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Chapter 31

X-RAY STANDING WAVEFIELD IN COMPLEX
CRYSTAL STRUCTURES

Victor Kohn2

Russian Research Center “Kurchatov Institute,”3

123182, Moscow, Russia4

The theory of the secondary radiation yield generated by the X-ray5

standing wave field from layered crystals based on an analytical6

solution of the Takagi equations for a single layer is presented. Each7

layer is described by its own set of structural parameters which are8

constant within the layer. Both Bragg and Laue cases are discussed9

within the same approach. The secondary radiation is considered to10

originate through the photoelectron absorption with the exponential11

yield probability function. A computational algorithm based on recurrent12

equations is described.13

3.1. Introduction14

The X-ray standing wavefield (XSW) technique is based on measuring the15

secondary radiation yield (SRY) due to incoherent scattering of X-rays16

under the condition of the two-beam dynamical diffraction in nearly perfect17

crystals. Various channels of incoherent scattering may be considered,18

each of them yielding its own unique structural or physical information.19

In this section, we will deal with the SRY originating through the20

photoelectric absorption, i.e. fluorescence and photoelectron emission. The21

probability of the atomic excitation and the emission of a photoelectron22

or a fluorescent quantum is proportional to the total E -field, which is a23

coherent superposition of the transmitted and reflected plane waves at24

atomic position (dipole approximation).25

There are two physical processes that define the angular dependence26

of the XSW yield. First is the extinction effect, which is characterized by27

the extinction length Lex. We define Lex as a depth at which the XSW28
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intensity is reduced by e times at the angular position of the center of1

the Bragg peak. The second process is the absorption of the secondary2

radiation on its way from the emitting atom to the surface of a crystal. It3

can be described by a yield probability function (YPF) first introduced in4

Ref. 1 as a probability of the secondary radiation originated at the depth5

z to escape the crystal. For fluorescent photons, the YPF is an exponential6

function exp(−µyiz) with the characteristic length Lyi = µ−1
yi , where µyi7

is a linear absorption coefficient. For photoelectrons, in general, the YPF8

has a more complex form and it was studied in Ref. 2 by using Monte9

Carlo computer simulation. It was shown3 that, at least for the integrated10

over energy photoelectron yield, the YPF can be also approximated by an11

exponential function with the characteristic length Lyi � Lex.12

The relationship between Lex and Lyi determines the shape of the XSW13

yield curve. If Lyi � Lex, the situation that is typical for the fluorescence14

originating from the bulk atoms, the extinction effect dominates and the15

structural information is almost entirely lost. For fluorescence originating16

from an atomic layer on the surface Lyi � Lex and the XSW curve contains17

unique structural information about specific location of absorbed atoms (see18

Ref. 4 and Chapters 20 and 21 on applications of XSW in surface science).19

This situation is adequately described by the dynamical theory in perfect20

crystals (e.g. Chapter 2).21

It was discovered in the early years of the development of the XSW22

method that if crystal contains a surface layer with a structure different23

from the bulk, the yield of a secondary radiation with Lyi � Lex is24

extremely sensitive to the structure of this layer. This layer may be a25

layer of the same crystal artificially altered by a special treatment (e.g.26

ion implantation, diffusion, polishing, and laser annealing) or it may be27

an epitaxial film of a different material. In general, since the surface layer28

alters the XSW field the XSW yield from such crystals cannot be described29

by simple equations derived for perfect crystals.30

A theoretical approach to this problem was proposed in Ref. 1. It was31

based on a solution of Takagi equations to calculate the local electric field32

inside the crystal and on taking into account the YPF for a particular33

SRY and integrating it over the thickness of the sample. For a crystal with34

structural parameters varied as a function of depth z, the Takagi equations35

can be solved only numerically. In many cases, however, the sample can36

be approximated as a crystal consisting of several layers with structural37

parameters that are constant with the thickness of an individual layer.38

Then, the recurrent relations based on an analytical solution for a single39

layer can be utilized to solve the problem numerically. Such an approach40
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was used for both the Bragg3 and for the Laue5 cases to analyze specific1

