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Peculiarities of quantitative hard x-ray phase contrast imaging of micropipes in SiC
are discussed. The micropipe is assumed as a hollow cylinder with an elliptical cross
section. The major and minor diameters can be restored using the least square fitting
procedure by comparing the experimental data, i.e. the profile across the micropipe
axis, with those calculated based on phase contrast theory. It is shown that one pro-
jection image gives an information which does not allow a complete determination
of the elliptical cross section, if an orientation of micropipe is not known. Another
problem is a weak accuracy in estimating the diameters, partly because of using pink
synchrotron radiation, which is necessary because a monochromatic beam intensity is
not sufficient to reveal the weak contrast from a very small object. The general prob-
lems of accuracy in estimating the two diameters using the least square procedure are
discussed. Two experimental examples are considered to demonstrate small as well as
modest accuracies in estimating the diameters. C© 2013 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution 3.0
Unported License. [http://dx.doi.org/10.1063/1.4846236]

I. INTRODUCTION

Micropipes are hollow tube-shaped defects which exist in diversity of crystalline materials.
The formation of micropipes in silicon carbide (SiC) bulk crystals is associated with crystal lattice
dislocations with large Burgers vectors. Their diameters range from a few ten nanometers to several
ten micrometers.1, 2 Different from a number of techniques developed so far x-ray imaging based on
phase contrast3, 4 or Bragg-diffraction2, 5, 6 provides the only possibility to study them nondestruc-
tively. As far as the size concerns, a micropipe of 1 μm diameter is a very small object to visualize
using x-ray phase contrast imaging, demanding a very high flux for an acceptable signal-to-noise
ratio. A feasible way to observe such small micropipes at medium-brilliant third generation Syn-
chrotron Radiation (SR) sources, like Pohang Light Source (PLS) in Korea, is to apply pink beam
(see 7–10 and references therein).

The pink beam experimental setup is simple, and is shown in Fig. 1. X-ray beam from a SR
source, controlled in its beam size by slits, illuminates an object such as a single crystal SiC plate
containing micropipes. The transmitted x-ray beam is converted to visible light by a fluorescent
crystal (scintillator) at some distance from the object. Then the visible image is magnified by optical
lense system and finally captured by a CCD camera. The magnification allows one to reach a
resolution up to fracture of microns.

As is known, phase contrast imaging technique demands coherent beam. In our experiment
spatial (transverse) coherence is due to the very small source angular size at the object α = S/L, at
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FIG. 1. A sketch of the experimental scheme for obtaining micropipe images. The SR beam, controlled in its beam size by a
slit, illuminates the object. The transmitted beam illuminates a scintillator crystal which converts the x rays to a visible light.
Then the image is magnified by a lens system and detected by CCD detector.
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FIG. 2. A spectrum of the white SR beam at PLS. The upper curve is an initial spectrum. The middle curve is an effective
spectrum after a passage of Be window. The lower curve is an effective spectrum behind the object – 490 μm thick SiC plate.

least, in the vertical plan. For example, the source size S = 60 μm for x-ray energy E = 16 keV
(wave length λ = 0.775 Å) provides the transverse coherence length Ltc = λ/α = 42 μm at the
distance L = 32 m, which is much larger than typical diameter of micropipe cross section.

Meanwhile the temporal (longitudinal) coherence is related to the band width of the beam.11 If
the width of the radiation spectrum is effectively reducible to �λ somehow, then the longitudinal
coherence length is estimated as Llc = λ2/�λ. In our experiment we use the effective band width of
SR pink beam which is formed as follows.

The SR intensity decreases as the energy increases. On the other hand, the x-ray absorption
by the SiC crystal plate that contains micropipes leads to an interesting result: the intensity of the
transmitted x-ray beam decreases as the energy decreases. As a result, the effective spectrum of
pink beam SR in our case has a well pronounced peak, and an effective full width at half maximum
(FWHM) �λ. Figure 2 shows an effective spectrum, calculated for the PLS and a SiC crystal plate
of thickness 490 μm, with a maximum at λ = 0.775 Å and FWHM �λ = 0.52 Å. Applying the two



122109-3 Kohn, Argunova, and Je AIP Advances 3, 122109 (2013)

parameters, the temporal coherence is estimated as Ltc = 1.2 Å. Despite the very small value, it is
sufficient to image the central part of micropipe.

