvict

CONTENTS:

1. Introduction 1

2. Structure of VKPS language

2.1 General features 2

2.2 Simple examples 3

2.3 Analysis of the typical example 4

2.4 Manipulation with the text string 5

2.5 Manipulation with the files 6

2.6 Manipulation with the colors 6

3. Kinds of graphical objects

3.1 Direct postscript program 7

3.2 Graphics in the box from columns 7

3.3 Graphics in the box directly 9

3.4 Quasi 3D-graphics of f(x,y) 10

3.5 Topographic image of f(x,y) 11

3.6 Regions, lines, texts, arcs in the box 13

4. Rich text with figures 14

4.1 Modifications of text formatting 15

4.2 Commands of rich text 16

Appendix 1. Table of VKPS parameters 19

Appendix 2. Postscipt commands of head files

A2.1 Head file head30.psf 20

A2.2 Head file cyr30fnt.psf 21

A2.3 Head file head-a.psf 21

Appendix 3. Introduction to PostScript 22

A3.1 Memory and command interaction 24

A3.2 Definitions and procedures 25

A3.3 Graphical operators 25

A3.4 Arithmetic operators 26

A3.5 Environment operators 26

A3.6 Cycle operators 27

A3.7 Creating text by standard fonts 27

A3.8 Other possibilities 28

1. Introduction

The program VKPS allows one to prepare quickly

the results of scientific calculation or any

combination of graphical objects as a multipage

document written in PostScript language (PSL). The

following treatment of the document may be done

by standard technique like printing on the postscript

printers or looking by the program GhostView.

As known PSL has been elaborated for a

presentation of all printed information like pictures,

texts, figures, tables, formulas and so on. It is just

the input stream of any network printer. PSL is able

to describe the whole book with a lot of pages. On

the other hand, it is universal and easy to read and

to transfer by e-mail as a usual ASCII file.

In principle, PSL is one of the many programming

languages. It is possible to write the "xxx.ps"

document directly by means of any simple text

editor. However, it is inconvenient in many cases,

especially when a picture is the scientific figure

which shows a lot of values of some function of two

variables. The inconvenience is due to the fact that

PSL is a low-level programming language. To

describe the figure on PSL one needs to determine

all details of the figure because each step of

postscript interpretator makes only a small work

while the number of primitive instructions may be as

large as thousands for a complex figure in the case

when the calculated lines are formed by thousands

points.

The second problem of such a way is a necessity to

work with a very large file containing a lot of

figures and texts. When some new fragment is

wrong it is difficult to search the error and to verify

the file many times.

That is why, instead of direct programming the

pictures on PSL some users prefer to have the

graphical program which allows to work inside the

interactive (WYSIWYG) environment when the user

may see the result of his actions immediately in a

graphical form. This method has advantages in the

case of drawed pictures of random structure.

However, it is limited in the case of regular pictures

Victor Kohn Introduction to VKPS and PostScript 1

of computed graphics or rather complicated figures

contisting of many fragments.

On the other hand, some simple graphical objects

like lines, frames, arcs, simple text strings may be

described in a simple and direct way. That is why

some additional high-level languages were created

which are simpler for the beginners and are

supported also by the instrumentality to show

quickly the picture described. At the final stage

when the text of program becomes correct, the

original description is translated from the high-level

language to Postscript. As an example, of this

approach the package GLE (Graphics Line Editor)

may be pointed out. This package is free in Internet.

Another example is the program METAPOST which

is a part of the package MiKTeX. However, this way

is also limited because the user which has learned

the high-level language has no motive to use the all

possibilities of PSL. In addition, the package GLE,

for example, produces the Postscript document (file)

of much larger size compared to the size which may

be obtained by specialist in the case of direct

programming on PSL the scientific figures containing

a lot of points. This becomes inconvenient when it is

necessary to transfer the file by e-mail or FTP.

I think that the high-level language has to be based

directly on PSL in the places where it is convenient.

From this point of view it has to contain the

possibility to include any piece of ready postscript

text in the file of high-level program. Since the

Postscript on the whole is very complicated it is

difficult to create an independent interpretator of

such a language which may work faster and better

that GhostView. Therefore the procedure of simple

debugging is not possible and it is of interest to

realize only the function of translating the high-level

language to PSL. In other words, this high-level

language must be a set of macro procedures.

These procedures, in principle, may be written

directly in PSL where it is desirable together with

the compiled procedures. In any case the task is to

transform some simple and short text to PSL text

which must be also as short as possible. The short

text of high-level language allows to avoid errors

and save the work of users. The short text of

resulting postscript file is convenient for a trasfer by

FTP (Internet) to colleagues from other countries.

Such a way may be beneficial for men who work

on computer and know the programming languages

to create his own calculating programs and to obtain

by means of this programs very fresh results which

must be considered from different sides. This work

demands a lot of graphics of different kinds. Each

step deals with one figure but these figures must be

accumulated for a further analysis. Sometimes it is

necessary to prepare a lecture or a poster to the

conference. Another application is to prepare the

figures for scientific papers. As it is known, a text of

scientific paper may be prepared by means of LaTeX

language with more convenience. However, it is not

a case for figures. On the other hand, something

similar to LaTeX is also accumulated in the new

language.

This way supposes the knowledge of the Postscript

language at least partially. Nevertheless all routine

work is performed automatically by computer. I see

two great problems. The first one is to make the

total big Postcript file of many pages from the ready

fragments. The second one is to describe the separate

fragments which may have different nature. The

language of the program VKPS just solves both these

problems. It involves the direct postscript operators

only for describing the simple fragments therefore it

is not necessary to know the language on a whole.

It is enough to know only the structure of some

simple operators. The initial information about the

PSL is also included in this document as an

appendix.

2. Structure of VKPS language

2.1 General features

The version 3.0 of VKPS language (VKPSL) consists

of macro procedures of scientific graphics as well as

formatted text which are translated in PSL as a

publication quality text with figures. The interaction

between the text and figures is simpler compared to

LaTeX. VKPSL gives also some additional advantages

because the style can be changed from one

paragraph to another. On the other hand, the simple

graphical EPS fragments for a usage with LaTeX

may be quickly prepared as a particular case of the

program possibilities. Any manipulations with colors

are possible.

The language is based on the macro procedures of

two different kind. The macros of first kind are pure

postscript procedures (sometimes simply short

definitions of postscript operators) with the aim to

make a postscript text as short and clear as possible

and to use PSL directly in the places where it is

convenient. The macros of second kind are more

complicated procedures which describe automatically

Victor Kohn Introduction to VKPS and PostScript 2

the well defined fragments like the scientific figures

inside the box of axes or graphics of two-dimentional

array. These procedures may have a lot of

parameters which have to be defined previously.

The text of program in VKPSL (high-level) must be

written in a separate file. The program VKPS takes

the name of such a file from the command line and

it uses the content of the file as an input stream of

information for a creation the output stream as a

postscript file. The name of PS file is generally

specified by the input file. This way allows one to

realize automatic call of the program by pressing the

name of input file in the operating system like

Windows. The extension of the input file name may

be arbitrary but for a convenience it is assumed

below (vkp) extension. Hence the program creates a

postscript file (xxx.ps) from (xxx.vkp) file which may

be shown later by GhostView program and

(vkps.log) file which contains an information about

possible errors and some diagnostics.

The elements of VKPSL are: commands, parameters,

comments, postscript fragments and datas. Each

command or comment or ps-fragment uses the total

line. They are distinguished by first symbol of line,

namely,

% for a comment similarly to PSL

but only in the first position;

for a command followed by name of command

and field of arguments;

= for a direct postscript line to insert it

in the document.

The comments are not used in resulting postscript

text. These are only for a user convenience to make

a clear text.

The direct postscript lines will be completely

inserted in a postscript file at the current place

excluding the (=) sign, hence the second sign of

input line will be the first sign of output line and so

on. There are 10 commands:

#title: title of the work;

#input filename to input contents;

#save filename to save the following text;

#xaxis XBE XEN XFM XSM XNS;

#faxis FBE FEN FFM FSM FNS;

#yaxis YFF YSF YFM YSM;

#function XFP XLP NXP NFU IFF;

#draw figure;

#new page;

#end

The parameters are divided on the text parameters

and the numerical parameters. All parameters are

previously defined and user may redefine some of

them many times. The name of the parameters as

well as the commands may be as long as convenient

(without a blank symbol) but only three first letters

are essential for the program. For example, the

shortened names of commands are: #tit, #inp, #sav,

#xax, #fax, #yax, #fun, #dra, #new, #end. Therefore

below the shortened names of the parameters will be

described together with a short definitions in round

brackets and an initial value in square brackets.

The text parameter must be only one in a line. The

definition has a usual form (name =value) and

blank symbols before and after the name are ignored

while the value is the text which begins just after

the (=) sign up to end of the line. There are 7 text

parameters:

psf (postscript file name) [0001.ps];

hfi (head file name) [head30.psf];

cfi (color file name) [col30vk.psf];

dfi (data file name) [vksign.dat];

xti (x-axis title) [(axis X)Lc];

fti (f-axis title) [(axis F)Lc];

yti (y-axis title) [(axis Y)Lc];

There are 54 numerical parameters. Their definitions

have the same form (name = value) but the

difference is that there may be many definitions in

the line separated by one or more blank signs. The

total table of the numerical parameters is given in

Appendix. The numerical parameters give the

program information on how to draw the figure

fragment like the kind of graphical object, the

position on the page, the size, the parameters of

axes, the curves and so on. The sense of some

parameters is different for different graphical objects.

It is convenient to describe them step by step later

on examples.

2.2 Simple examples

It is of interest to demonstrate how much simple

VKPS programs are looking. The most simple correct

program contains only one operator

#end

This program creates the postcript file "0001.ps"

which shows nothing. The program containing two

operators

#draw

#end

creates the postscript file "0001.ps" which shows the

Victor Kohn Introduction to VKPS and PostScript 3

figure if the data file "vksign.dat" exists on the

current directory. In the opposite case the error will

be detected. The figure is defined completely by the

initial values of the parameters. Typical text of

program looks like this

#title: example of VKPS program

psfile=figures.ps

hfile=c:\head30.psf

= 70 770 m is3(VKPS example, page 1)L ds3

dfile=vksign.dat

kind=1 xco=100 yco=250 xas=350 fas=300

#xaxis 0 105 0 20 9

#faxis 0 75 0 10 4

xtitle=(X-axis title)Lc

ftitle=(F-axis title)Lc

txx=0 txy=0 tfx=0 tfy=0

#draw

#new page

= 70 770 m is3(VKPS example, page 2)L ds3

dfile=rtxt.rt

kind=6 xco=70 yco=700 sca=0.7

lhe=20 lwi=450 mod=0

#draw

#end

One may see rather complicated figures (on two

pages) may be described by only few instructions.

Thanks to an absence of extra information the

probability to make an error tends to a minimum.

2.3 Analysis of the typical example

Let us analyze what information is contained in the

last VKPS program. The command (#title) contains

the text after the sign (:) which will be inserted in

the comment line of output PSL file

%%Title: example of VKPS program

This is not necessary but allows one to distinguish

different PSL files.

The text parameter (psfile) defines the name of

output PSL file as "figures.ps". The text parameter

(hfile) defines the name of the head file. The head

files contain the postscript definitions which are used

by VKPS program and by user in the direct PSL

fragments. The user may define up to 10 different

head files. However, the file "head30.psf" is necessary

because it is used by VKPS-3.0 program. Normally it

is distributed with the program itself and must exist

at the current directory. However, there is a

possibility to place the file in any directory and to

specify the total path of the file (up to 64 signs).

The direct PSL line defines the text by means of

the definitions of the head file. The font, the

position, the size and the symbol line are described

extremely shortly. It is convenient to use PSL

directly for such a simple graphical objects. The

commands of the head files are described in

Appendix.

The text parameter (dfile) defines the name of the

data file as "vksign.dat". The data file must be

consistent with the kind of the graphical object. The

kind is defined by the numerical parameter (kind).

When kind = 1 the data file must contain the curve

as two-column ASCII file - each dot in a separate

line (x,y). The data files must be prepared by user

as a result of calculation. However, there is a

possibility to determine the data file directly in the

VKPS program. For this purpose the following

scheme may be used

dfile=here

first line of the data file

second line of the data file

and so on

%eof

Here the comment line %eof plays a role of the end

of file pointer.

The numerical parameters (xco, yco) define the

position of the figure on the page (x and y

coordinates). VKPS program works with the standard

postscript units of length, namely, pt = 0.0353 cm.