experimental results and was later summarized in the most recent form in2

Ref. 6.3

The chapter is organized as follows. In the Sec. 3.2., the analytical4

solution for the local reflection and transmission amplitudes is derived for5

a single crystalline layer. Then, the YPF is introduced and the integration6

over the thickness of the sample is performed. It will be followed by7

the description of a numerical algorithm. The set of parameters required8

to compute the XSW yield from a multilayer crystalline structure will9

be presented and discussed, followed by a computational example and10

summary.11

3.2. Solution for One Crystal Layer12

Let us consider a single crystal of a lamina-like shape and a case of the13

two-beam diffraction on a reciprocal lattice vector h. The solution of the14

Maxwell’s equation can be sought in the form15

E(r, ω) = exp(ik0r)[e0E0(z) + ehEh(z) exp(ihr)], (3.1)

where e0, eh are the unit polarization vectors, k0 is the wave-vector of16

the incident plane wave in the air, |k0| = K where K = ω/c = 2π/λ,17

c is the speed of light, and λ is the wavelength of X-rays, z is the depth18

inside the crystal. The complex functions E0,h(z) are slowly varying in19

space compared to the exponential exp(ihr). We assume the incident wave20

to be a plane-polarized wave, which is a valid assumption for synchrotron21

radiation. In the case of a nonpolarized radiation, one has to consider22

two standard polarization states separately and average intensity over23

polarizations states.24

The integration of the Maxwell’s equation over unit cell allows us to25

write the set of two equations for E0(z), and Eh(z):26

2γ0
dE0

dz
= iK

{
χ0E0 + Cχh exp(iϕ − W )Eh

}
,

2γh
dEh

dz
= iK {[χ0 − α]Eh + Cχh exp(−iϕ − W )E0} ,

(3.2)

where γ0 = k0z/K, and γh = khz/K are the geometrical parameters,27

α = [k2
h − k2

0]/K2 is the parameter of deviation from the Bragg condition,28

kh = k0 + h is the wave vector of the diffracted wave, C = (e0eh) is29

the polarization factor, and ϕ(z) = hu(z) is an additional phase due to a30



November 14, 2011 16:1 The X-ray Standing Wave Technique: Principles and Applications 9inx6in b1281-ch03 1st Reading

XSW in Complex Crystal Structures 69

mean displacement of atoms from their equilibrium positions by a vector1

u. The quantities χ0, χh, and χh are the Fourier coefficients of the crystal2

susceptibility with the reciprocal lattice vectors 0, h, −h. Finally, the3

factor exp[−W (z)] describes dephasing of the scattered wave due to random4

displacements of atoms from their mean value at depth z. This factor was5

introduced for the first time in Ref. 1 and called the static Debye–Waller6

factor on analogy with a well-known thermal Debye–Waller factor, which7

is incorporated into the crystal susceptibility.8

The boundary conditions for Eq. (3.2) depend on a sign of the9

geometrical parameter γh. In the Laue case, γh > 0 and the diffracted beam10

is escaping the crystal through the back surface and absent at the entrance11

surface; therefore, we have E0(0) = 1 and Eh(0) = 0. Here and later on we12

assume that the entrance surface is at z = 0 and the incident intensity is13

normalized to unity. In the Bragg case, γh < 0 and the diffracted beam is14

escaping from the entrance surface and absent at the back surface, so we15

have E0(0) = 1 and Eh(d) = 0, where d is the thickness of the crystal plate.16

3.2.1. Local reflection amplitude17

We will consider the Bragg and the Laue cases simultaneously. The18

boundary conditions do not allow us to move from the entrance surface19

step by step. It is convenient to divide a problem into two parts and to20

introduce first a local reflection amplitude as the ratio21

R(z) =
Eh(z)
E0(z)

exp[iϕ(z)]
Y β1/2

. (3.3)

This variable obeys the nonlinear equation which can be derived from the22

set of Eq. (3.2)23

dR(z)
dz

= − 2is

Lex
[y − yϕ(z) + iy0]R(z) +

iC1

Lex
[s + R2(z)], (3.4)

where the variables are introduced: C1 = C(1 − ip) exp(−W ),24

Lex =
λγ0

πβ1/2X ′ , X = (χhχh)1/2 = X ′ + iX ′′ = X ′(1 − ip), (3.5)