Consider an example. Let a micropipe has a diameter d = 2 μm, and the object-to-detector
(here, the scintillator) distance zd is 30 cm. The optical path difference l between the central and the
edge points at the detector is equal to l = 0.5d(x + 0.25d)/zd where x is the distance from the optical
axis at the detector. For the central point of the image (x = 0) l is estimated as <0.02 Å. On the other
hand, the equality l = 1.2 Å occurs at x = 36 μm.

However, to detect the interference between the rays inside and outside the micropipe, the size
of the central (coherent) part of the image will be furthermore reduced. Nevertheless, our estimation
shows that the interference can be seen in the central part of the image. We note that the image of
such a small object is completely determined by interference in partially coherent radiation (pure
phase contrast) because absorption is very small. As is known, coherence is not necessary for the
images determined by absorption.

Next we try to obtain some quantitative information about the sizes of the elliptical cross section,
i.e. the diameters across (D) and along (D0) the beam from only one projection. Since the object,
the SiC crystal plate, has a small thickness only in the direction normal to the surface (see Fig. 1),
this direction must coincide with the beam direction to decrease an absorption.

Of course, this information can not be directly obtained from the image due to its interference
nature, and theoretical simulations are necessary. The diameters can be determined by fitting the
calculated profiles to the experimental ones. The article is devoted to discussion of some peculiarities
of solution of such task. We elaborated the computer program FIMTIM (fit of microtube imaging) to
simulate and fit the experimental data with the aim to determine the diameters D and D0 of micropipe
cross section.

The details of the computer program and fitting procedure are described in the next section.
In section III we discuss the limits of information which can be obtained from only one projection
image. These limits can not allow us to completely resolve the geometrical position of micropipe
inside the crystal. Such information must be obtained independently. In section IV we discuss a
question of estimating the accuracy of parameters from the least square fitting procedure. Finally, in
section V we consider two experimental examples of applying the technique.

II. GENERAL SCHEME OF SIMULATING PHASE CONTRAST IMAGES OF MICROPIPES

The theory of x-ray phase contrast imaging is well known from the pioneer work by Snigirev
et al.12 We start from a monochromatic point source which radiates a spherical wave. We assume
that our object, a micropipe, is homogeneous in one direction perpendicular to the beam direction
(optical axis). In general case, the micropipe axis is not a straight line. However, it is sufficient to
assume some part of the axis to be a straight line, if the length of this part exceeds the diameter of the
first Fresnel zone 2(λzd)1/2. Here zd is the distance from the object to the x-ray detector (scintillator).
Then the wave function (the electric field) of the radiation in front of the object can be written as the
Kirchhoff propagator

P(x, z0) = 1

(iλz0)1/2
exp

(
iπ

x2

λz0

)
. (1)

Here z0 is the source-to-object distance along the beam (optical axis), and x is a coordinate across
the beam. The homogeneous part of SiC crystal does not influence the image and can be neglected.
We select a part of the crystal containing the micropipe as a hollow cylinder. In general case, the
intersection region between the beam and the micropipe is elliptical.

A radiation transmission through the object is accounted for in the geometrical optics approxi-
mation where it is sufficient to calculate only the complex phase shift (including absorption) along
the rays. Since our object is very small we can assume that all rays go parallel to the optical axis. As
a result, we obtain the expression for the transmission function T(x) as follows: if | x | > R then T(x)
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= 1, otherwise

T (x) = exp

(
[i� + M]

(
1 − x2

R2

)1/2
)

, (2)

where

� = 4π

λ
δR0, M = �

β

δ
(3)

Here R = D/2, R0 = D0/2 are half diameters of the intersection elliptical cross section across and
along the beam correspondingly, and δ − iβ = 1 − n, where n is the complex refractive index of
the SiC. The wave function of the radiation behind the object is equal to wo(x) = T (x)P(x, z0).

