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Abstract—We have developed a method of calculation of transmission of hard x-ray radiation through a per-
fect and well oriented photonic crystal consisting of closely packed spheres of matter. The method is based on
using an approximate solution of paraxial equation for small distances. The recurrent formula is obtained for
a transmission of radiation on one period of crystal. A computer program is elaborated for a simulation of
images of photonic crystals in a near field, particularly, just behind the crystal. The calculation is performed
for silica spheres of 500 nm diameter. It is shown that the standard phase contrast technique is not valid for
these objects, because a strong change of intensity takes place inside the volume of crystal due to a scattering

of radiation by separate spheres.
DOI: 10.1134/S1063774514010076

INTRODUCTION

Photonic crystal is a name for natural or artificial
materials with a periodic change of electron density
under the condition that the value of period is inside
the interval from a tenth of a micron to one micron.
Natural crystals of such a type are opals. Precious
opals consist of silica globules SiO, - nH,O, which are
ordered in a three-dimensional lattice. Artificial pho-
tonic crystals are usually created from silica SiO,
spheres of necessary size, which are closely packed in
three-dimensional lattice. For this reason they are
called synthetic opals.

There exist photonic crystals of other types, includ-
ing both two-dimensional and one dimensional ones.
Several different techniques are used for a synthesis of
artificial photonic crystals. The most simple and
widely used technique is a self-assembly approach for
colloid particles on the vertical surface [1]. In this pro-
cess one tries to realize a situation when all colloid
particles become spheres of the same radius and are
ordered in closely packed structure.

In closely packing the identical spheres on the
plane there arises a triangular (hexagonal) structure in
which the centres of three neighbouring spheres create
a equilateral triangle with a side length equal to a
sphere diameter D. Each sphere creates six such trian-
gles with its all neighbors. In packing a second layer
the spheres are placed in a triangle centres but fill up
only three from six possible positions. The difference
arises in packing a third layer. In it the spheres can
occupy the same positions as in the first layer. Such a

I The article was translated by the authors.

structure is called ABABAB. It is a hexagonal close-
packed lattice. In a horizontal plane the spheres fill
rows with a period D along a chosen row, and with a
period p = Dcos30° = 0.866.D normally to the row. The
spheres in neighbouring rows are shifted relatively to
one another on D/2. The period along a vertical is
equal to 4 = D(8/3)'/2.

In another variant of packing the spheres of third
layer fill the triangle centres which were empty in the
second layer. In such a way the third layer is not equiv-
alent to the first layer. This structure is called ABCABC.
It is a face-centered cubic lattice, in which the hori-
zontal plane is correspondent to a direction 111.

Both structures have practically the same density,
and both ones are realized in the synthetic opals,
moreover they coexist with one another frequently.
Unfortunately, the self-assembly approach for colloid
particles create practically always the crystals with a
large amount of defects of random types. Therefore
the problem of developing the methods of diagnostic
of photonic crystals structure is very important. One
can find a review of various techniques in [1].

The methods using the x-ray radiation of high
intensity from the synchrotron radiation sources of
third generation are the most interesting. Particularly,
the method of small angle x-ray diffraction is widely
used, in which the structure of diffraction spots from a
small region of a crystal is experimentally detected on
a large distance from it (|2—5] and references therein).
The structure of diffraction spots allows one to reveal
a symmetry of lattice and possible defects, but it does
not give any information about the process itself of
radiation scattering in such an object.
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The alternative method is a technique of direct
imaging of photonic crystals with a resolution which
allows one to observe images of separate periods of
structure locally in each point [6, 7]. It becomes pos-
sible after a development of HRXRM (high resolution
X-ray microscopy) technique [7, 8], based on using the
compound refractive lens (CRL) [9, 10]. With CRL it
is possible not only to resolve an increased distribution
of radiation intensity just behind the crystal, but also to
obtain a diffraction pattern on a short distance,
namely, at the focal length of the lens.

The development of experimental HRXRM tech-
nique makes actual the task of theoretical calculation
of radiation intensity distribution behind the crystal,
i.e. in a near field. There is no reports in literature
about a solution of this task. Standard methods of x-
ray diffraction in usual crystals are not valid because
the crystal has a very large period compared to a wave-
length of radiation, and the Bragg condition is met for
a large number of reciprocal lattice vectors, but scat-
tering by one sphere is not weak.

A situation is close to the electron transmission
microscopy or to the effect of channeling the fast par-
ticlesin crystal [11]. On the other hand, the task can be
solved by the method which is closed to a calculation
of the x-ray phase contrast [12]. However, this method
has to be modified with the aim to take into account a
strong radiation scattering inside the volume of photo-
nic crystal. The present work is devoted to a develop-
ment of the method of accurate calculation of trans-
mission of hard x-ray radiation through a thick photo-
nic crystal.