The numerical parameters (xas, fas) define the sizes

of axes for an argument and a function (x axis size

and f axis size). The command (#xaxis) define

directly five numerical parameters in a shortened

form (xbe xen xfm xsm xns). The field of argument

contains five numbers which will be transfered to

the parameters. The sense of the parameters are: xbe

= (x-axis begin), xen = (x-axis end), xfm = (x-axis

first long mark with figures), xsm = (x-axis step to

the next long mark with figures), xns = (x-axis

number of short marks without figures between the

long marks). The units may be any and these have

to match the mathematical units of the calculated

dependence. The command (#faxis) define five

numerical parameters (fbe fen ffm fsm fns). The

parameters are similar to the x-axis but these define

f-axis - the vertical axis of the function. The sense of

the parameters are completely the same as above.

The text parameter (xtitle) defines the title of the

x-axis as a text string. The argument is a direct PSL

text using the definitions of the head files. In this

way the title may contain Latin and Greek and

Victor Kohn Introduction to VKPS and PostScript 4

Russian symbols as well as subscript and superscript

and mathematical symbols and so on. There is no

restrictions at all. To determine the complicated text

string with a usage of many fonts and text

commands the number of symbols may be large

enough. However, the program allows one to use no

more 100 signs in the total line icluding the name of

parameter. Usually it is enough. When it is not a

case there is another possibility to put the title as

long as possible (see below).

The text parameter (ftitle) defines the title of the

f-axis in the same manner. The simplest definition

used in the example is the standard Latin text

placed in the round brackets and followed by the

PSL command Lc. This command defines the

Palatino-Roman font of 14 pt size. The text will be

placed to coincide the middle point of the text string

with the middle point of the axis (centered). This is

standard positions of the title.

The standard positions may be changed by the

numerical parameters (txx, txy) for the x axis and

(tfx, tfy) for the f axis. Their values define the shifts

of the title from the standard positions. The names

of the parameters are the abbreviation of the

following: txx = (text of x-axis x-shift), txy = (text of

x-axis y-shift), tfx = (text of f-axis x-shift), tfy = (text

of f-axis y-shift). The values must be determine in

the standard units of length (pt).

The command (#draw) declares to draw the

graphical object. The current values of all parameters

are used for the figure drawing. The reader may

understand that this command is position sensitive

whereas the definitions of many parameters and

some commands are position insensitive. The order

of the definitions may be arbitrary with only one

restriction - the all desirable definitions must precede

the (#draw) command.

The command (#new page) declares to begin the

new page of the document. It is also position

sensitive. Normally at least one command (#draw)

must precede the command (#new). In the opposite

case the first page of the document will be empty.

Usually it is convenient but not necessary to place

the (#new) command just after the (#draw)

command.

The second page of the document will contain the

graphical object of the kind = 6. This is the

formatted text. The data file in this case contains the

text including the set of commands for the text

formation like the fonts, size, the order of the

placing in the columns and so on. This is decribed

below in more detail. The new numerical parameter

(sca) allows to scale the all or part of defined

position or size parameters. The numerical

parameters (lhe, lwi) determine the height and width

of the text line. The numerical parameter (mod)

determine the modification of the text formatting.

The command (#end) declares that the program is

finished. At this point VKPS program starts to

prepare the PSL document. The rest part of the

input file will be ignored.

2.4 Manipulation with the text string

It is always the problem to describe the complicated

text string by usual symbols of the ASCII table. The

program VKPS uses two different ways to solve this

problem. First one is to use the special text

environment as the graphical object of kind = 6 (see

below). The second way is to use PSL directly to

describe the text string. However, the initial PSL

commands are long and not convenient. This is why

the head file (head30.psf) contains some postscript

definitions to simplify a description of the text. First

of all the standard size of fonts are accepted as 14

pt. Then some simple commands were introduced to

define the different fonts. For example, (..text..)L

means to put the ..text.. by Palatino-Roman font of

14 pt size at the current cursor position by the left

side of the text string. Similar command (..text..)G

will show the symbols of the Symbol font with the

same ASCII codes as ..text... For example, (a b c d)G

will show α β χ δ.

There are the commands to use Helvetica font as

(..text..)H, Palatino-Bold font as (..text..)B,

Palatino-Italic font as (..text..)I, Russian text by

Helvetica type Russian font as (..text..)R. However, in

the latter case the additional head file (cyr30fnt.psf)

containing the Russian font must be defined because

this font is not a standard Postscript font. The

correspondence between the ASCII codes and russian

letters may be obtains by test VKPS program. For

example, (a b c d)R will show a b c d.

The command (abc)ib allows to draw subscript by

current font and smaller size. The command (abc)it

is for superscript. The current position of the cursor

may be redefined by the command X Y m or X Y

rm. The first command define the absolute position

of the cursor in pt - X as x-coordinate, Y as

y-coordinate. The second command define the shift

of the current position on the values X and Y.

One has a possibility to change a standard size of

the font. There are 5 commands to increase the size

Victor Kohn Introduction to VKPS and PostScript 5

is1, is2, is3, is4, is5 and 5 commands to decrease

the size ds1, ds2, ds3, ds4, ds5. The corresponding

pair of commands make nothing, for example, is3

ds3. In the case of increasing the size of font it is

multiplied by the values 1.25, 1.5625, 2, 3.125 and 4.

In the case of decreasing we have correspondingly

0.8, 0.64, 0.5, 0.32 and 0.25. It is necessary to use

only the corresponding pair of the commands, for

example, is3 (text)L ds3 to eliminate the scaling of

the following fragments.

A slightly different command (..text..)Lc means to

put the text by central point of the text at the

current cursor position. It is used to place the title

of axes at the centre of axes. This command is only

for L font (Palatino-Roman of 14 pt size). However,

using the combination ()B(text)sc the same property

may be obtain for all other fonts. The command

(..text..)Le means to put the text by it’s end at the

current cursor position with the L font . For other

fonts the combination ()B(text)se is possible.

The direct PSL text may change the color. The color

is defined directly as R G B srgb command where

R, G and B are numbers from 0 to 1 which define

the concentration of red, green and blue colors in

the real color.

The additional possibility may be obtained with the

head file (head-a.psf). This file defines the command

AA for the Angstroem, hh for the Planck constant,

int for the integral sign, min1, min2 for the minus

sign above the small and capital figures - the

notation used in Crystallography and others. The

number of nonstandard symbols may be increased

and any new symbol may be described in the head

file. Hence there is really no restriction.

2.5 Manipulation with the files

There are two commands which don’t produce the

graphics directly but are convenient to prepare the

input file. The command (#input) has one argument

- the name of the file. It is position sensitive. The

command declares that the following information

must be read from the file specified in the command

instead of the input file (xxx.vkp). The file will be

read from the beginning to the end. After that the

program continues reading the input file (xxx.vkp).

This command allows one to prepare quickly the

combined PSL document from the different parts

which are prepared previously in the separated files.

Especially it is convenient when some part of the

input file must be repeated many times. This part

may be prepared in a separate file and then it is

necessary only to use the (#input) command many

times.

The second command (#save) just allows user to

save some fragment of the input file (xxx.vkp) in the

different file. The argument of the command defines

the filename of the new file. If the file with such a

filename exists before the usage of the command

then it will be replaced on the new content

automatically. The text of the input file which

follows after the (#save) command will be considered

as the simple text but not the program. The

commands will be only saved but not fulfilled.

Similar to the construction (dfile=here) the comment

line (%eof) from the first position plays the role of

the end of file pointer. The command (#save) is a

development of the construction (dfile=here) and it

may be used in particular to save the data file as a

normal file and then to use such a file. The

construction (dfile=here) works similarly but it use

the filename ’vkpsd.tmp’ which is deleted before the

program finish. The command (#save) may create or

redefine the contents of the file but it cannot to

delete the created file.

The interaction of the commands (#save) and

(#input) with the same filename may be used as the

procedure or subroutine in other programming

languages. The command (#save) is used to define

the procedure previously and the command (#input)

is use to fulfill the procedure many times.

2.6 Manipulation with the colors

A usage of the colors as well as a manipulation

with the files are the new features of the version 3.0.

The VKPSL has two new numerical parameters: (col)

and (lco). The first parameter defines the general

color which will be used to draw the axes and texts.

The second parameter defines the color which will

be used for drawing the lines of the curves showing

the mathematical dependences. There is also the text

parameter (cfile) which defines the name of the file

containing the table of colors for drawing the color

topographs.

To determine the color VKPSL uses the six-digit

integer number which has a structure "rrggbb" where

"rr" is two-digit integer which defines the degree of

red from 0 to 99, "gg" is the same for a definition of

green and "bb" is the same for a definition of blue.

The real color will be mixed color combined from

these three colors. For example, 990000 will define

bright red, 660000 - middle red, 330000 - dark red,

9900 - bright green, 6600 - middle green, 3300 - dark

Victor Kohn Introduction to VKPS and PostScript 6

green, 99 - bright blue, 66 - middle blue, 33 - dark

blue, 999900 - bright yellow and so on. The number

0 is for black and 999999 is for white. The PSL used

RGB representation where each color is defined from

0 to 1. In accordance with this representation VKPS

multiplies the two-digit integer number for each

color by 0.01. Hence we have 0.99 0.99 0.99 for the

white color instead of 1 1 1. However the pure

white 1 1 1 does not differ from 0.99 0.99 0.99 for

many printers and dispays. At any rate such a

difference is very small. One may conclude that the

zero sign at the left is not necessary because this is

a number not the text.

Such a representation is used in all places of the

VKPS program, for example, in the (color file) or in

the definition of the regions and lines directly.

3. Kinds of graphical objects

In this section we consider the possible graphical

objects which may be described simply for automatic

PSL figure creating. The notion of the graphical

object is very useful because it match well the fact

of existence of different data and different forms of

the data presentation. The drawing of the graphical

objects is a rather complicated procedure which is

made by VKPS automatically. The task of user is to

give VKPS only the minimum information about

what the user likes to have in the figure. Please

don’t forget that all parameters are defined from the

beginning. The user have to redefine only the

parameters which are wrongly defined.

3.1 Direct postscript program

This object has kind = 0. The data file which name

is defined by the the parameter dfile=name has to

contain the pure postscript text of the graphical

object but without a Prologue of the PS document

(see Appendix about the PS file structure). This text

may use the definitions and procedures of head files

to simplify the description. Only the parameters (xco,

yco, sca) are necessary which define the translation

of the figure on XCO YCO values in pt. Here and

below the name of large letters will denote the

values of the parameters of the same name (of small

letters). The (sca) parameter defines a scaling of all

figure on the SCA value in both directions. The

command (#draw) in this case simply puts the text

of data file inside the whole postscript document

with one line before and after, the text, namely,

gsave XCO YCO translate SCA SCA scale

<text of the data file>

grestore

The module is useful to include the photo or any

other bitmap picture saved as PS image. In this case

the data file has to be the PS document of image

but without the Prologue. Sometimes this

construction becomes beneficial compared to the

direct PS lines for the drawing the complex texts like

mathematical equation. The procedure of the text

formatting of VKPS program cannot described the

formula of any structure but the PSL can make this.

For example, for the equation

the VKPS program may be as follows

kind=0 xco=10 yco=10 sca=1

dfile=here

40 15 m int ds2 -2 -15 rm (0)L -2 35 rm

(\245)G 3 -20 rm is2 ds1 (dt)L 4 Sh (e)L

10 Sv is1 ds2 (i)L(w)G(t-)L(g)G(t)L is2 ds1

-10 Sv (=)L /X{10 Sh(i)s}bd /Y{(w)G(+i)L

(g)G}bd 3 frac is1 250 15 m ds1 ((1))Le is1

%eof

#draw

The text of data file contains the commands of head

files. However with other definitions it may be

written in another way. At any rate it’s structure is

a structure of PS language and it is different from

LaTeX structure. Another example of PS picture with

text is shown below.

The PS program in this case is sligtly more

complicated but it is not long because some new

procedures first are defined and then used. The text

of these procedures may be received from author.

3.2 Graphics in the box from columns

The most popular task of computed graphics is to

show a set of functions of one argument inside the

box of axes. The function may be theoretical, i.e.

continuous, or experimental, i.e. discrete. The box is

formed by four axes, each of them must be

⌠
⌡

0

∞
dt e

iωt-γt
 = i

ω+iγ (1)

Postscript
allows one

to make all

Victor Kohn Introduction to VKPS and PostScript 7

independent. The labels may be directed outside of

the box, inside the box or form the grid. Usually the

bottom and left axes have the titles. Practically each

graphics package has the function to create the

figure of such a kind with different services. The

program VKPS solves this task under the condition

of reasonable sufficiency. The program performs the

more difficult work to draw the curves, axes and

titles. All other comments to figure can be performed

by user in another graphical objects.

Such a graphical object has (kind = 1). One

command (#draw) makes the figure of one function

inside the box of axes. The data file must be an

ASCII file. It has to contain the two columns, one

for an argument and one for a function, each point

at separate line. The number of points is defined by

the number of lines in the file.