Transmission of the wave function through the air from the object to the detector is calculated
by a convolution with the Kirchhoff propagator

wd (x) =
∫

dx ′ P(x − x ′, zd )T (x ′)P(x ′, z0) (4)

We are interested in the radiation relative intensity

I (x) = |wd (x)|2
|P(x, zt )|2

. (5)

For this value we can use properties of the Kirchhoff propagator and transform the result as follows

I (x) = |a(x0)|2, a(x0) =
∫

dx ′ P(x0 − x ′, zr )T (x ′) (6)

where

x0 = x
z0

zt
, zt = z0 + zd , zr = z0zd

zt
(7)

The integral has to be calculated in the infinite limits. It is convenient to transform the calculation
procedure for a(x) as a finite limits integral, as follows

a(x) = 1 +
∫

dx ′ P(x − x ′, zr )[T (x ′) − 1] (8)

Now the integrand is equal to zero outside the object, and we obtain effectively finite limits.
The intensity profile for the monochromatic point source does not match the experimental

profile. Taking into account that various points on the source and various values of radiation energy
are incoherent, it is sufficient to perform a convolution of the intensity profile with the Gaussian
which represents the brightness of the source at the detector position, i.e. the source projection.
The FWHM of such Gaussian is equal to Sd = S zd/z0. At the next step we calculate the set of
image profiles for various x-ray energies and perform a summation over the radiation spectrum. The
summation over the spectrum is performed on the set of energy points from 5 to 40 keV with a 1
keV step. The possibility to make a calculation with the twice smaller step has been elaborated as
well.

III. THE CROSS-SECTION DIAMETERS AND THE REAL MICROPIPE DIAMETERS

As it follows from the preceding section, we consider two parameters, the two diameters of the
intersection region of the micropipe by the x-ray beam: D across the beam (along x axis) and D0

along the beam (along z axis). These values may not be equal to the real diameters of the micropipe
cross section in the plane normal to the micropipe axis. In general case the micropipe axis makes
the angle θ with the beam direction (z-axis).

Consider the case where the micropipe axis is parallel to the y axis, i.e. normal to the beam
direction (z) as well as the image axis (x) and θ = 90◦. Let us suppose that the micropipe has proper
elliptical cross section with its major d and minor d0 diameters, and the angle ϕ exists between the
d-axis and the x-axis. The situation is illustrated in Fig. 3, where ϕ = 45◦.
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x

z

d

FIG. 3. A diagram showing a passage of x rays through a proper elliptical cross section of a micropipe. The cross section is
shown by black elliptical area. White strips show the x-ray beam directions which are parallel to the z axes. The x axis is a
direction which is normal to both the beam and the micropipe axis. This is the axis along which the intensity distribution is
registered. The direction d coincides with the main axis of proper elliptical cross section. The angle between the d axis and
the x axis ϕ = 45◦.
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FIG. 4. The effective diameters of the micropipe cross section D (curve 1) and D0 (curve 2) as functions of the rotating angle
ϕ of a proper elliptical cross section.

We calculate the parameters D and D0 of the transmission function (2) in terms of d and d0 as
follows

D = [(d cos ϕ)2 + (d0 sin ϕ)2]1/2, D0 = d0d/D. (9)

One can see that for the same elliptical cross-section of the micropipe, different values for D
and D0 can be obtained depending on the angle ϕ. However, one can not determine the angle value
from only one projection. In principle, knowing this value one could solve the inverse problem of
calculating d and d0 from D and D0. It is easy to see that the size of cross-section area is independent
of ϕ.

Figure 4 shows two curves D(ϕ) (black line) and D0(ϕ) (red line) for a particular case where d
= 7 μm and d0 = 1 μm. It is of interest that even for a strongly asymmetric elliptical cross section
of micropipe we can obtain D = D0 for the specific value of ϕ. The right side of the central part of
this figure (ϕ > 90◦) is qualitatively similar to the result of fitting the parameters D and D0 from
experimental profiles taken at different points along the micropipe axis (see Fig. 6 in the article by
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Argunova et al.13). We now can assume that the studied micropipe has the elliptical cross section
which changes its orientation relative to the beam direction.

Let us consider another case where the micropipe has proper circular cross-section with a
diameter d, but its axis makes the angle θ < 90◦ with the beam direction (z axis). Such a situation
arises if the micropipe axis is not parallel to the sample surface which is fixed normal to the beam
direction in order to reduce the absorption. The case, considering above, where the micropipe axis
is parallel to the crystal surface may exist sometimes, but it is not a general case. The experiment
shows that there are many micropipes with the axes which approximately normal to the crystal
plate surface. Therefore such micropipes make a small value of the angle θ , i.e. they approximately
parallel to the beam direction.