FORMULATION OF THE PROBLEM
AND A METHOD OF COMPUTING

The synchrotron radiation beams for the sources of
third generation have a very small angular divergence,
which can be neglected in the task of beam transmis-
sion on a small distance about the crystal thickness.
When the parallel beam (a plane wave) propagates
through the photonic crystal, a good contrast is
obtained only for a definite orientation of the crystal.
This fact is easy to understand from an analogy with
the channeling effect. It is clear that it has to be the
orientation with a small period along the beam direc-
tion.

Let a coherent monochromatic wave of x-ray radi-
ation is incident on the entrance surface of the photo-
nic crystal which is normal to the beam direction and
coincides with the z-axis of Cartesian coordinate sys-
tem. The amplitude of the electric field of this wave is
equal to

E(x,y,2) = A(x,y,7)exp(ikz), k =2n/\. (1)

Here A is a wave length of radiation. If the wave is
plane, then the wave amplitude on the entrance sur-
face (z = 0) is constant, let A(x, y, 0) = 1. Our task is to
calculate a wave amplitude distribution on the exit sur-
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face of the crystal, i.e. after a transmission of the radi-
ation beam though the crystal.

For hard x rays a paraxial approximation is met
with a high accuracy, therefore instead of solution of
Maxwell’s equation for the electric field amplitude, it
is sufficient to solve the paraxial equation for the wave
function A(x, y, z) [13], which can be written in the
form

. 2 2
% = —iknp(x, y, ) A + L(d—*} +UJ. )

2k\dx®  dy’

Here, for the sake of simplicity it is assumed that the
photonic crystal consists of closely packed spheres of
chemically homogeneous material, for example, SiO,.
Then a complex parameter =03 — i = 1 —n, where n
is a matter complex index of refraction, i.e. with taking
into account an absorption. The function p(x, y, z) is
equal to 1 in the points of matter, i.e. inside the
spheres, and it is equal to 0 in the points where matter
is absent.

For the arbitrary function p(x, y, z) the task
remains a very complicated. But for a short period of
the crystal along the beam, i.e. in the most interesting
for us case, an addition approximation can be made.
We will assume that on the distance equal to the
period A, the wave function is changed very slowly, and
this change can be neglected. Then (2) can be averaged
on the period, and the function inp(x, y, z) can be
replaced by

h
a(x,y) = kns(x,y), s(x,y) = % Idz'p(x, »z'). (3)
0

In such an approximation the coefficient in the first
term of the right-hand part of (2) does not depend
of z, and we can eliminate it by a substitution 4 =
Bexp(—iaz). Then we obtain instead of (2)

. 2 2
dB _ 1\ d'B d B, ). 4)
dz  2k\dx" dy

The second term in the right-hand part of equation
does not written in an explicit form. It contains all
terms which are obtained from a differentiation of
exp(—iaz) onthe coordinates x and y. Therefore it con-
tains both terms proportional to z and terms propor-
tional to z2. It is important for us that for a small value
of zjust linear over z terms are essential in the first turn.

It is evident that in a solution of equation we can
arbitrarily choose the coordinate origin of z axis. We
will choose the origin each time in such a point gz,
where we know the function B(x, y, z;), i.e. in (4) the
coordinate z should be understanded as distance from
the point where a solution is known by us. The next
approximation consists in that we can neglect the sec-
ond term in (4) in integration on a small distance along
the z-axis, because it leads to a change of second order
of smallness.
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In such an approximation we obtain a parabolic
equation for the empty space which has a well known
solution [13]. It can be written as a convolution over
the coordinate x and y for the known solution B(x, y, 0)
and the Kirchhoff propagator P,(x, y, z7) = P(x, 2) P(y, 2),
where

1 X’
P(x,2) = —exp(m—j. ®))
(irg)"? Az
For the initial wave function A(x, y, 7) the equation
takes the form

A(x,,2) = exp(—ia(x, y)z)
x J.dX'dy'Pz(x — X,y =¥, 2AX,y,0).

The physical sense of the obtained solution can be
formulated as follows. Let us know the solution (2) in
the plane (x, ) inside the object at some point z, on the
optical axis. By choosing the new coordinate origin in
this point we can obtain a solution on the some dis-
tance from this point, i.e. in the point z, + z, by using
the equation (6). Therefore (6) has a sense of recurrent
relation which can be used many times, and we need to
choose the propagation interval z each time as not
large one.