Y =
(

χh

χh

)1/2

= |Y | exp(iΦY ), y = − [αβ − sχ′
0(1 + sβ)]

2β1/2X ′ , (3.6)

y0 =
sχ′′

0(1 + sβ)
2β1/2X ′ , yϕ(z) = s

Lex

2
dϕ(z)

dz
, β =

γ0

|γh| . (3.7)
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Here we use notations a′ and a′′ for the real and imaginary parts of a1

complex value a. The parameter s is equal to 1 for the Bragg case and −1 for2

the Laue case. The boundary conditions for the local reflection amplitude3

are as follows: R(0) = 0 in the Laue case and R(d) = 0 in the Bragg case.4

There are two ways of changing the parameter of deviation from the5

Bragg condition α. The first one is to change the angle of incidence θ of the6

X-ray beam by ∆θ while keeping the energy constant. In this case we have7

y = Cyθ ∆θ, yϕ(z) = Cyθ ∆θB(z), Cyθ = π
Lex

λ|γh| sin 2θB, (3.8)

where θB is the Bragg angle in a perfect crystal while ∆θB(z) is a local shift8

of the Bragg angle at the depth z due to distortions of the crystal lattice.9

The angle ∆θ is positive if θ > θB. The second way is to change the energy10

of X-ray photons, keeping constant the direction of the beam. In this case11

y = Cyω ∆(�ω), yϕ(z) = Cyω ∆(�ωB(z)), Cyω =
Lex

�c|γh| sin2 θB (3.9)

where � = h/2π, h is the Planck constant, �ωB is the Bragg energy of X-ray12

photons. Parameters ∆θB(z) and ∆(�ωB(z)) describe a local shift of the13

Bragg angle or energy at depth z due to distortions. The origin of the y-axis14

corresponds to the center of the diffraction peak for a perfect crystal. The15

∆θ-dependence is common for experiments in a nondispersive arrangement,16

e.g. with laboratory X-ray sources. The ∆(�ω)-dependence is often used17

in experiments with synchrotron radiation when the energy is scanned by18

the upstream monochromator, e.g. at near backscattering conditions with19

θB ≈ π/2. Note that the parameter y0 can also be expressed through the20

dimensionless variables y0 = (sµ0/4γ0)Lex(1 + sβ) where µ0 = 2πχ′′
0/λ is21

a linear absorption coefficient.22

The method based on a direct numerical solution of the differential23

equation (3.4) was proposed in Ref. 7 and discussed in Ref. 8. However, such24

an approach has a disadvantage for a crystal containing thick layers with25

approximately constant parameters and a large difference in parameters26

between the layers. Indeed, to have sufficient accuracy in numerical27

processing of Eq. (3.4), a very small step ∆z is required over the total28

thickness of the layer even if parameters within this layer are almost29

constant. It is more convenient to consider a crystal as a set of layers with30

the parameters that are constant within each layer and can be changed31

only at the layers boundaries. Equation (3.4) for a layer with the constant32

parameters yϕ has an analytical solution. Here we present the general33
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solution6 that is valid for both the Bragg and the Laue cases. In addition,1

we assume that the boundary conditions for each layer does not contain2

zero amplitudes, i.e. the amplitudes R(0) in the Laue case and R(d) in3

the Bragg case are finite and known, where d is now the thickness of the4

layer, not the thickness of a sample. We omit the derivation and present5

the solution in the form6

R(z) =
x1 − x2B exp(−isσz)

Fd(z)
, Fd(z) = 1 − B exp(−isσz), (3.10)

where7

x1,2 = − s

C1
[−a ±

√
a2 − sC2

1 ], σ =
2

Lex

√
a2 − sC2

1 , (3.11)

a = y − yϕ + iy0, B =
(x1 − R(zb))
(x2 − R(zb))

exp(iσzb). (3.12)