It is assumed by Kohn et al.14 that just such micropipes create unusual images, so called black
contrast, where the central part of the image is black whereas normal images have white central part,
see, for example, Fig. 1 in the paper by Kohn et al..7 In this case the parameters of the transmission
function are D = d, D0 = d/sin θ , D0 � D. In principle, one can find two parameters d and θ from
D and D0, if to know exactly that the micropipe has proper circular cross section.

Even if the proper cross-section is circular with the diameter d, and θ = 90◦ there is another
possibility to find a micropipe with the axis which makes an angle ψ < 90◦ with the vertical plan
(x, z), i.e. with the axis x inside the plan (x, y). In this case we have the next values D = d/sin ψ , D0

= d, D > D0. This situation looks more simple because we can rotate the sample as a whole until
the micropipe axis lies in a horizontal position. However, one 2D image of the sample as a whole
may contain many images of micropipes, and some of them may be in a horizontal position, but the
others may have the angle ψ . Even in this case we can rotate 2D image for the purpose of moving
the specific micropipe axis in a horizontal position.

However, such a rotation will lead to a more complicated situation with the source size because
in experiment the vertical source size only is small but the horisontal source size is much larger. In
reality, all considered situations may occur simultaneously, impeding the determination of the proper
micropipe diameters d and d0 from the diameters D and D0 of the intersection area. In this article we
discuss only how to reconstruct the parameters D and D0 by means of the fitting procedure when the
experimental profile is compared with the theoretical profiles calculated according to the procedure
described in the preceding section. To make the next step an additional information is necessary.

IV. LEAST-SQUARE FITTING AND ESTIMATION OF ACCURACY

The theoretical profile I(x, D, D0) is normalized in such a way that the tails far from the object
are equal to unity, but the experimental profile yi = ex(xi) is not normalized. Of course, we can
calculate a mean value and divide the data on it. In principle, the mean value has to correspond to
the tail value, but only in the infinite limits. However, we know only a finite number of points in
the finite region. In addition, there is random noise in the data. That is why it is more convenient to
introduce an additional parameter K whose value is calculated from a least-square fitting procedure,
i.e. from the minimum

χ2 =
n∑

i=1

[I (xi , D, D0) − K yi ]
2 (10)

It is easy to verify that

K = 〈I y〉
〈y2〉 , 〈o〉 =

n∑
i=1

oi (11)

The formula (11) has to be applied for any values of D and D0 if the minimum χ2 value is
searched by probing various values of D and D0. When the minimum is reached, the K value has to
be fixed. The next step is to estimate a reasonable accuracy of the found values. That is especially
important in the case of micropipe. Indeed, it was shown by Kohn et al.10 that for the micropipes
with small values D and D0 the theoretical profile strongly depends on the product DD0 alone, i.e.
on the cross-section area. This means that both values cannot be found with a significant accuracy.



122109-7 Kohn, Argunova, and Je AIP Advances 3, 122109 (2013)

Taking into account this point let us consider in detail the problem of accuracy in the least
square fitting procedure. For simplicity we will assume that the points xi are known explicitly, and
only yi are random values with the probability

W (yi ) = 1

(2π )1/2 σ
exp

(
− (yi − I (xi ))2

2σ 2

)
(12)

where σ is dispersion. Since each experimental point is independent of other points, the total
probability can be written as

L(y1, ...yn) =
(

1

(2π )1/2 σ

)n

exp

(
− 1

2σ 2
χ2

)
(13)

Here we assume that all points have the same dispersion, and χ2 is determined by eqs. (10) and (11).
It is easy to understand that the probability maximum is correspondent to the χ2 minimum. Let

us find the χ2 minimum as a function of D and D0. We denote it as χ2
min. Then we can find σ from

the condition of probability maximum as

σ 2 = χ2
min

n
(14)

At this point we need to consider the problem from another side. We know the parameter Dm

and D0m for which χ2 = χ2
min. Then we fix the coefficient K at this point, and consider the expression

(13) as the probability for the parameters D and D0. For small deviations u1 = D − Dm and u2 = D0