We note that (6) describes effectively two processes.
First, the wave function is transmitted on the distance
z through the empty space. Then it is multiplied by the
phase factor which takes into account a phase shift due
to a propagation of rays through the matter. This phase
shift is the same as it is obtained in the geometrical
optics approximation. But (6) is more than the geo-
metric optics because it contains in addition a convo-
lution which is correspondent to a diffraction of radi-
ation in a propagation on the distance z in the empty
space.

In a standard phase contrast technique the equa-
tion (6) is applied to the total thickness of the object. If
in front and behind the object there exist large dis-
tances of empty space, then the factor describing a
convolution does not play an essential role. It simply
adds to the distance in front the object the crystal
thickness, but the object itself is assumed to have a
zero thickness but with a correct phase shift according
to the geometrical optics.

It can be shown that more correct is the approxi-
mation in which a half crystal thickness is added to the
distance in front the object and the same to the dis-
tance behind the object. The phase factor in the phase
contrast theory is called a transmission function, and
just it describes the object. But if we consider the equa-
tion (6) as recurrent, then the object thickness should
be divided on the equal parts (layers), and in each layer
a multiplication by a phase factor for the layer can be
made in the middle of layer.

Then first a propagation for the empty space on half
layer thickness is calculated, then many times a multi-
plication by the phase factor and a propagation on

(6)
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total layer thickness, but at the end of cycle, once
again, a propagation on half layer thickness is calcu-
lated. In the case of photonic crystal a minimum
thickness of layer is correspondent to the crystal
period £ along the z axis. But one can consider thicker
layers. To make the analytical estimation for the accu-
racy of considered approximation is rather compli-
cated. One can consider some object variants for
which an analytical (accurate) solution of equation (2)
exists. Such a case was considered by us, but due to its
complexity we don’t consider it in this paper.

It is important to note that the neglected in (4)
terms is proportional not only the distance of propaga-
tion z, but also the derivatives on the coordinates x,y
from the function a(x, y). And in the case of photonic
crystal these derivatives are equal to infinity at the
sphere boundaries. Though the derivatives are diver-
gent only on the lines and are large in a narrow region,
but just these regions give a main contribution to the
image. This is why the problem of accuracy estimation
of approximation is a complex task in case of photon
crystals. We note that for a validation of geometrical
optics approximation the smallness of phase shift der-
ivations over transverse coordinates is also necessary.

SPECIFIC EXAMPLE

For a practical realization of the calculation
method described above we consider the photonic
crystal consisting of SiO, spheres of diameter D and
having a structure of type ABABAB. The beam direc-
tion (z axis) coincides with the axis of hexagonal sym-
metry. The period of crystal along the z axis is equal to
h = D(8/3)"/2. Figure 1 shows the function s(x,y) as a
black-white linear contrast in limits of calculating
region. The black and white colors are used for s = 0,
and s = 1 correspondingly.

For a calculation of the convolution of two func-
tions the rule is used that Fourier image of convolution
is equal to a product of Fourier images of the func-
tions. For a calculation of Fourier images we use the
Fast Fourier Transformation (FFT) procedure with the
set of points 2048 x 1024. So first the Fourier image of

Fig. 1. The function s(x, y) within the calculating area.
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complex wave function is calculated on a calculating
set of points. Then it is multiplied by the Fourier image
of the Kirchhoff propagator which has an analytical
form. Then the reverse Fourier transformation is
made. The result was obtained on the same calculating
area. This area had a size of 2D vertically and 4D hor-
izontally. The period of structure is equal to D verti-
cally and 1.732D horizontally.

A peculiarity of this structure is an existence of
three empty region near each sphere, which is not
filled in neighbouring layers. As a result the crystal has
empty channels on a total thickness, i.e. on arbitrary
number of layers. The boundaries of these channels
have a hexagonal symmetry with a very sharp change
of electron density. Therefore this case is most compli-
cated for a calculation and is most interesting from the
physical point of view.

Since the structure is periodic, and a scattering
(refraction) of rays occurs on very small angles, it is not
necessary to consider a large area containing many
periods because the structure can be always periodi-
cally multiplied. Moreover, this multiplication is
indeed necessary to make on each iteration step. The
reason is that in the FFT procedure the result is calcu-
lated in such a manner that the wave function is equal
to zero outside the calculation area, i.e. similar to
using a slit in front of a crystal.

The result shows a diffraction by the slit which is
absent in a periodic crystal. Fortunately the FFT pro-
cedure on the small distances of propagation describes
well a slit diffraction only near the boundaries, and
does not disturb almost the wave function in the centre
of calculating area. We just use this property. After
each iteration (a propagation on the one period along
the z-axis) the central period of transverse distribution
(the unit cell) is selected from the whole distribution of
the complex wave function, and then the rest area is
recalculated from a periodic condition.