Here and later on it is assumed that square roots have positive8

imaginary parts. One can verify the solution by the direct substitution.9

Equations (3.10) to (3.12) allow one to derive the recurrent relation for the10

reflection amplitude at the exit surface z = ze from the known value at the11

entrance surface z = zb.12

R(ze) =
(x1 − x2)R(zb) + x2[x1 − R(zb)][exp(iσd) − 1]

x1 − x2 + [x1 − R(zb)][exp(iσd) − 1]
. (3.13)

The parameters ze and zb are ze = d and zb = 0 in the Laue case and ze = 013

and zb = d in the Bragg case.14

The accurate solution presented above allows us to easily consider15

analytical kinematical approximations. If d → 0, we obtain the same16

expression, which can be obtained directly from Eq. (3.4) if one takes the17

right-hand side of the equation at the boundary and replace a derivative18

by [R(ze) − R(zb)]/(−sd). In a pure kinematical case, when |R(z)| � 119

and |aR(z)| � 1, we have a simple expression R(ze) = R(zb) − idC1/Lex20

meaning that the reflection amplitude linearly increases with thickness21

independently on the parameter of deviation from the Bragg condition.22

Another kinematical approximation can be obtained for a large deviation23

from the Bragg condition, |a| � |C1|. Under this condition in the Bragg case24

we have
√

a2 − sC2
1 ≈ a. Then x1 ≈ 0, x2 ≈ 2a/C1, |x2| � 1, σd = Φ =25

2ad/Lex, and we obtain from Eq. (3.13) that R(ze) = R(zb) exp(iΦ). This26

means that the layer changes the phase of the reflection amplitude which27
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may have a large modulus due to reflection at the substrate. The layer does1

not influence practically the modulus of the reflection amplitude. As for the2

phase, it can be measured by means of XSW.3

3.2.2. Local transmission amplitude4

Taking into account the definition (3.3), we can write a straightforward5

solution of the first Takagi equation as follows6

E0(z) = exp
{

i
πχ0

λγ0
z − i

C1

Lex

∫ z

0

dz′ R(z′)
}

E0(0) = T (z)E0(0). (3.14)

The solution may be used for a numerical calculation, however, again with7

a disadvantage owing to the integral. For a constant parameter yϕ the8

function R(z) has the analytical expression (3.10) and the integral can be9

calculated analytically by means of a table integral. The result looks as10

follows11

T (z) = exp(
i

2
Gz)

Fd(z)
Fd(0)

, (3.15)

where12

G = G ′ + iM = 2
πχ0

λγ0
− 2

C1

Lex
x1, M =

µ0(1 − sβ)
2γ0

+ sσ′′ (3.16)

Here M = G′′ and the values x1 and Fd(z) are defined above. As one can13

observe, the recurrent relation for the intensity of the transmitted wave14

has a simple form. However, to use this expression, one needs to know the15

value R(zb) for this layer. Therefore, this recurrent relation may be used16

only after the recurrent relation (3.13) is applied.17

3.3. Secondary Radiation Yield18

We consider the XSW techniques based on measuring the intensity of the19

secondary radiation scattered via photoelectron emission or fluorescence.20

This radiation involves many spherical waves originating from individual21

atoms. If a SRY detector counts all electrons or photons that reach the22

surface, the YPF must be averaged over the surface. Then, the averaged23

YPF Pyi(z) depends only on the z-coordinate, which the distance between24

atoms emitting radiation and the surface. As we discussed in Sec. 1,25

we consider the YPF in the form of an exponential function Pyi(z) =26

exp(−µyiz).27
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Below we assume that the SRY detector collects radiation from the1

entrance surface. For the radiation collected from the exit surface we may2

formally consider a negative value of µyi. Both types of secondary radiation,3

fluorescence and photoelectrons, are generated via a resonant interaction4

of x rays with atoms. Within a dipole approximation the intensity of the5

SRY emitted from atom is proportional to the intensity of the X-ray field at6

atomic position and the size of atom is assumed to be negligibly small. To7

take into account the size of atom we need to add a quadrupole term of the8

multipole expansion.8 Thermal vibrations and static atomic displacements9

from equilibrium positions are accounted for by the thermal and static10

Debye–Waller factors.11

Consider again a layered crystal. Each layer is uniform, i.e. the12

structural parameters are constant within the thickness of the layer,13

however, they may differ for different layers. Then, the total yield of14

secondary radiation ISR is a sum over all layers15

ISR =
N∑

n=1

Zn−1 I
(n)
SR , Zn = |E0(zn)|2Pyi(zn), (3.17)

where I
(n)
SR is a contribution of the layer with the back boundary at zn16

(z0 = 0). The thickness of the n-th layer is dn = zn − zn−1. Using solution17

(3.10), we write expression for I
(n)
SR in terms of the local reflection amplitude18