The figure describing such a graphical object is

shown below

The fragment of the VKPS program describing such

a figure is as follows

dfile=tut1.dat

kind=1 xco=80 yco=80 sca=1 xas=250 fas=250

sdi=1 gxs=1 gfs=1 fun=1 lth=1 mas=0

xbs=1 xts=1 fls=1 frs=1 col=77 lco=777700

txx=0 txy=0 tfx=0 tfy=0

#xaxis 0 105 0 10 4

#faxis 0 125 0 20 4

xtitle=(x-axis title)Lc

ftitle=(f-axis title)Lc

#draw (curve-1)

dfile=tut2.dat

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

x-axis title

f-
ax

is
 t

it
le

xbs=0 xts=0 fls=0 frs=0

lth=2 mas=0 lco=990000

#draw (curve-2)

dfile=tut3.dat

lth=0.5 mas=2 lco=7700

#draw (curve-3)

Here all the parameters which are used in this

graphical object are shown before the first (#draw)

command. Before the second and third commands

(#draw) only the parameters having new values are

redefined. All the commands of the program

presented above were described in the Section 2.3.

Let us discuss the parameters which define the

properties of the figure. The text parameters and the

part of numerical parameters were discussed in the

Sections 2.3 and 2.4. Here we describe the new

parameters. The parameter (sdi) means stroke

direction at the marks of the axes. When sdi = 1 the

strokes are drawn inside the box of axes. For other

values the strokes are outside the box. The initial

value is 0. The parameters (gxs, gfs) define the

existence of grid inside the box (grid of x-axis switch

and grid of f-axis switch). The grid lines go through

long marks. If gxs = 1 then the grid through x-axis

from bottom to top will be drawn. If gfs = 1 then

the same will be from the left to the right. For other

values the drig is absent. The initial values equal 0.

The parameter (fun) means (function unit). It

defines the value FUN. The initial values of data file

are divided by FUN before positioning at the f-axis.

Therefore in reality the program shows the function

f(x)/FUN instead of the initial function f(x). It is

convenient to match quickly the f-axis parameters

and the function values when the calculated values

are known previously. There is a special case. If fun

= 0 then the decimal logarithm of the values of

data-file is drawn instead of initial values and

figures at f-axis has the form 10
n

where the degrees

n are defined values. The initial value of (fun) is 1.

However, the intermediate marks don’t match the

decimal logarithm in the case fun = 0. Therefore the

number of intermediate marks must be define as 0.

The nonuniform marks of the logarithm scale may

be drawn as direct postscript procedure.

The parameter (lth) means (line thickness). It

defines the thickness of the line in pt which are

drawn inside the box of axes and shows the function

dependence. When lth = 0 the function will be not

seen. The initial value is 0.5. The parameter (mas)

means (marker size). It defines the radius of circle

which is drawn at each dot of the dependence by

Victor Kohn Introduction to VKPS and PostScript 8

the line of thickness (lth). If the mas = 0 then the

straight line segments will be drawn between each

pair of dots and the dependence will be seen as the

curve. The initial value is just 0.

The parameters (xbs, xts, fls, frs) means (x-axis

bottom switch, x-axis top switch, f-axis left switch,

f-axis right switch). These parameters declare what

axes will be drawn on the figure. The box of axes

may be drawn completely or partially or may absent

at all. This property is necessary to combine many

fragments closely to each other when some axes are

common for two neighboring figures. Another case is

when several curves are drawn on the same box of

axes as it occurs in the program presented above. As

it is seen in the program the values 1 means that

the axis exists, whereas the value 0 means that the

axis is absent. The initial values are 1.

3.3 Graphics in the box directly

The graphical object of (kind = 2) is rather similar

to the preceding object. The difference is that many

functions at the same set of argument values with a

constant step may be drawn from the direct access

numerical data file. The data file of direct access is

the most compressed form of saving the numerical

data. It is assumed that the argument values begin

from some value and each subsequent value is

different from the preceding value on the same value

(step). Therefore it is not necessary to save the

argument value in the data file. The data file

contains only the function values, one function after

another so that the values present two-dimensional

array - matrix. It is convenient to have a possibility

to draw any part of the matrix instead of total

matrix, so that the total matrix is a particular case.

To describe the sub-matrix of the whole matrix and

the argument values the parameter (dfile) is

accompanied by 7 numerical parameters xfp, xlp,

nxp, nfu, iff, nmx, ifx. The value of parameters

determine

XFP - argument value at the first point

XLP - argument value at the last point

NXP - number of argument points to draw

NFU - number of functions to draw

IFF - index of the first function in the total matrix

NMX - argument size of the total matrix

IFX - index of first point in the total matrix

The size of the data file is no less than

4*NMX*(IFF+NFU-1) bytes. It is assumed that the

real numbers have REAL*4 format (4 bytes per one

number) and these are written in the direct access

technique. This means, for example, that the operator

(open) of the FORTRAN procedure had the form

open(1, file=<data file>, access=’direct’, recl=nb, ...)

where nb = 4*NMX is a number of bytes in the

record. First NMX numbers belongs to the first

function, second NMX numbers - to the second

function and so on. However, only NXP numbers

with IFX dot as the first will be drawn. The

functions will be shown from the function with the

index IFF to the function with the index

(IFF+NFU-1). The number NMX is limited by 3960,

the number of functions in the file is not limited.

To describe quickly all the parameters discussed

above the command

#functions XFP XLP NXP NFU IFF NMX IFX

exists in the VKPSL. As above the fragment of the

VKPS program which describe the graphical object is

shown below

dfile=tut4.dat

kind=2 xco=80 yco=80 sca=1 xas=250 fas=250

fun=1 lth=0.5 mas=0 sdi=0 gxs=0 gfs=0

xbs=1 xts=1 fls=1 frs=1 col=77 lco=6600

txx=0 txy=0 tfx=0 tfy=0 vsw=1 vsf=0.005

#xaxis -10 10 -10 5 4

#faxis 0. 0.61 0 0.2 3

#fun -10 10 100 7 34 100 1

xtitle=(Energy (meV))Lc

ftitle=(Intensity)Lc

#draw

The figure as a result of running this program looks

like this

-10 -5 0 5 10
0.

.2

.4

.6

Energy (meV)

In
te

n
si

ty

Victor Kohn Introduction to VKPS and PostScript 9

The reader have got an information about all

parameters except two, namely, vsf and vsw. Let us

discuss them. Sometimes it is reasonable to present

many functions in such a way that each subsequent

function becomes shifted vertically on some step

compared to preceding function. In this case the

function become distributed over the vertical axis

and a quasi-illusion of three-dimensional picture

arises. Such a vertical shift may be considered as a

projection of the y-coordinate (unexisting in reality)

on the vertical axis. This property may be obtained

by nonziro value of the parameter vsf which means

(vertical shift of functions). The parameter is defined

in mathematical unit of the vertical (function) axis.

The initial value is 0 but in the example considered

the small vertical shift exists.

To make the illusion of three-dimensional picture

more strong the parameter vsw allows to open a

modification when the values of curve below the

values of preceding curve are omitted as invisible.

To make this one needs to put 0 value on the

parameter vsw (vsw = 0). It is just the initial value.

When (vsw = 1) as in the example presented above

the lines are visible completely.

3.4 Quasi 3D-graphics of f(x,y)

The popular task of computed graphics is to show

the function of two arguments f(x,y) as the surface

of three-dimensional space. In reality, only the

central projection of the surface or the projection in

parallel lines along a definite direction can be

shown. There are several ways to make this. First

one - to deal with the real surface z = f(x,y) in

space (x,y,z) and to show its central projection from

a definite point of view. It is beneficial for drawing

a house or a car with displaying the effects of

perspective. The projection with parallel lines

corresponds to first way at an infinite distance from

the point of view to the object. First way gives two

independent parameters - a distance and an angle of

view. Second way gives only one parameter - an

angle of view.

From the point of view of presentation of scientific

results these sorts of graphics is not convenient

because it is difficult to compare the difference in

dependence at one values of the first argument

between the functions which correspond to different

values of second argument. That is why VKPS

makes the procedure which draws the quasi

3D-graphics as follows. Each curve (each value of

second argument) is drawn on the sheet of the same

type. Then the sheet for next value of second

argument is shifted on the definite vector (sh, sv).

Simultaneously the invisible lines can be eliminated

and three axes are drawn: X-axis (horisontally),

Y-axis (inclined), and F-axis (vertically). All axes have

the titles. Such a graphical object has kind = 3.

The VKPS solves this task under the condition of

reasonable sufficiency. The program performs

automatically the more difficult work of drawing the

curves, axes and titles. All other can be performed

by user using other graphical objects. Once again

below the text of VKPS program fragment is shown

which describes the figure presented just after the

text. All the parameters which influence the module

are shown.

dfile=tut4.dat

kind=3 xco=80 yco=80 sca=1 xas=160 fas=250

fun=1 hsf=1 vsf=0.005 vsw=0 col=88 lco=660000

txx=0 txy=0 tfx=0 tfy=0 tyx=0 tyy=0

#xaxis -10 10 -10 5 4

#faxis 0. 0.71 0 0.2 3

#yaxis 6 10 -8 4

#fun -10 10 100 51 1 100 1

xtitle=(Energy (meV))Lc

ytitle=(Angle \()Lc(m)G(rad\))L

ftitle=(Intensity)Lc

#draw

The figure itself looks as follows

Similar to the preceding graphical object the data file

is the file of direct access. The command (#fun) and

the parameters (vsf) and (vsw) has the same sense.

However, to make quasi 3D-graphics it is necessary

-10 -5 0 5 10
0.

.2

.4

.6

Energy (meV)

In
te

n
si

ty

-8
-4

0
4

8

A
ngle

 (
µra

d)

Victor Kohn Introduction to VKPS and PostScript 10

to perform a horizontal shift together with a vertical

shift of the next function compared to the preceding

function to have a better view. This is defined by

the parameters hsf. The horizontal shift is measured

in steps of function argument as an integer number

contrary to the vertical shift which is measured in

units of f-axis. The reason of this difference is

related to the peculiarity of the algorithm of

eliminating the invisible lines. This restriction makes

the algorithm to be much simpler. For a better view

one can use the modification when the parts of

curves below the preceding curves are omitted as

invisible. For this purpose as before there is a

parameter vsw.

The mechanism of drawing the functions is similar

completely to the described above graphical objects

of (kind = 1, 2). However the logarithm

representation is absent. The axes are drawing in all

cases. Therefore the parameteres (xbs, xts, fls, frs) are

not used. There are X, F, and Y axes. Because of the

figure is only quasi 3D-graphics the sense of inclined

y-axis has to be explained separaterly. The axis is

drawn through the ends of shifted x-axes for

different functions. The number of functions may be

arbitrary but not so much owing to the worse view

otherwise. That is why the short mark is placed at

each function. The user must define the indexes of

functions which will get the long marks: the first

index by parameter yff (y-axis first function) and

step to the next index by parameter ysf (y-axis step

to next function). However what value corresponds

to the long mark is unknown previously because the

data about the y-axis are absent. Therefore the

parameters yfm (y-axis first mark) and ysm (y-axis

step to next mark) determine explicitly these values

as first one and step to the next one. These four

parameters may be defined by the command

#yaxis YFF YSF YFM YSM

The titles are placed automatically at the good

position under the x-axis, before the f-axis and along

the the inclined y-axis. However, if one don’t like

the position of the titles then these positions can be

changed. Just the parameters txx, txy, tfx, tfy

described above for x- and f- axes and new

parameters tyx, tyy for y-axis are the shifts of the

titles position in pt-units. The text of titles must be

written as a direct PSL text (see above).

3.5 Topographic image of f(x,y)

The figure presented in the section 3.4 shows well

the vertical size of the surface describing the

dependence. However, the horisontal positions of the

characteristic points of the dependence are shown

not explicitly. That is why sometimes it is more

beneficial to use another presentation of dependence,

namely, the topographic image where the regions of

different heights have different gray levels or

different colors and the boundaries between the

regions of different gray levels show the lines of

equal height. Such a dependence just shows well the

characteristic points like the positions of maximums

and minimums of the function f(x,y). Such a

topographic image inside the box of axes can be

obtained by using the graphical object of kind = 4.

Once again below the text of the program is shown

together with the figure as a result of the program

work. Afterwards some details are explained.

dfile=tut5.dat

cfile=bw30vk.psf

kind=4 xco=80 yco=80 sca=1 xas=250 fas=250

mod=0 xbs=1 xts=1 fls=1 frs=1

fun=0.4 vsw=7 sdi=0 gxs=0 gfs=0 col=7777

#xaxis -11 11 -10 5 4

#faxis -11 11 -10 5 4

#yaxis -10 10 1 1

#fun -10 10 50 50 1 100 1

xtitle=(Energy (meV))Lc

ftitle=(Angle \()Lc(m)G(rad\))L

#draw

The figure looks like this

In this case one has to use the same parameters,

however some of them have slightly different sense.