Such a procedure allows one to avoid an accumu-
lation of wave function distortion due to a slit diffrac-
tion. It is of interest that the same procedure can be
used in calculation of wave function propagation
behind the crystal in empty space, if a wave function is
periodical with a small period. If one considers for-
mally infinite transverse sizes of crystal then a period-
icity of the wave function is conserved on any dis-
tances. We note that in this way it is impossible to
obtain the intensity distribution on very large distances
behind the crystal because very many iterations are
necessary.

On the other hand, in propagating on a small dis-
tance we cannot increase the step of set of points. This
step has to be several times (ideally tens times) smaller
than the first Fresnel zone diameter which is equal to
2(Az)'/2. Moreover, for spheres of small diameter the
transmission function exp[—ia(x, y)z], and then the
wave function A(x, y) change sharply near the bound-
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aries, and a small step is necessary for a correct
description of this change.

In this work we are interested only in a near field,
i.e. intensity distribution just behind the crystal for
various crystal thicknesses which are defined by a
number of periods. For very long distances a different
calculation scheme has to be used for obtaining the
diffraction pattern. This question will be considered in
a separate work.

RESULTS OF CALCULATION

The computer program was written with taking into
account a possibility to calculate a propagation
through both a photonic crystal and empty space.
Since the plane wave stays the same in propagation the
initial state of the wave function was determined as the
transmission function 7(x, y) = exp|—ia(x, y)z],
where z = h, i.e. for the layer as one crystal period.
Then a definite number of iterations was made cycli-
cally. Each iteration consists of two operations: a
transmission through empty space on one period and
a multiplication by 7(x, y).

The result as the complex wave function was writ-
ten to the file in each iteration. The function can be
used for a continuation of calculation and creation of
graphics. On the last iteration the multiplication by
T(x, y) was not done but a distance can be changed
arbitrarily. In the mode of calculation continuation
before the cycle the wave function was read from the
file and was multiplied by 7(x, y). On each iteration
the program showed two-dimensional maps of inten-
sity distribution together with the figures of intensity
distribution along the central sections (vertical and
horizontal).

The most informative were the black-white maps of
two-dimensional radiation intensity distribution. To
conserve an information these maps were created with
a linear gray scale so that the black and white colors
were chosen for the minimum and maximum values
correspondingly. The minimum /_;, and maximum
1.« values are changed monotonously with a number
of iterations (number of periods).

Figure 2 shows the calculation results for L = 1 A
and D = 500 nm as such maps which show the central
fragment of size 1024 x 512 points for 5, 10, 20 and
40 iterations. The number of iterations are shown on
the pictures. Initially /., = [, = 1. With increasing
the number of iterations the intensity becomes stron-
ger in some places and weaker in other places. One can
see that increasing takes place on the spheres bound-
aries, but in the parts with a large amount of material
the intensity is decreased. However, a reason of such
decreasing is not an absorption but a scattering, i.e. a
refraction of rays to the boundary area. The rays can
not leave this area due to neighbouring spheres.

At small number of iterations one can see clear
interference fringes which are characteristic for an
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Fig. 2. The maps of radiation intensity distribution for var-
ious crystal thicknesses. The thickness is measured by a
number of periods which is shown on the panels.

interference of rays refracting by the object and rays
going outside the object, but the contrast is weak. With
increasing the number of iterations such fringes
become smoothed due to multiple scattering, but
other fringes arise with a larger period.

Figure 3 shows the curves of [, Lmid> fmax (Mini-
mum, middle and maximum intensity values) depen-
dence on the number of iterations. The middle value is
changed very weakly and this change is completely
determined by absorption. On the curves for minimum
and maximum values one can see a fracture of almost
linear dependences at approximately 25-th iteration.
The maximum value increases faster that the mini-
mum decreases. The reason is that the areas of maxi-
mum intensity cover a smaller area and are located in
the area of empty channels.

The result of calculation shows that the standard
phase contrast technique which does not take into
account the intensity change on the total object thick-
ness can not be used to the photonic crystal because an
essential intensity change takes place for the photonic
crystal with a thickness of several periods. It is of inter-
est what happens for larger thicknesses of crystal. This
calculation can be made easily, but at present time the
photonic crystals with a number of period more than
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Fig. 3. Dependence of the intensity values /i, (1), 1;q (2)
and [, (3) on the number of iterations N.

100 don’t exist. On the other hand, the more accurate
analysis of error accumulation is necessary. This ques-
tion is out of scope of our task and it will be considered
in the next work.
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