I
(n)
SR = χ′′

0a

∫ d

0

dz′ Pyi(z′)|T (z′)|2[1 + |R(z′)|2|Y |2β + 2Re
{
R(z′)

×Y β1/2C(χ′′
ha

/χ′′
0a) exp[−iϕ(z′) + iϕa(z′)]

}
exp[−Wa]

]
(3.18)

where the index a indicates that the yield is calculated only for atoms19

contributing into the SRY, ϕa(z) = hua(z). All the parameters must be20

taken for the n-th layer.21

To move further we accept a reasonable assumption that the difference22

ϕ(z) − ϕa(z) = ∆ϕa does not depend on z. If the emitting atoms occupy23

crystal lattice nodes, then ∆ϕa = 0. In a general case of atoms occupying24

position defined by the vector ua within the unit cell (e.g. impurity atoms25

in interstitial positions) this parameter is nonzero and the integral can be26

calculated analytically. The result can be written as:27

I
(n)
SR =

dnχ′′
0a

|1 − B |2 [A1Ψ1 + A2Ψ2 − Re(A3Ψ3)] (3.19)
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where B is determined by Eq. (3.12) and1

A1 = 1 + |x1|2Cr + Re(Cix1), (3.20)

A2 = |B |2[1 + |x2|2Cr + Re(Cix2)], (3.21)

A3 = B(2[1 + x∗
1x2Cr ] + (Cix1)∗ + Cix2) (3.22)

Ψk = [1 − exp(−ak)] / ak, k = 1, 2, 3, (3.23)

Here we introduced the following abbreviations2

a1 = (M + µyi) d, a2 = a1 − 2sσ′′d, a3 = a1 + isσd, (3.24)

Cr = |Y |2β, Ci = 2CY β1/2fc exp(iϕc), (3.25)

fc = (|χ′′
ha
|/χ′′

0a) exp(−Wa), ϕc = ∆ϕa − arg(χ′′
ha) (3.26)

The parameters fc and Pc = −ϕc/2π = dc/dhkl are the coherent fraction3

and coherent position of atoms emitting secondary radiation, in a full4

analogy with the same parameters introduced in the first chapters of this5

book. Hereafter, dhkl is a distance between the reflecting atomic planes and6

dc is a displacement of atoms from the origin of the unit cell along the7

reciprocal lattice vector. We note again that the Eq. (3.19) is valid for both8

the Bragg and the Laue cases with the difference only in the sign of the9

symbol s.10

3.4. Method of the Computer Simulation11

A general solution for the XSW yield from a single layer was used12

for developing computer program SWAN which is elaborated by using13

programming language Java 1.4.2 and now available on the web.9 Below,14

computing algorithm and the main features of the program are described.15

We assume that the crystal contains N layers. Each layer can be16

characterized by its own crystal structure and atomic composition. In17

particular, extinction length defined by the value of X ′ can be different18

for different layers leading to different scaling coefficients in Eqs. (3.8) and19

(3.9). To overcome this problem, the same value of extinction length L
(0)
ex =20

λγ0(πβ1/2X ′
0)−1, where X ′

0 is a reference value for X ′, was introduced for21

all layers. Simultaneously, the static Debye–Waller factor for each layer was22

replaced by the parameter fsc = exp(−W )(X ′/X ′
0), which can be called the23

scattering power of the layer. Such a replacement does not change Takagi24

equations and does not influence the results.25
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One may distinguish 11 parameters which characterize the layer1

completely, namely: (1) d — thickness of the layer; (2) ∆θB or ∆(�ωB) —2

shift of the Bragg angle or the Bragg energy; (3) fsc — scattering power; (4)3

µ0 — linear absorption coefficient of incident x rays; (5) µyi — absorption4

coefficient of a secondary radiation, (6) p = −X ′′/X ′ as defined by5

Eq. (3.5); (7) |Y | as defined by Eq. (3.6); (8) arg(Y ) as defined by Eq. (3.6);6