− D0m we have

χ2(u1, u2) = χ2
min + 1

2

2∑
i,k=1

Aikui uk (15)

where

Aik = ∂2χ2

∂ui∂uk

]
u1=u2=0

(16)

If the term A12 �= 0 then we cannot obtain an independent estimation of accuracy for various
parameters. We need to introduce new parameters

vi =
2∑

k=1

sikuk (17)

as linear combination of old parameters with the transformation matrix sik so that the matrix g =
s−1As has diagonal form giδik . In the case of two parameters this task has analytical solution

sik =
(

cos α sin α

− sin α cos α

)
, tan 2α = 2A12

A22 − A11
(18)

Then

2g1,2 = A11 + A22 ± z
[
(A22 − A11)2 + 2A2

12

]1/2
(19)

where z = −1 if A22 < A11, and z = 1 otherwise.
Finally we obtain

L(y1, ...yn) =
(

1

2πσ 2e

)n/2

�2
i=1 exp

(
−gi v2

i

4σ 2

)
(20)

Here e = exp (1). It is important here that the probability expression looks like a product of two
Gaussians (not normalized) as functions of vi . We can determine the error erri of the parameter vi
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as FWHM of the Gaussian. Taking into account eq. (14) we have

erri = 2.355

(
2χ2

ngi

)1/2

min

(21)

This expression has a right dimension. It is of interest that it depends on χ2
min. This looks to

be right because the case χ2
min = 0 is correspondent to exact comparison between the theoretical

and experimental values. Another interesting point is a dependence on the number of experimental
points n. A dependence on the second derivative is evident. As a result, we obtain in this approach
three parameters: the angle α between the axes of deviations ui and vi and two accuracy parameters
erri. It may be described as follows: The curve χ2 − χ2

min = C has a form of ellipse whose axes
make an angle α with the axes of the deviations ui.

For example, if the theoretical curve depends only on the product DD0 we can find that α =
45◦, v1 ∝ u1 + u2 has definite accuracy, but v2 ∝ u2 − u1 is not defined. It is the reason why it is
very important to examine the curves χ2 − χ2

min = C with various values of C. New version of our
program FIMTIM can draw two-dimensional map of χ2 − χ2

min as a function of D and D0 near the
minimum point.

V. EXPERIMENTAL EXAMPLES

Phase contrast experiments have been performed at the third generation SR source in PLS,
Korea operating at 2.5 GeV. At the 6D (X-ray micro-imaging) beamline the beam was extracted
from a bending magnet port located at a distance of 32 m from a sample. The source size was 60 μm
(vertically) and 160 μm (horizontally). The experimental setup is shown in Fig. 1, and the effective
spectrum of the SR source is shown in Fig. 1. The detector was 14 bit CCD camera with 9 μm (H) x
9 μm (V) pixel size sensitive to a visible light. X rays were converted into visible light by a CdWO4

crystal-scintillator 150 μm thick. The image was enlarged by an optical lens system. We used 20×
lens which provided 0.45 μm x 0.45 μm effective pixel size. The CCD matrix of 4008×2672 pixels
allowed us to have a view field of 1804×1202 μm size. Exposure times were chosen to obtain 12000
- 16000 count rates.

One 2D image (field of view) might contain several images of micropipes in different positions,
and of various kinds. We chose the most horizontal micropipe, i.e. with the axis approximately
along the y axis. Then we slightly rotated the image by means of the computer program ImageJ, if
necessary, to place the micropipe axis strictly horizontal. After that we rotated the image on the 90◦

and the intensity profiles across the micropipe axis were registered numerically with ImageJ as one
vertical level (horizontal line on the image). Sometimes two or more vertical levels were summed
to increase the signal-to-noise ratio. Such an intensity profile as a function of one coordinate x was
used for fitting with the above procedure. In this section we consider two different cases where the
diameters D and D0 have been determined with lower and higher accuracy.