-10 -5 0 5 10

-10

-5

0

5

10

Energy (meV)

A
n

g
le

 (
µr

ad
)

Victor Kohn Introduction to VKPS and PostScript 11

The x-axis is the same completely and it describes

the x argument of the function. The f-axis (vertical)

describes now the y argument of the function. The

parameters describing the box of axes are the same

(see the description above). The function itself must

be in the direct access data file with the same rules

of data description by the command (#fun). As for

the arguments, the x argument is defined as before

by parameters xfp, xlp, nxp. The y argument is

defined by the parameters yff, ysf, nfu which means

first and last values of the interval and a number of

points. As before the data file may be read from the

middle and the parameter iff, nmx, ifx shows the

index of the first lines, the real size of the line and

the index of the first point in the line.

To obtain the topographic image it is necessary to

determine a set of parameters which define the

values of height for the lines of equal height (level

parameters). In general this information must be

presented in the separate data file which name is

defines by the text parameter cfile=filename. This file

must have two columns - first for the level

parameter and second for the color which is used

when the function value becomes smaller than the

real level parameter. The real level parameter is

calculated by multiplying the value from the file by

the value FUN. The number of lines in the file must

be VSW + 1. The first level parameter will be

replaced by -10
30

as extremely low parameter

whereas the last level parameter will be replaced by

10
30

as extremely high parameter. The first color

therefore is not used.

There are two different modifications. When mod =

0 or mod = 1 the topograph are drawn as a

black-white map when the colors have three

components (red, green, blue) with the same

concentration which are equivalent to different levels

of gray. That is why in these cases the "color"

column may contain two-digits integer number as a

number of percents of gray level. The figure above

was drawn with the file "bw30vk.psf" which was

save previously from the "xxx.vkp" file as follows

#save bw30vk.psf

-100. 0

0.08 95

0.25 88

0.42 79

0.58 67

0.75 52

0.92 30

100. 0

%eof

There are two algorithms of drawing the topographic

image. The main algorithm gives a fine structure of

levels lines. This is defined by declaring mod = 0 or

mod = 2 . The algorithm works well in the case of

rather simple surface f(x,y) like the surface shown in

the picture presented above. However, this algorithm

is not absolutely stable and sometimes it may give

errors for the complex function f(x,y) and some set

of levels. Unfortunately the algorithm cannot be

improved. This is why to solve the problem in the

case of rather complex function f(x,y) the more

rough but absolutely stable algorithm may be used

declaring mod = 1 or mod = 3 . To obtain the gray

topographs with the stable algorithm the program

may be continued like this

mod=1

#draw

In this case one uses the same set of parameters as

above with only one difference, namely, mod = 1

instead of mod = 0. In the cases with mod = 0 or

mod = 1 one may obtain only black-white pictures

with different gray levels. It is enough for the

black-white printers and leads to the shorter size of

file.

There is a possibility to draw color pictures like

this.

To obtain the color picture one needs to declare

mod = 2 for a fine algorithm and mod = 3 for a

rough algorithm. The colors are described by usual

way with six-digits numbers. The picture above was

obtained with a next continuation of the program

-10 -5 0 5 10

-10

-5

0

5

10

Energy (meV)

A
n

g
le

 (
µr

ad
)

Victor Kohn Introduction to VKPS and PostScript 12

cfile=col30vk.psf

mode=3

#draw

Here it is assumed that the "xxx.vkp" file defines the

color file inside it’s body by set of lines

#save col30vk.psf

-100. 0

0.08 999900

0.25 990000

0.42 990099

0.58 666699

0.75 9999

0.92 6699

100. 66

%eof

The color topograph is the new feature of the

version 3.0 of the program.

3.6 Regions, lines, text strings, and

scaled arcs inside the box

It is easy to describe different regions, lines, text

strings, arcs and other simple objects on the page

directly by means of postscript language in the real

units pt = 0.0353 cm. However, sometimes it is

necessary to draw the regions or lines or text strings

or scaled arcs at the place which is well determined

in the mathematical units of the box of axes instead

of physical coordinates of these objects. This way is

convenient also from the point of view of portability

the figures in the box together with the extra details

of the figure like regions, lines, texts and arcs. The

graphical object of (kind = 5) described in this

section is just elaborated for this purpose. The box

of axes may be drawn and in addition the data file

contains a compressed information about how to

positioning simple graphical objects relative to these

axes.

In the most simple case this object contains only

the box of axes if the instruction (dfile=none) is

introduced. This graphical object may be useful

independently as well as in a combination with the

other objects using the same or different box of axes.

Here the parameters which describe the box of axes

coincide completely with the same parameters for

(kind = 1, 2, 4). The data file must contain the

information about the regions, lines, text strings and

arcs in a compressed form - only numbers without

comments. Below just the structure of the data file is

described.

The data file is a simple ASCII file. The first line

must contain four integer numbers in free format:

(nregions), (nlines), (ntexts) and (narcs).

The numbers are the numbers of regions, lines, text

strings and arcs which will be drawn in this

graphical object. The following lines describe the

objects.

If (nregions) is larger than 0 then the next line

must contain two numbers: (npoints) and (color)

which determine the number of points and color for

a first region. The color is described in a usual

manner (see section 2.6). The next lines must contain

x, y coordinates of each point being a vertex of the

polygon - boundary of the region. The numbers may

be written in free format and each line may contain

arbitrary number of data. Then the same structure

must be for a second region and so on.

After the all regions are described the similar

description must be for all lines if (nlines) is larger

than 0. The description is the same with one

difference - first line contains three parameters

(npoins), (line thickness in pt) and (color). The

regions and lines cannot go out the box. If some

coordinates go out the box then these coordinates are

change to the boundary of the box.

If (ntexts) is larger than 0 then the following lines

must define the text strings. The text strings are

defined each string on a separate line. Each line

must contain three numbers (x, y coordinates in

units of box and color) followed by the text program

itself in apostrophes. The text program must include

all the postscript commands and may be rather

complicated. The change of font or moving the text

string is possible. In reality here may appear the

whole postscript program for drawing not only the

text. The simplest form is like this ’(text)s’. The

maximum length of text program string on the first

line is 82 symbols. However, if the last symbol

equals (\) (backslash) then the reading of the text

program will be continued on the next line which

may contain up to 100 symbols and the last symbol

(\) for a continue on the next line and so on. The

coordinates of text string may go out the box.

Therefore the text string may be used for making

the rather complicated title at the axes or above or

below the box of axes.

If (narcs) is larger than 0 then the following lines

must define the scaled arcs. Each line describes one

arc. The description includes 8 numbers: (x), (y) - x-

and y-coordinates of the centre of the arc, (r) - the

radius in units of x-axis, (f1) and (f2) the start and

Victor Kohn Introduction to VKPS and PostScript 13

final angles in degrees for drawing the arc. The 6-th

number (line thickness) determines the line thickness

in pt. The 7-th parameter (color) defines the color in

a usual manner (section 2.6). The last 8-th parameter

defines the vertical scaling the arc. If (line thickness)

is not zero then the arc will be drawn as a scaled

vertically color line. If (line thickness) equals 0 then

the arc will be drawn as a scaled filled region.

Once again an example of using this graphical

object is shown below

kind=5 xco=80 sca=1 yco=80 xas=250 fas=250

xbs=1 xts=1 fls=1 frs=1 sdi=0 gxs=0 gfs=0

dfile=here

2 1 1 1

5 9900 region 1

42.272 0. 149.875 25. 187. 25. 187. 22.698 89.306 0.

4 999900 region 2

0. 6.33 187. 6.33 187. 14.062 0. 14.062

4 2. 990000 line 1

30 18 50 22 70 18 90 22

120 1 99 ’is1 (Victory)H(index)it ds1’

110 10 20 0 360 5 99 0.5 arc 1

%eof

#xaxis 0 187 0 50 4

#faxis 0 25 0 5 4

xtitle=(Energy (meV))Lc

ftitle=(Angle \()Lc(m)G(rad\))L

txx=0 txy=0 tfx=0 tfy=0 col=0

#draw

One may see the lines which define the parameters

of regions, lines, texts and arcs may have comments

after the total information is presented. The figure of

this program looks like this.

0 50 100 150
0

5

10

15

20

25

Energy (meV)

A
n

g
le

 (
µr

ad
)

Victory index

Sorry, this graphical object is not well done, the

structure of data is rather rigid. However it is very

useful. The difficulty arises only on the first stage of

the work. With an experience the inconvenience

decreases. It is necessary to note that the user must

be careful in preparing the data file because some

errors in data cannot be improved and these lead to

a fatal end of working the program. The reason is

that the parameters are defined directly and have no

the default values.

4. Rich text with figures

Rich text with figures is the powerful graphical

object of (kind = 6). There are several problems in

creating the beautiful text using simple text editors.

For example, for russian users it is inconvenient to

write the russian letters directly in postscript because

the russian symbols are coded by latin symbols and

one needs to remember the table of correspondence.

In VKPS russian font cyr30fnt.psf this table is simple

enough and it contains letters close in sound to

english letters, for example, a -> a, p -> r, c -> s

and so on. However, for some letters the

correspondence is not so evident. The correspondence

may be obtained each time by comparison the data

file of initial text with the text of resulting ps-file.

Second problem is formatting the text when it is

necessary to place the text inside the columns of

definite width with even boundaries or to change

some properties like a spacing between lines, a font,

a size and so on. A separate and very important

task is to combine the text with figures.

To make such a work to be comfortable for users

the VKPS is able to translate automatically the

simple ASCII text to a direct postscript fragment.

The initial (data) text may be written using any

simple text editor with Windows coding of russian

symbols. The text may have the words which

represent thoughts of the author together with

additional commands which rule how to represent

the text itself in the document. In analogy with other

editors we will call it as a rich text. One may use

Windows editor, for example, Notepad for writing

the source text in the data file.

Afterwards the rich text will be transformed to the

postsript fragment for a moment. In the process of

compilation the fragment will be scaled according to

the current value of parameter SCA and placed by

left-top corner at the point (XCO, YCO) at the page.

The text may be large and may contain a lot of

Victor Kohn Introduction to VKPS and PostScript 14

figures so that it may occupy a lot of pages. As an

example one may examine this document which is

prepared just with VKPS program completely. The

program VKPS makes a passage to the next page

automatically when the vertical position of the next

line becomes lower that the bottom margin

parameter bmp. The new position of line in the next

page will be a top boundary of A4 format page

minus the value of top margin parameter tmp. In

principle, a whole book may be described as one

VKPS graphical object. On the other hand, VKPS is

able to translate different fragments step by step.

Therefore it may be more convenient to consider the

first chapter in one data file, the second chapter in

another data file and so on.

The data file of this graphical object is a simple

ASCII file containing the source text with some

driver symbols which have a meaning of commands.

Such a data file will be named (xxx.rt) file contrary

to (xxx.vkp) file of input stream of VKPS program.

In the resulting text the russian font is similar to

Helvetica or Arial fonts while latin symbols in this

text by default is drawn by Helvetica font. All

standard postscript fonts are reachable as well as

many sizes. The module uses the parameters:

dfile - to specify the name of data file (xxx.rt),

lhe - to specify the height of lines in pt,

lwi - to specify the width of column in pt,

bmp - to specify the bottom margin in pt,

tmp - to specify the top margin in pt,

str - to specify the margin between columns,

mod - to specify the modification.

For the sake of simplicity to deal with the rich text

it may contain the comment lines similarly to the

input stream of VKPS. The comment lines have to

contain the symbol (%) in the first position.

However there are two special comments which are

used to specify the extra format of each page like

header, footer, page numbering, some additional title

of the page etc. These comments are used only in

the case when the page is full and it is necessary to

pass on the next page. The first comment looks like

this

%pagen 34

where (%pagen) is the name of comment and (34) is

an argument. This comment specifies what number

will be placed on the current page. In an example

presented it is 34. If the same comment with other

argument will be absent then the next page will

have number incresing by one (35) and so on.

Nevertheless it is not making automatically. The

second comment is necessary which specifies the

position of the page number together with all other

information about the page frame. The second

comment has a structure like this

%paget text on first line of pagetitle PS program\

’text of second line of pagetitle PS program\’

’ and so on somewhere with (???)L\’

’last line of pagetitle PS program’

Here (%paget) is the name of comment and all other

text is an argument. The argument is a direct PS

program which specifies the text of header or footer

or frame or some other feature which must be put

on each page of the document if the new comment

will not appear which redefines the program. The

structure of the comment is as follows. The first line

contains the text just after the name in free format.

If the continuation is necessary then the last symbol

of the line must be (\). The second line must be in

apostrophes. Once again if the continuation is

necessary the last symbol inside the apostrophes

must be (\). And so on. The program may contain

in some place three symbols "?" together. Such a

combination will be replaced on the current page

number as was specified by the comment (%pagen).

For example the rich text file of this document has

the next comments:

%pagen 1

%paget gs 1 0 0 srgb 40 790 m ds1(Victor Kohn)I \

’is1 297 790 m ds1\’

’(Introduction to VKPS and PostScript)Lc\’

’ is1 555 790 m ds1(???)Le is1 0.25 slw \’

’ 40 783 555 783 ls gr’

The total length of the PS program is limited by 512

symbols.

4.1 Modifications of text formatting

The parameter mod allows to make different ways of

formatting the text. Normally (SCA = 1) the size of

letters is 14 pt. However, the user may choose an

another size through the parameter sca which allows

to scale the whole fragment. This means that not

only the size of letters will be changed but also the

width of lines (column) and spacing between lines.

In other words, the total graphical object will be

scaled as a whole. This case is realized when mod =

0, 2. On the contrary, when mod = 1, 3 the basic

size of letters will be scaled only but the width and

the height of lines stay the same as without a

Victor Kohn Introduction to VKPS and PostScript 15

scaling as well as the total size of graphical object.

For example, with (sca = 0.85) one will obtain the

size of 12 pt. It is only the basic size of letters. An

additional change of size can be ruled by commands

of rich text. As for figures which are included inside

the text they have always the size which was

pointed out in its reference (see below).

Another modifications concern the kind of line

breaking. When (mod = 0, 1) the text fills a column

up to the end of paragraph and the ends of lines in

the source rich text mean nothing completely. In

some formatting editors (LaTeX, Postscript) the end

of line is equivalent to the blank sign. To exclude

this rule in Postscript one need to use the backslash

sign (\) as a last sign of line. In VKPS the end of

line means nothing originally. If one want to

introduce a blank sign at the end then it must be

done in explicit form. It is convenient to have the

first symbol of each line as a blank sign. The end of

paragraph is specified by an empty line or a special

command \Ex (see below). On the other hand, there

are four standard fillings of column: with even left

side, even right side, centered lines with fixed space

symbol width and even both left and right side with

different space symbol width. Few blank symbols in

the source file mean the same as one blank sign

(similarly to LaTeX).

When (mod = 2, 3) the program works differently,

namely, the end of each line is the end of paragraph

and each space symbol is taken into account with a

fixed width. When the column is wide enough a

complete correspondence will arise between initial

ASCII text and formatted text. However, if the

column is narrow the lines will be broken.

Let us resume the possible modifications:

mod = 0, 2

the size of letters, the width of lines and the line

spacing are scaled simultaneously, originally the

letters are of 14 pt size. The size of whole fragment

is changed.

mod = 1, 3

the size of letters is scaled from the size of 14 pt

while the line width and height stay the same

together with the size of whole fragment.

mod = 0, 1

the ends of lines mean nothing, the few blank

symbols means the same as one sign. The empty

line or a special sign \Ex specify the end of

paragraph.

mod = 2, 3

the end of line means the end of paragraph, each

blank symbol is taken into account in explicit form

with a fixed size.

The formatting procedure is performed by the

program VKPS. In the case of standard postscript

fonts this procedure may be device dependent if the

characters of postscript fonts have different properties

on different devices. Usually it is not a case and

difference may arise only between the interpreters of

different levels. At least one cannot find the

difference between Ghostview 4.01 for PC and

network printers. The program VKPS has an

information about the size of each letter in each font

among the recommended to use. Other fonts can be

used also but the right side of column will be

approximately even only.

In principle, postscript-language allows to perform

the line breaking algorithm directly and this way is

device independent. However, it is more convenient

to use some simple rich text with non-postscript

commands and non-postscript figures in the source

file. Afterwards all necessary calculations are

performed by the program VKPS together with an

automatic formatting the text on pages.

The problem here is that the program GhostView

allows to see the pages in arbitrary order and it

uses for this purpose the comment lines like this

%%Page: 3 3 .

It is impossible to write this comment line to the

postscript file within the postscript procedure of the

same file. At least I cannot make this.

In (mode = 0, 1) few blank (space) signs inside the

rich text mean the same as one blank sign because

the width of space between words is defined

automatically.

4.2 Commands of rich text

The commands of rich text begins from the symbol

(\) (backslash) followed by one small or capital letter

and in some cases by numerical parameter. The

blank sign before the command only is significant.

The blank sign after the command means nothing

and may be used to make the text more readable.

Only one exclusion is made for the command \m.

The blank sign after this command is significant. The

same small and capital letters mean different

commands. When one needs to put the sign (\) itself

in the text it can be done as command (\\). Each

command opens one new feature which will arise in

subsequent text and will work up to the end or

Victor Kohn Introduction to VKPS and PostScript 16

when a new command cancels the influence of this

command. For example, each new set of font cancels

the preceding set. The same for sizes and levels.

Below all commands are shown in table together

with explanation separated by == and an example:

\\ == symbol \

\R == russian font.

source: \R raz one dwa two tri three -etyre four
result: raz one dwa two tri three -etyre four
This font is absent in a set of standard postsript

fonts. To use the font it is necessary to specify the

font by means of line

hfile=cyr30fnt.psf

in (xxx.vkp) (input file) before a call of the module.

The file cyr30fnt.psf is distributed together with the

program VKPS.

\H == standard postscript Helvetica font.

source: \H one two three four five

result: one two three four five
This font is used also for nonletter characters of

russian font like . , : ; () 0 1-9 [] { } and so on.

Moreover when a russian font is specified and latin

symbols arises in text this font is used automatically.

\L == standard postscript Palatino-Roman font.

source: \L one two three four five

result: one two three four five

You see the latin font is a base font of this

documentd.

\B == standard postscript Palatino-Bold font.

source: \B one two three four five

result: one two three four five

\I == standard postscript Palatino-Italic font.

source: \I one two three four five

result: one two three four five

\G == standard postscript Symbol font

source: \G a b g d

result: α β γ δ

\m == middle level of text in line (default).

This command is used to finish a writing of

subscript or superscript. The blank sign before this

comand will be scaled that is inconvenient in many

cases. That is why the blank sign after this

commmand is significant and this rule is valid only

for this command.

\u == up level of text (for superscript).

\U == up more level of text (for superscript in

superscript).

\d == down level of text (for subscript).

\D == down more level of text (for subscript in

subscript).

\r == return.

This command is used for writing a subscript and a

superscript simultaneously one below another. This

may be done as \d subscript\r\u superscript. The

longer index must be the second.

Below an example of using these commands is

shown

source: \H A\s\G\d abg\r\u stu\m\n\m - \H

S\s\d abc\m\n

result: Aαβγ
στυ − Sabc

\n == normal size of text (default).

\s == small size of text (0.8 scaled)

\f == footnote size of text (0.7 scaled)

\t == tiny size of text (0.55 scaled)

\l == large size of text (1.2 scaled)

\b == big size of text (1.5 scaled)

\h == huge size of text (2. scaled)

\e == enormous size of text (3. scaled)

Below all sizes are shown together with the

command \Xnnn, \Ynnn (see later)

source: \t tiny,\X10\f footnote,\X10\s small,

\X10\n normal,\X10\l large,\X10\b big,

\Y12\El \h huge,\X10\e enormous.

result: tiny, footnote, small, normal, large, big,

huge, enormous.
The following commands explain the paragraph

formatting.

\Ex == end of text paragraph. Here the second sign

is an argument. The argument has four values: x ==

w, l, c, r . The purpose of argument is to set the

kind of subsequent paragraphs:

\Ew -- even left and right sides,

\El -- left aligned (hard blank sign),

\Ec -- centre aligned (hard blank sign),

\Er -- right aligned (hard blank sign).

The argument may be absent. Then preceding setting

is used.

\Xnnn == to put a hard horisontal space in a line.

The width of space is defined by argument as a

positive integer number in pt (one, two or three

digits). For example, \X10 means 10 pt hard space.

Contrary to the blank sign which is scaled together

Victor Kohn Introduction to VKPS and PostScript 17

with symbols by commands \s \f and others, the

hard space is independent of scaling the fonts.

\Ynnn == to put a hard vertical space between the

lines. The depth of space is defined by argument as

a positive integer number in pt (one, two or three

digits). Contrary to command (\Xnnn) which always

moves the text inside the line to the right the

command (\Ynnn) may move the line down or up.

Namely, if the argument nnn < 500 then the next

line is moved down. If nnn > 500 then the

difference (nnn - 500) is the amount of vertical space

in pt for moving the line up. This property may be

used to place the part of text at the left, part at the

centre and part at the right of the same line. For

example, if (lhe = 14) and (mode = 1) then the rich

text: . . .\El abcd\Y514\Ec efgh\Y514\Er ijkl\Ew . .

. will lead to the line

absd efgh ijkl

One has to remember that the command \Ynnn

must be used with some restrictions. Due to the

algorithm used in VKPS interpreter it is

recommended to use the vertical space only at the

end of paragraph together with \E command.

Normally the combinations \Y20\Ew and \Ew\Y20

mean the same. However, if the text goes through

the region with a figure the first combination is

better and more stable. Before the command of

figure the only first (\Y20\Ew) combination will give

a correct result when both top side of figure and

new line of text have the same position. Naturally

other situations are also possible but the quality will

be on a user taste.

\P == hard end of page.

This command allows to begin next column or next

page if the next column is impossible even if the

current column is not full. Before the usage of the

command the paragraph must be finished by \E

command.

\Oxxx: X Y k n == to put a figure.

Contrary to all other commands this command is

rather complicated and needs in additional

explanation. The command \O may arise only after

end of paragraph \Ex and the command \Ex must

have an argument in explicit form. The command

\O must be put in a separate line from the first

position. All symbols between (O) and (:) are

ignored (it is a comment) but after the sign (:) the

line must contain four numbers: (X, Y, k, n). The

number (X) means a horisontal size, the number (Y)

- vertical size of the rectangular region in pt in

which the figure will be placed just instead of this

command. The number (k) means the key which has

one of three values (-1, 0, 1) and means the position

of graphical object at the left side, the centre and the

right side of the column.

When (k = -1, 1) the text will go through the

column together with a figure if the rest of column

allows to make this. When k = 0 the text will jump

through the figure. The position of figure is set

automatically just below the paragraph which

precedes the command \O. The number (n) means

the number of different descriptions of the figure,

namely, the number of the commands #draw in the

input file (xxx.vkp, see below). In a current version

of the program VKPS there is no checking on a

position of figure inside the page. All figures are

drawn at the current page even if their bottom side

turns out to be lower than a bottom of the page.

The user must be careful about this. If the place of

the figure is not well defined then it would be

changed by user.

The command looks like this

. . . some text of source file . . .\Ew

\Object-1 : 250 250 3 2

. . . some text of source file . . .

The command \O only reserves the region for the

figure but the figure itself is not described in data

(xxx.rt) file. The real description of the figure as a

standard graphical objects of VKPS program must be

placed to input (xxx.vkp) file just after a call of the

rich text procedure. Then the first n commands

#draw will define first object, referenced in the rich

text with number (n), second n commands #draw -

second object and so on. The objects may have all

kinds except kind = 6. When drawing these objects

the parameters xco, yco are not used. Instead of this

the figures are placed into the reserved region. Then

the scaling of figures is performed automatically

according to the formulas:

sca = min(s1, s2),

s2 = (Y - 20)/(fas + 50),

s1 = (X - 20)/(xas + 60)

in the cases of kind = 1, 2, 4, 5

s1 = (X - 20)/(70 + xas*(1 +

+ (xlp-xfp)*nfu*hsf/((nxp-1)*(xen-xbe))))

in cases of (kind = 3)

where all values are in pt and X, Y are the sizes of

reserved region for the figure. In this way the

figures always appear in a centre of selected region.

Victor Kohn Introduction to VKPS and PostScript 18

One have to remember that the scaling change the

size of figures and symbols of titles at the axes.

Therefore to have a better view of these parts of the

figure the user must choose the sizes of axes xas

and fas as necessary. The experience will come

during the work.

In the case of object of kind = 0 only the

translation to the left-bottom corner of the region is

performed while the scaling is made according to the

current value of the sca parameter. The user must be

careful to set the graphical object inside the region

by proper choice the translation and scaling inside

the postscript text of object.

The program is able to format a large text which

needs few pages. When the column is filled in, i.e. a

position of the next line becomes lower than the

bottom boundary of the text on the page the

program verifies a possibility to place the second

column with the space between columns defined by

parameter str. The A4 format of page is expected. If

the width of column is not large and there is a

place for the second column then VKPS begins new

column with the same vertical position as the first

column. The same for the third column and so on.

When the next column has no place the current page

is finished and new page is opened. Hence the

multicolumn regime is assumed automatically. When

it is undesirable the user may use the wide column

and empty graphical object which takes the extra

space.

BUGS:

The program was tested in different regimes and

some bugs were discovered which reasons I cannot

understand to this moment:

1. It is not forbidden but I don’t recommend to use

the command \E (without an argument) at ends of

line in (xxx.rt) file. However, it is often convenient

to have a correspondence between the end of lines

of (xxx.rt) file and printed copy. If one likes to use

this then it is desirable to have this command as a

last command of xxx.rt file line and to move all

other commands on a next line. Namely,

...some text...\Er\B

...some text...

may give bad result in a sense that a right side will

be shifted. The same in the form: ...some text...\Er

\B...some text...

will give a correct result.