Figure 5 shows the experimental data (markers) and the calculated intensity profile (solid
line) for the values of D = 1.44 μm and D0 = 1.68 μm which correspond to a minimum
χ2 = 1.08 · 10−4 in the first case. The experimental data have the count rate of 12900 at the
maximum. The experimental curve was normalized by means of the best coincidence with the
theoretical curve as described above. The object-to-detector distance zd was 35 cm. The important
question for us is a level of accuracy of the obtained values. Figure 6 allows us to demonstrate a
situation. It shows a dependence χ2(D, D0) near the minimum point as a linear black-white contrast
with black color for χ2 = 1.08 · 10−4 and white color for χ2 = 1.41 · 10−4 or larger. One can see
that the area of small χ2 values is not localized. It has short dimension along the direction D = D0

and long dimension along the normal direction.
Such a situation was described for the first time by Kohn et al.10 It is caused by the fact that, for

small values of micropipe diameters, the theoretical profile depends strongly on the product DD0

alone. Moreover, only the maximum value depends on DD0, while the profile itself has a universal
form. There are several conditions for fulfilling such a situation: namely, the diameter D must be
smaller than the first Fresnel zone diameter 2(λzd)1/2, and the phase shift � = (2π /λ)δD0 must be
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FIG. 5. Experimental data and simulated theoretical profile in the case of best coincidence for the first case. By fitting many
profiles for various diameters of micropipe cross section we determined the diameters from the condition of best coincidence.
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FIG. 6. A map showing the least square sum χ2 as a function of D and D0 in the first case. See text for details.

less than unity. Our case just meets these conditions. We obtain the following estimations of the
parameters accuracy from (18) and (21): α = 40◦, err1 = 0.09 μm and err2 = 0.73 μm.

As the second example, we consider the micropipe with diameters which don’t meet the above
conditions. The experimental data (markers) and the calculated intensity profile (solid line) are
shown in Fig. 7 for values D = 10.25 μm and D0 = 2.54 μm. The object-to-detector distance zd was
equal to 15 cm. In this case the coincidence is not pretty good because a minimum χ2 = 4.01 · 10−4.
The maximum count rate was 14900. Figure 8 shows a dependence χ2(D, D0) near the minimum
point in the same manner as Fig. 6, i.e.with black color used for χ2 = 4.01 · 10−4 and white color
used for χ2 = 5.21 · 10−4 or larger. One can see that the area of small χ2 is better localized. The
estimations of the parameters accuracy from (18) and (21) are: α = −6◦, err1 = 0.12 μm and err2

= 0.25 μm.
So we conclude that the micropipes with large diameters of their cross-section areas can be

quantitatively estimated with better accuracy, especially when they are measured at small object-
to-detector distance zd. The value χ2

min is not important because it is determined by signal-to noise
ratio. More important a sensitivity of the theoretical curves to the parameters D and D0 which leads
to better increasing χ2 near the minimum point.
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FIG. 7. Experimental data and simulated theoretical profile in the case of best coincidence for the second case. By fitting
many profiles for various diameters of micropipe cross section we determined the diameters from the condition of best
coincidence.
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FIG. 8. A map showing the least square sum χ2 as a function of D and D0 in the second case. See text for details.

Though small values of zd are preferential, however, at such distances, undesirable scattering
can be sometimes registered, which leads to extra noise of the experimental data. As a result, it is
impossible to obtain an accurate fitting of the experimental data. On the other hand, micropipes with
large cross section areas may have more complicated shapes different from the assumed elliptical
ones. As for micropipes of small cross section, there is a problem in obtaining both diameters with
a good accuracy. One of solutions may be the use of monochromatic SR beam, instead of pink one,
which is, however, not so simple owing to drastic loss of the intensity.

VI. SUMMARY

In-line SR phase-contrast technique is now well-established for imaging micro structure in
materials, soft condensed matter, biological objects, etc. A wide variety of features is investigated
when one fully exploits the coherence, the brilliance and the resolution provided by the modern SR
sources. However, at quite many synchrotron facilities, the increase of brilliance can be achieved
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by virtue of limited time coherence. Polychromatic SR beam still provides important qualitative, or
semiquantitative, pictures of different objects.

We have demonstrated that, since the theory of phase contrast is well established, image sim-
ulation is a powerful means of quantitative characterization on a micro-scale. The cross-sections
of micropipes in industrial size of SiC crystals are determined by using the computer program.
Simulating procedure is described in detail. The peculiarities of computer simulation are analyzed
and the experimental examples are provided. We have considered the general problems in estimating
the accuracy of parameters from the least square fitting procedure.
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