2. I have found that sometimes, for example, when

two lines of (xxx.rt) file correspond compelety to the

printed lines in the column, the right side of line

becomes shifted from the position which it must

have. To avoid this one can change the width of

lines in (xxx.rt) file (simply break one line on two

lines). This arises very seldom and looks like a

mystery.

Appendix 1. Table of VKPS parameters

Here all the parameters are presented by shortened

name together with a description and the initial

value.

psf (postscript file name) [0001.ps]

hfi (head file name) [head30.psf]

cfi (color file name) [col30vk.psf]

dfi (data file name) [vksign.dat]

xti (x-axis title) [(axis X)Lc]

fti (f-axis title) [(axis F)Lc]

yti (y-axis title) [(axis Y)Lc]

kin (kind of graphical object, integer 0-6) [1]

xco (x-coordinate of object position in pt) [70]

yco (y-coordinate of object position in pt) [270]

sca (scaling factor for object scaling) [1]

xas (x-axis size of figure in pt before scaling) [350]

fas (f-axis size of figure in pt before scaling) [300]

xbe (x-axis begin value) [0]

xen (x-axis end value) [105]

xfm (x-axis first long mark, having value) [0]

xsm (x-axis step to next long mark) [10]

xns (number of short marks between long) [4]

fbe (f-axis begin value) [0]

fen (f-axis end value) [75]

ffm (f-axis first long mark, having value) [0]

fsm (f-axis step to next long mark) [10]

fns (number of short marks between long) [4]

xfp (x-argument, first point) [0]

xlp (x-argument, last point) [1]

nxp (number of x-arguments) [100]

nfu (number of functions to be drawn) [1]

iff (index of first function in the file) [1]

nmx (number of dots in the line of matrix) [100]

ifx (index of first dot of line to be drawn) [1]

yff (y-axis, first function for a long mark) [1]

ysf (y-axis, step to number of next function) [1]

yfm (y-axis, value at first long mark) [0]

ysm (y-axis, step to value of next mark) [1]

xbs (x-bottom axis switch, 1 - yes, 0 - no) [1]

xts (x-top axis switch, 1 - yes, 0 - no) [1]

Victor Kohn Introduction to VKPS and PostScript 19

fls (f-left axis switch, 1 - yes, 0 - no) [1]

frs (f-right axis switch, 1 - yes, 0 - no) [1]

fun (a unit for functions) [1]

mas (marker size (radius of circle) in pt) [0]

lth (line thickness in pt) [0.5]

sdi (a direction of strokes at marks on axes) [0]

gxs (grid of x axis switch, 1 - yes, 0 - no) [0]

gfs (grid of f axis switch, 1 - yes, 0 - no) [0]

vsf (vertical shift of function in scale of f-axis) [0]

hsf (horisontal shift of function) [0]

vsw (visibility switch, 1 - no, 0 - yes) [0]

txx (x-axis, x-coord. of title shift in pt) [0]

txy (x-axis, y-coord. of title shift in pt) [0]

tfx (f-axis, x-coord. of title shift in pt) [0]

tfy (f-axis, y-coord. of title shift in pt) [0]

tyx (y-axis, x-coord. of title shift in pt) [0]

tyy (y-axis, y-coord. of title shift in pt) [0]

lhe (line height in pt) [20]

lwi (line width (colomn) in pt) [450]

tmp (top margin of page in pt) [70]

bmp (bottom margin of page in pt) [70]

str (strip between columns) [15]

mod (modification) [0]

col (color of axes and general) [0]

lco (color of lines in the figure) [0]

Appendix 2. Postscipt commands of head files

This appendix presents the postscript procedures

which are defined in the head files. The version 3.0

allows one to use many head files - up to 10. The

necessary head file having the name (head30.psf)

contains the PS commands which are used by VKPS

itself. This file must exist on the current directory of

the program or the total path of the file must be

specified in the opposite case. This file cannot be

rewritten. Another head file (cyr30fnt.psf) describes

the russian font for using in the title and rich text.

This file must exist and be specified when the

russian letters are used. Other head files may be

arbitrary and may be rewritten by user who knows

the postscript language. These may contain the

procedures which will be used in the direct

postscript fragments of the (xxx.vkp) file or

postscript data file. Here each command is presented

in a pure form with some explanation and example

for a usage.

A2.1 Head file head30.psf

bd (bind def) help operator

ed (exch def) restore the parameter in procedure (1

argument), usage: {/X ed . . .}

gs (gsave) save the graphical parameters which

will be used later after restoring

gr (grestore) restore the graphical parameters

which were saved by gs operator

tr (translate) to translate the coordinates (2

arguments), usage: 20 30 tr

sca (scale) to scaled the coordinates (2 arguments),

usage: 0.5 2 sca

np (newpath) to open new path

m (np moveto) to begin new line (2

arguments),usage: 20 50 m

l (lineto) to draw the line segment from current

point to the new point (2 arguments), usage: 30 55 l

sl (stroke) to show the path as a line on the page

ls (m l sl) to show the straight line segment (4

arguments), usage: 200 225 250 300 mls

c (curveto) to draw the smooth curve line which is

obtained as cubic spline from the current cursor

position to the point X3,Y3. The points X1,Y1 and

X2,Y2 are not on the curve and these are used for

the interpolation; (6 arguments), usage: 0 0 m 20 50

100 200 20 350 c

rl (rlineto) to draw the line from current point to

the new point which is shifted from the current

point by the vector X,Y (2 arguments), usage: X Y rl

rm (rmoveto) to specify the new cursor position

which is shifted from the current position by the

vector X,Y (2 arguments), usage: X Y rm

slw (setlinewidth) to set a line width in pt

r (rotate) to specify the angle of rotation in degree

of all following graphical objects (1 argument), usage:

90 r

srgb (setrgbcolow) to set a color (3 argument, Red

Green Blue components from 0 to 1), usage 0.5 1 0.3

srgb

sg (setgray) to set a gray level (1 argument from 0

to 1), usage: 0.5 sg

is1 (1.25 1.25 sca) standard 1 increasing scaling

is2 (1.5625 1.5625 sca) standard 2 increasing scaling

Victor Kohn Introduction to VKPS and PostScript 20

is3 (2 2 sca) standard 3 increasing scaling

is4 (3.125 3.125 sca) standard 4 increasing scaling

is5 (4 4 sca) standard 5 increasing scaling

ds1 (0.8 0.8 sca) standard 1 decreasing scaling

ds2 (0.64 0.64 sca) standard 2 decreasing scaling

ds3 (0.5 0.5 sca) standard 3 decreasing scaling

ds4 (0.32 0.32 sca) standard 4 decreasing scaling

ds5 (0.25 0.25 sca) standard 5 decreasing scaling

s (show) to show the text by current font with the

left boundary at the current point (1 argument - the

text itself in round brackets), usage: (abracadabra)s

sp (stringwidth pop) to remember the width of

text

sc (dup sp -0.5 mul 0 rm s) to show the text with

the middle at the current position (1 argument - the

text itself in round brackets), usage: (abracadabra)sc

se (dup sp -1 mul 0 rm s) to show the text with

the end at the current position (1 argument - the

text itself in round brackets), usage: (abracadabra)se

fir (closepath gs fill gr) to close the path defined

previosly and to fill the region inside the path by

current color, usage: 0 0 m 0 2 rl 2 0 rl fir

fr (sg fir) to close the path defined before and to

fill the region by grey color according to the gray

level (1 argument - grey level), usage: 0 0 m 0 2 rl

2 0 rl 0.5 fr

f (findfont exch scalefont setfont) to specify the

size in pt and kind of new font which becomes a

current font (2 arguments), usage: 14

/Palatino-Roman f

PR (/Palatino-Roman f) to specify the standard

font (1 argument), usage: 14 PR

PB (/Palatino-Bold f) to specify the standard font

(1 argument), usage: 14 PB

PI (/Palatino-Italic f) to specify the standard font

(1 argument), usage: 14 PI

Sy (/Symbol f) to specify the standard font (1

argument), usage: 14 Sy

He (/Helvetica f) to specify the standard font (1

argument), usage: 14 He

L (14 PR s) to show the text by standard font and

size (1 argument - the text itself in round brackets),

usage: (..text..)L. Subsequent texts of the same font

may be shown by (..)s

Lc (14 PR sc) to show the text by a middle point

at a current position by standard font and size (1

argument), usage as in preceding command.

Le (14 PR se) to show the text by end at a

current position by standard font and size (1

argument), usage as in preceding command.

B (14 PB s) to show the text by bold font (usage

see above)

I (14 PI s) to show the text by italic font (usage

see above)

G (14 Sy s) to show the text by symbol font

(usage see above)

H (14 He s) to show the text by helvetica font

(usage see above)

ind (/X ed /Y ed /tt ed 1 Y rm X X sca tt s /X 1

X div def X X sca 1 Y neg rm) to shows shifted

and scaled text as index (3 arguments - text itsef in

round brackets, vertical shift Y of the text relative to

the current position and scaling X), usage: (text) -4

0.6 ind

ib (-4 0.6 ind) to show the subscript of the text of

standard font

it (5 0.6 ind) to show the superscript of the text of

standard font

lfra (/Ys ed /Xs ed /Y ed /X ed X Y m Xs 0 rl 0

Ys rl Xs neg 0 rl 0 Ys neg rl sl) to draw the line

frame with X,Y point as a position of left-bottom

corner and Xs,Ys as sizes of width and height (4

arguments), usage: X,Y,Xs,Ys lfra

Sh (0 rm) to make horizontal relative move of the

current cursor position (1 argument), usage: 100 Sh

Sv (/Y ed 0 Y rm) to make vertical relative move

of the current cursor position (1 argument), usage:

100 Sv

A2.2 Head file cyr30fnt.psf

Rf (12 slw 1 setlinejoin 2 setlinecap /Cyr30vk f) to

specify a standard russian font (1 argument), usage:

14 Rf

R (14 Rf 2 0 rm s -1 0 rm) to show the text by

standard russian font (1 argument), usage: (..text..)R

A2.3 Head file head-a.psf

The commands of this file are not used by VKPS.

Therefore the number of command in this file may

be increased or descreased or rewritten by user. This

commands may be used in direct postscript

Victor Kohn Introduction to VKPS and PostScript 21

programs in both VKPS and pure PSL file.

Arr (/Xs ed /Xr ed /Y ed /X ed gs X Y m Xr r

Xs Xs scale -2 -7 rl 4 0 rl -2 7 rl 0 gr gr) to draw

the arrow head with a needle at the point X,Y

rotated on the andle Xr (degree) from the vertical

position and scaled in Xs times (4 arguments), usage:

100 200 -90 1.5 Arr

Arl (/Xr ed /Xl ed /Y ed /X ed gs X Y tr Xr r 0

0 Xl 0 mls 0 0 90 1 Arr Xl 0 -90 1 Arr gr) to draw

the straight line with the arrows on two ends (4

arguments: X,Y - the position of basic end, Xl - the

length of line and Xr - the angle of rotating in

degree from the horisontal arrangement), usage: 100

200 100 -90 Arl

ffra (/Xf ed /Ys ed /Xs ed /Y ed /X ed X Y m

Xs 0 rl 0 Ys rl Xs neg 0 rl 0 Ys neg rl Xf fr) to

draw the filled by grey rectangular region (5

arguments: X,Y position of the left bottom corner,

the x,y sizes and gray level), usage: 0 0 20 10 0.5

ffra

rfra (/Xr ed /Ys ed /Xs ed Xr r Xs 0 rl 0 Ys rl Xs

neg 0 rl 0 Ys neg rl sl Xr neg r) to draw the

rotating line frame (3 arguments: Xs, Ys as width

and height and Xr (in degree) as an angle of

rotating around the left-bottom corner which is

placed at the current position), usage: 100 200 30 rfra

tfra (/Xf ed /Xd ed /Yp ed /Xp ed /Y ed /X ed

X Y m Xp 0 rl 0 Yp rl Xp neg 0 rl 0 Yp neg rl sl

/Y Y Yp add def /Yd Xd neg def X Y m Xd Xd rl

Xp 0 rl 0 Yp neg rl Yd Yd rl 0 Yp rl Xp neg 0 rl

Xf fr) to draw the line frame with a gray 3D-space

border to make the text inside the frame to be

brightly selected (6 arguments: X,Y - position of the

left-bottom corner, Xp,Yp - width and height of the

frame, Xd - the size of border, Xg - the gray level),

usage: 100 250 200 50 10 0.5 tfra

AA ((A)L gs -7 10.5 rm 0.5 0.5 sca (o)s gr)

Angstroem unit

hh ((h)L gs -9.8 3.9 rm (-)G gr) Plank constant

int (0 5 rm (\363)G -11 -10 rm (\365)s 0 5 rm)

integral sign

frac (/Xn ed gs 4 6 rm X gr gs 4 -9 rm Y gr 14

Sy Xn{(\276)s}repeat) to draw the fraction in

formulas (3 arguments: the numerator X, the

denominator Y and the number of signs for a

middle line, X and Y are the procedures which must

be defined previously), usage: /X{ ... }bd /Y{ ... }bd

10 frac

stb (/Y ed 0 Y neg rm gs) to make the current

line position on Y pt below the preceding line

position (1 argument), the text itself must be defined

separately by a lot of operators if necessary and

must be closed by operator ’gr’, usage: 20 stb ..text..

gr

st (/tt ed /Y ed 0 Y neg rm gs tt s gr) to show

the text line by current font, the position of

beginning is shifted on Y pt down from the current

position, the current position is placed at the

beginning of new text (2 arguments: Y and the text

itself in round brackets), the operator is used for

writing the large text of many lines with even left

boundary as direct PS program, usage: 20(..text..)st

blb (is3 0 -3 rm (\()L s 0 3 rm ds3) big left

round bracket

brb (()L is3 0 -3 rm (\))s 0 3 rm ds3) big right

round bracket

min1 (-6 13 rm (_)L 0 -13 rm) to draw the minus

sign above the high figure as it is accepted in

Crystallography

min2 (-6 10 rm (_)L 0 -10 rm) to draw the minus

sign above the low figure as it is accepted in

Crystallography

lgay (/Xm ed /Xn ed /Y1 ed /X1 ed /Y ed /X ed

/Yd Y1 Y sub def Xn {/Yc Yd Xm log mul Y add

def X Yc X1 Yc mls /Xm Xm 1 add def}repeat) to

draw the logarithmic short marks set between long

marks on the f-axis (6 arguments: X,Y - absolute left

position of the bottom long mark in pt, X1,Y1 -

absolute right position of the top long mark in pt,

Xn - number of marks to draw, Xm - number of

first mark), explanation: decimal logarithm scale has

long mark at each integer number n for a logarithm

that corresponds 10
n

, therefore the short marks

corresponds to log/10/ 2,3,4,5,6,7,8,9, however at the

beginning or end of axis not all marks will be

presented, therefore the procedure allows to spesify

the first mark and number of marks to draw, usage:

90 100 100 300 8 2 lgay

lgax (/Xm ed /Xn ed /Y1 ed /X1 ed /Y ed /X ed

/Xd X1 X sub def Xn {/Xc Xd Xm log mul X add

def Xc Y Xc Y1 mls /Xm Xm 1 add def} repeat)

the same as preceding command but for X-axis

Appendix 3. Introduction to PostScript

PostScript language is a device independent language

Victor Kohn Introduction to VKPS and PostScript 22

of low-level. This means that it has a lot of

operators (400) each of them makes some privitive

actions and many operators are needed to perform

the whole work of description of document which

has to be printed or displayed. The operators give

the user all possibilities to manipulate the numerical

data and strings of symbols with different fonts. The

total description of all operators is in the book

PostScript Language Reference Manual (second

edition), Addison-Wesley Publishing Company, Inc.,

1991 which has above than 700 pages. Therefore the

total description is impossible here and it is out of

interest. Here only the main features are presented

which will be used later.

In principle, each PS file is a program which must

be fulfilled by some interpreting device automatically

from the beginning to the end. Therefore all

parameters must be well defined and all problems

must be solved at the preceding stage. When the

program stays in its turn to be fullfilled by network

printer any interaction with its creator becomes

impossible. A device independence allows one to use

a usual text of latin symbols to write the program.

PostScript programs must be written as an

ASCII-text with a use of only first 127 ASCII

symbols, therefore these can be transfered by means

of simple e-mail connection between several

computers. PostScript language (PSL) was introduced

first in UNIX operation system and it is used by

network printers as an input stream of information

for printing. PSL commands are fulfilled directly,

without previous compiling and checking for errors.

Therefore any program-interpreter is enough for

performing actions described in PSL.

A structure of the language is rather simple at the

first stage as well as rather complicated when a

usage of all possibilities is desirable. The numerical

data can be written in free format as well as

commands. Any number of blank symbols as well as

symbols of end of line are used as a separator

between data or commands. A symbol % or %%%%

is used to point out that all following text up to the

end of line is a comment and it is not performed.

Nevertheless, some comments have a special

structure and bring to interpreter a helpful

information about a document. This is concerned,

first of all, a beginning of the document. For

example, a multipage postscript document has to

have a structure like this:

%!PS-Adobe-3.0

%%Title: VKPS 3.0 tutorial

%%Creator: VKPS 3.0 (August 2000)

%%Copyright: Victor Kohn (Kurchatov Institute)

%%Document fonts: Palatino-Roman Symbol

%%BoundingBox: 0 0 596 843

%%Pages: 2 1

%%EndComments

%%BeginProcSet

... text of procedures for all pages

%%EndProcSet

%%EndProlog

%%Page: 1 1

... contents of first page

showpage

%%Page: 2 2

... contents of second page

showpage

%%Trailer

%%EOF

Here the first line declares a PostScript file. The lines

2-5 are not necessary but these are useful for

readers. The line 6 (BoundingBox:) shows a size of

page in units pt (point). These units are usual in

Postscript language.

1 pt = 0.353 mm

A4 paper has size 210*297 mm = 596*843 pt

1 inch = 2.54 cm = 72 pt

Hence, you see that the line 6 sets a A4 format of

page. The line 7 shows what number of pages the

document has. A second number is not necessary,

usually it points out a number which will be set in

a first page but this is not performed automatically.

The following lines are clear. These are the frame of

the place containing the definitions (procedures) for

all pages and frames for each page. The part before

line (%%EndProlog) is named "Prologue" whereas the

part after this line with pages is named "Script". The

prologue contains some preliminary information for

the interpreter which used later. Script part describes

the contents of real pages and use the information

from prologue part for making the text to be clear

and shorten. Such a structure is necessary for a

description of whole document which contains, for

example, figure captions and all figures for some

article in different pages, one figure on one page

with a lot of free place.

So called Encapsulated Postscript document has

another frame. This document describes only one

picture which may have finite size (not a full page)

and may be used in other postscript files and

different (LaTeX, Word) documents with an

Victor Kohn Introduction to VKPS and PostScript 23

additional transformations (scaling, rotation,

translation) as a whole. The frame of EPS file is as

follows:

%!PS-Adobe-3.0 EPSF-3.0

%%BoundingBox: 100 100 410 355

%%EndComments

%%EndProlog

gsave

... contents of picture

showpage

grestore

%%Trailer

%%EOF

Here some postscript commands are also shown

which allows to show a document as a whole

picture but these are not necessary in EPS file if this

document is a part of another document. Here a line

(%%BoundingBox) must define a region of the page

with any coordinates of left bottom corner (100 100)

and right top corner (410 355). The coordinates of all

points of the picture must be in these limits.

A3.1 Memory and command interaction

Usually commands for their work must be

accompanied by some numerical data. This

information may be taken from some accumulator

which uses a piece of memory. In compilled

languages for this purpose one defines arrays of

different kinds and then uses the elements of these

arrays. It is convenient for a programmer but is not

convenient for a computer because a computer

makes a work to find a real element of memory by

means of array definition. In interpreted languages

different ways are used usually. The Postscript

language is one of them.

There are no arrays and other definitions of

memory in a pure sense. In principle, the arrays and

strings of symbols (text) exist as a structures.

However a memory is used without definitions. All

memory may be imagined as a very large volume

with one door. When the volume is full then only

one principle of working is seen:

LAST ENTERED, FIRST WILL LEAVE,

shorter,

LAST IN, FIRST OUT.

This principle is called as a stack-oriented memory

usage. It means that when a number arises in a text

of postscript program its value is kept in the stack

at last position. After an appearance of next number

first number takes second position from the end and

last number has last position (end). The program

does not know at all about the beginning of the

stack.

Such a memory organization gives a possibility to a

programmer to define previously a lot of numbers

and then to write the commands (operators) which

will use these numbers as input information.

However, the numbers must be defined

PREVIOUSLY and in OPPOSITE ORDER, namely,

last numbers for first operator and so on. For

example, a numerical information may show a

position of graphical cursor on a page (absolute

position) or coordinates of moving the cursor from

the current position (relative shift). To draw the

curve as a complex line containing few straight

segments one can use operators:

moveto - to move cursor on the new position

which is taken from a stack, first y then x

coordinate,

rlineto - to draw a straight segment from a

current cursor position to a new position shifted

from old one on a vector with coordinates which is

taken from a stack, first y then x,

stroke - to finish fragment and to show it.

The program may be as follows:

25 45 moveto

10 10 rlineto 10 30 rlineto

10 45 rlineto 10 -60 rlineto

stroke

As a result one obtains a curve which passes

through the points:

25 45, 35 55, 45 85, 55 130, 65 70

However, the same result can be obtained with a

use of cycle operator

n {...} repeat

to make n repetitions of the text inside {} as follows:

10 -60 10 45 10 30 10 10 25 45

moveto 4 {rlineto} repeat stroke

One may choose different principle of programming:

the operators step by step with their arguments

which precede the operator or first all arguments in

reverse order and then all operators. The second way

is convenient for an automatical postscript generation

by means of some executing program written by

user (xxx.exe file in MS-DOS) and usually leads to

a shorter text which is, however, difficult to

understand.

Victor Kohn Introduction to VKPS and PostScript 24

A3.2 Definitions and procedures

A very convenient for a programming but a very

hard for understanding the programs by other men

is a possibility to use new definitions. It means that

any piece of text of program may be defined as

marked one having some name and later a

programmer can use only a name of this piece

instead of the total text. In such a way any operator

may take a new name, any repeated fragment of

program can take any name and then is used few

times by means of its name. The definition is

declared as follows:

/newname {text of operator} bind def

If {text of operator} does not contain other

procedures or new operators the "bind" operator may

be omitted. Once defined operator (procedure) can be

used in other definitions. The head files described

above just contain some definitions which are used

for postscript generation by VKPS and may be used

in direct postscript fragments. As an example one

may see the contents of the head files. It is very

useful to keep the same definitions in all files which

can form the new language instead of original

postscript operators. This language may be more

convenient for a definite purposes. The simple

definitions have no agrument and can be put inside

the text directly. Some definitions use previously

defined other definitions or parameters. The

complicated definitions have arguments which must

precede the name of definitions. These definitions

are, in reality, the procedures. Since each PS file is

ready for execution it contains all it’s definitions in a

Prologue part of the file and one can find a lot of

ready procedures in these files. The examples of fine

procedures may be found in the books.

Postscript allows to use many definitions. Each

parameter and procedure may be redefined many

times. A huge set of definitions may be placed into

the dictionary and a number of dictionaries may be

as large as necessary. The same definitions may have

different sense in different dictionaries. Thanks to the

property of Postscript pointed above it is

inconvenient to use the original operators of

language. Really each programmist has his own set

of new procedures for a usage in the main part of

postscript file. These procedures are the gold

foundation. They are used each time in each new

file. Therefore it is convenient to keep them in a

separate files and to make a copy each time when

necessary. This is a reason of appearance of head

files in VKPS.

A3.3 Graphical operators

Among the numerous operators the graphical

operators play a more significant role because the

postscript language is graphically oriented. That is

why in this section a list of most important

graphical operators with their short description is

presented. Below the operators will be written by

small letters while the possible arguments will be as

capital letters, a short definition (SD) of head files

will be pointed out as well.

newpath - to open new path, the current cursor

position will be continued to the first path position

if (moveto) is absent.

closepath - to close the current path, the last point

will be continued to the first point to make the

region.

X Y moveto - to move cursor at the point X,Y

DX DY rmoveto - to shift cursor on the vector

DX,DY; SD=(rm)

X Y lineto - straight segment from the current

cursor position to the point X,Y; SD=(l)

DX DY rlineto - straight segment of length DX,DY

from the current cursor position; SD=(rl)

X1 Y1 X2 Y2 X3 Y3 curveto - smooth curve which

is obtained as cubic spline from the current cursor

position to the point X3,Y3. The points X1,Y1 and

X2,Y2 are not on the curve and these are used for

the interpolation; SD=(c)

X1 Y1 X2 Y2 X3 Y3 rcurveto - the same as

preceding operator but with relative coordinates

X Y R A1 A2 arc - segment of arc as a part of

circle with the point of centre X,Y and radius R. The

part includes a region between the angles A1 and

A2 in degree, the count is unticlock. A1=0, A2=360

define whole circle. One can obtain ellipse by

scaling. The operator only defines the part of the

path as well as all other operators. To make the real

figure additional operators are necessary.

X Y R A1 A2 arcn - the same as preceding

operator but the counts of angles is clockwise.

X1 Y1 X1 Y2 R arct - segment of arc of definite

radius R which has as tangent lines the line along

the straight segments from the current cursor

position to X1 Y1 and from X1 Y1 to X2 Y2

Victor Kohn Introduction to VKPS and PostScript 25

stroke - to close a path and to show it as a line;

SD=(sl)

W setlinewidth - environment operator which set

a width of line SD=(slw)

N setlinejoin - to set one of three modifications of

drawing a corner between two thick line segments,

N=0 - real angle (acute), N=1 smoothed corner, N=2

cut corner

N setlinecap - to set one of three modification of

drawing an end of thick line segment, N=0

shortened, N=1 smoothed, N=2 longer.

[..] D setdash - environment operator which set a

level of dash of the line; the argument means: [] 0 -

solid line, [3] 0 - punctured line (3on 3off 3on 3off

...), [4 2] 0 - punctured line (4on 2off 4on 2off ...), [3

5] 6 - punctured line ([3+5-6]off 3on 5off 3on 5off ...)

G setgray - environment operator which set a level

of gray to fill the regions, G=1 is white, G=0 is

black, intermediate between 0 and 1 values set the

intermediate gray level; SD=(sg)

R G B setrgbcolor - environment operator which

set a color of lines, regions etc. as a mixture of red,

green and blue from 0 to 1. It is good for display

and color printers. For black-white printer a black

color is obtained by 0 0 0 setrgbcolor (default value),

G G G setgrbcolor is equivalent to G setgray;

SD=(srgb)

fill - to fill the region inside the current closed

path by current gray level or current color

(TEXT) show - to show text in round brackets by

defined previously size and font; SD=(s)

X Y (TEXT) ashow - the same as show but in

drawing the TEXT each letter will have a space

increased by X and Y in two dimensions.

A3.4 Arithmetic operators

Described in head files complex definitions are, in

reality, procedures which take their arguments from

a stack but don’t use them immediately. Instead,

they remember them as a definition and use after a

work of other operators which can change a stack.

Directly this definition are realized by operators exch

and def which renamed in the head file as

/ed{exch def}bd

For example, 25 /X ed means X=25. More complex

text 35 25 /Y ed /X ed means X=35, Y=25 (don’t

remember a reverse order). In such a way one can

define a variable inside the procedures. The direct

definition is /X 25 def /Y 35 def. In such a

definitions the arithmetic operations:

add - addition,

sub - subtraction,

mul - multiplication,

div - division

idiv - integer divide

neg - negative (Y neg = -Y)

usually work directly on a stack but one has a

possibility to define a result of calculation in the

same or new variable, for example: /X X 40 add def

means X=X+40 (X was defined previously) /Y 0 Y

sub def or /Y Y neg def means Y=-Y

There are standard set of functions:

sqrt atan cos sin exp ln log

abs mod floor round truncate ceiling

rand srand rrand

The variables has no special names. The notation of

variables, procedures, arrays, text strings and other

more complicated structures of memory can be

arbitrary.

A3.5 Environment operators

Some operators are necessary to define the

parameters of drawing like considering above [] 0

setdash, setlinewidth, setrgbcolor, setgray and others.

There are useful couple of operators which allow

first to save a current graphical cursor position and

other environment variables and then to restore it

many times, namely,

gsave - to save the current graphical state; SD=(gs)

grestore - to restore saved graphical state; SD=(gr)

They are especially necessary when one fills regions

because it is difficult to understand a current cursor

position after this operation.

Another group of operators allows to redefine all

coordinates of the points on a graphic. They are:

X Y scale - to scale all x coordinates by X and all

y coordinates by Y; SD=(sca)

X Y translate - to translate all subsequent

coordinates on a vector X,Y; SD=(tr)

A rotate - to rotate all coordinates on the angle A

in degree relative a current cursor position; SD=(r)

To exclude an action of these operators one has to

use the same operators with opposite arguments.

Victor Kohn Introduction to VKPS and PostScript 26

A3.6 Cycle operators

Naturally, there are figures which demand to draw a

lot of similar or the same fragments. This is

especially concerned the scientific graphics of array

of lines through the array of points or array of

definite markers. In this case a lot of data represent

array of coordinates which determine the positions of

the same fragment. Thus, a cycle operator is

necessary. Here two kinds of cycle operators are

considered among the various such operators existed

in PSL. First is simple repetition

n {....} repeat

to make n repetitions of the text inside { }. For

example, to perform the curve which pass through

21 points one needs to define 42 numbers - the

coordinates of the points in a reverse order and to

use

m 20 {l} repeat sl

where short definitions of the head files were used.

When these points are the results of calculation of

some function with a constant step of changing the

argument then the values of argument are evident

and these may be calculated inside a procedure

which is repeated. However there is another way -

to use a cycle operator of second kind. A general

form of this operator is

P1 DP PN { ... } for

to make a repetition of the text inside { } with

simultaneous sending one number in a stack before

each repetition. First value of number is (P1), last

value is (PN), a number increases on a step (DP).

Arguments may be numbers or definitions of

numbers. The cycle works when a current value of

number does not exceed (PN). To use this cycle for

our example of drawing a curve of 21 points one

can write:

... 21 numbers of function values in reverse order ...

x1 exch m x2 dx x21 {/X ed /Y ed X Y l} for sl

where x1, dx and x21 are the x-coordinate of first

point, step and x-coordinate of 21-th point, x2 is for

a second point.

A3.7 Creating text by standard fonts

One can see that by means of new definitions there

is a possibility to define symbols as pictures and

then rescale and moved these pictures creating a

text. Nevertheless, as a rule, each postscript

interpreter has an information about some standard

fonts which can be used directly by means of simple

opening of the font. Below the names of these fonts

are pointed out in the order of increasing the

practical usage:

/Palatino-Roman

/Palatino-Italic

/Palatino-Bold

/Palatino-BoldItalic

/Times-Roman

/Times-Italic

/Times-Bold

/Times-BoldItalic

/Helvetica

/Helvetica-Oblique

/Helvetica-Bold

/Helvetica-BoldOblique

/Helvetica-Narrow

/Helvetica-Narrow-Bold

/Symbol

/Courier

/Courier-Bold

/Courier-Oblique

/Courier-BoldOblique

/AvantGarde-Book

/AvantGarde-BookOblique

/AvantGarde-Demi

/AvantGarde-DemiOblique

/Bookman-Light

/Bookman-LightItalic

/Bookman-Demi

/Bookman-DemiItalic

/NewCenturySchlbk-Roman

/NewCenturySchlbk-Italic

/NewCenturySchlbk-Bold

/NewCenturySchlbk-BoldItalic

/ZapfDingbats

/ZapfChancery

/ZapfChancery-Oblique

/ZapfChancery-Bold

/ZapfChancery-MediumItalic

To open the font of definite size VKPS uses the

procedure

/f {findfont exch scalefont setfont} bd

which has two arguments: the size in pt and kind of

the font, for example: 14 /Palatino-Roman f

When some font is opened then the text may be

defined by different ways. Some symbols may be

Victor Kohn Introduction to VKPS and PostScript 27

obtained by simple typing from a keyboard and for

these a text is written directly. If no then one can

use a number of symbol in a font as a special

character. For example, the character (\50) means "("

while (\51) ")". In general, the number after

backslash symbol is three digits octal number (zeros

before can be omitted). The table of correspondence

between symbol and number may be obtained

directly by means of postscript program of file

"font-sym.ps" for Symbol font which may be obtained

from the author of this document. It is easy to

change the file for other fonts. There are special

characters:

\n - newline

\r - return character (ASCII 13)

\t - tab character (ASCII 9)

\b - backspace character (ASCII 8)

\\ - backslash character (ASCII 92)

\(- "(" \50 (ASCII 40)

\) - ")" \51 (ASCII 41)

\[end-of-line] - backslash character before the end

of line is used to eliminate the influence of

[end-of-line] character on a work of program,

normally [end-of-line] means the blank sign, the

combination kills this propertiy.

A definition of a symbol by its number is very

useful for a Symbol font which contains Greek letters

and other special signs. For example, [14 /Symbol f

80 40 m (\150\ \50\155\51) s].

A rotation on 10 degree makes italic Symbol font

from normal Symbol font. However, this operation

must be applied to each symbol separately. For

example, [/sr{-10 r s 10 r}bd 14 /Symbol f 50 60 m

(\150)sr 50 70 m (\155)sr] and so on.

For a text in line one may combine different fonts

directly with a use of short definitions of head file

as follows: [25 35 m (\150\ \50\155)G (m\51)L]. In

this case a cursor position moves automatically after

each letter.

A3.8 Other possibilities

There are many other operators in PS language for

making some more complicated work. For example,

the head file defines the command

/sc {dup strigwidth pop -0.5 mul 0 rm s} bd

to show the text with the middle at the current

position with 1 argument - the text itself in round

brackets. The command uses three new operators:

dup, stringwidth and pop. The operator (dup) makes

a duplicate of the argument in a stack, the operator

(stringwidth) uses one copy of argument from a

stack - text - and return in a stack the value - width

of the text, the operator (pop) just takes this value

from a stack for a use in (mul) and (rm). The

operator (s) takes the second copy of text. One can

understand how to place the text by its end on the

current position or any relative points of the text

string.

There are other possibilities to work with the texts

and symbols as well as to create the user defined

vector fonts as it was done in the file ’cyr30fnt.psf’.

The matrix font can be created also. The text string

may be allocated along the different paths and the

letters may be filled by different ways.

Another possibilities are clipping the images and

creating the bitmap images both black-white and

color. In reality it is useful to make the postscript

fragment of the bitmap image by means of some

graphical system like a scaner (for photos) or picture

convertors and then used it in VKPS program as a

direct PS fragment.

Nevertheless the hexadecimal description of the

bitmap image is rather simple. Here the operators

are presented which were used for creating the

portrait on the title page of this document.

/picstr 200 string def

/psppic {gsave 200 266 8

[200 0 0 266 0 -266]

{currentfile picstr readhexstring pop}

image grestore } def

0 -266 translate 200 266 scale

psppic

F4F1F3F4F5F5F1F1F4F3F0F4F7F6F5F4F7F1F0F4F6

F0F4F1F6F4F5F4F1F4F6F4F4F1F3F4F5F5F1F1F4F3

and so on

Let us discuss what mean the above written

operators. The portrait was obtained by ’Paint Shop

Pro’ (psp) program. This program first defines the

procedure (psppic) and then uses it. The (psppic)

procedure uses the string (picstr) which was defined

previously as 200 bytes length. The main operator in

the procedure is (image). It has many arguments

which go just after the operator (gsave). First 3

numbers: 200 266 8 declare that the picture has

200*266 pixels with 8 bits (1 byte) per pixel.

Therefore the size of the hexadecimal picture will be

200*266*2 = 106400 bytes because each byte is

described by two-byte hexadecimal number. The

matrix [200 0 0 266 0 -266] declare the way of

Victor Kohn Introduction to VKPS and PostScript 28

reading the picture. First three numbers for width

and next three numbers for height. The structure of

matrix just declare to read from left to right and

from bottom to top. The next argument is the

procedure how to get the data of pixels. It contains

the operator (readhexstring) with two arguments -

the file and the string, the argument (currentfile)

means reading from the same file as the command,

the argument (picstr) is the name of string which

obtains the data. The operator (pop) is considered

above.

Before a usage of the procedure the environment

operators (translate) and scale declare the left-bottom

corner of the image at (0,0) pt and the size of pixel

as 1 pt. Later the image may be retranslate and

rescale. The image itself is placed just after the

procedure (psppic) pixel by pixel from left-top

corner. The size of line is not important. However

all 200*266=53200 bytes must be presented.

The more standard system is to use matrix [200 0 0

-266 0 266] and 0 0 translate. In this case the data

are read from top to bottom. The matrix may be

defined in such a way that the scale operator will

have 1 1 arguments. The picture also may be

presented without a procedure and there are some

more peculiarities. The above program describes the

black-white image. To describe the color image the

program must be only slightly changed, namely, the

operator (image) must be replaced by (false 3

colorimage) which means RGB color representation

and each pixel must be described by three bytes -

one for read, one for green and one for blue.

The coordinate transformation matrix (CTM) is a

rather useful object of PS language. The (translate),

(scale), (rotate) and other environment operator are

the particular cases of the general CTM. The CTM is

defined as CTM = [a b c d tx ty] where the

transformation is defined as x’ = a*x + c*y + tx; y’

= b*x + d*y +ty. For example, (X Y translate) is

equivalent CTM = [1 0 0 1 X Y]; (X Y scale) is

equivalent CTM = [X 0 0 Y 0 0]; (A rotate) is

equivalent CTM = [cos(a) sin(a) -sin(a) cos(a) 0 0]

where a=3.14159*A/180. Different CTM matrixes are

multiplied by definite procedure.

Victor Kohn Introduction to VKPS and PostScript 29