(9) fc is a coherent fraction; (10) ϕc is a phase corresponding to a relative7

coherent position; and (11) χ′′
0a is a power of the SRY. The latter parameter8

allows one to take into account relative differences in the amount of atoms in9

different layers contributing to the same SRY. For a layer not contributing10

to SRY, this parameter is zero.11

If the parameter Y has different values in the neighboring layers, the12

values of the product Y R must be the same at both sides of the boundary13

between these layers. Therefore we must apply the transition condition as14

Rn = Rn±1Yn±1/Yn.15

In the Bragg case the local reflection amplitude vanishes at the back16

side of the sample, i.e. R(t) = 0 where t = zN is a thickness of the sample.17

The measurable quantity is the reflectivity PR defined by PR = |Y R(0)|2.18

Therefore, at first, we have to use the recurrent relation (3.13) N times from19

the back to the front surface of the crystal. Only after that we can calculate20

the secondary radiation yield ISR by means of summation in Eq. (3.17),21

taking into account Eq. (3.19) and recurrent relation for coefficients Zn as22

Z0 = 1, Zn+1 = Zn |Tn(dn)|2 exp
(− µ

(n)
yi dn

)
(3.27)

The transmissivity PT can be calculated using the same value as23

PT = ZN exp

(
N∑

n=1

µ
(n)
yi dn

)
(3.28)

In the Laue case R(0) = 0, and we should proceed in the opposite24

direction applying recurrent relation from the front to the back surface. In25

this case the reflectivity is not determined completely by the local reflection26

amplitude due to absorption and we have PR = |Y R(t)|2PT . The case of27

the secondary radiation escaping the crystal from the back surface can be28

calculated within the same method using the negative value of µyi. The29

normalization of the SRY curve to the unity background can be performed30

numerically.31

So far we considered the incident beam as monochromatic and perfectly32

collimated. One can distinguish two experimental arrangements. In the first33
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one the angular dependence of the SRY is measured by rotating sample1

through the Bragg reflection. The incident beam is conditioned by using a2

crystal collimator. The energy spread of the incident beam is determined by3

the natural width of a characteristic line when using laboratory sources or4

by the properties of the upstream monochromator when using synchrotron5

radiation. In a typical XSW setup, a sample and monochromator (or,6

postmonochromator) crystals are arranged in a nondispersive (n,−n) setup.7

Then, the parameter X ′ of the monochromator is equal or close to X ′
0 and8

a well-known formula can be used for convolution:9

Ic(y) =
1
S

∑
j

∫
dy1 P

(m)
R (j, y1) I (j, y + y1[βmβ]1/2), (3.29)

S =
∑

j

∫
dy1 P

(m)
R (j, y1). (3.30)

Here βm is an asymmetry factor for a monochromator crystal and j is an10

index of polarization. A notation I(j, y) is used for any of the functions11

PR(j, y), PT (j, y), and ISR(j, y).12

The second technique is often utilized when using SR source and based13

on scanning the energy of the incident beam by rotating the monochromator14

while keeping the angle of incidence fixed. Therefore, the energy dependence15

of the SRY is measured. In particular, this technique is standard for the16

near backscattering geometry. The energy spread of the incident beam17

is determined by the properties of the monochromator setup and the18

properties of a SR source. It is a common practice to approximate it by19

a Gaussian function. Then, in the y-scale we have20

Ic(y) = (σy

√
π)−1

∫
dy1 exp(−y2

1/σ2
y) I (j, y + y1) (3.31)

where σy is used as a variable fitting parameter. Convolution with the21

Gaussian function can also be useful in the first case to account for some22

mosaicity.23

Many of the 11 parameters describing each layer are usually very24

well known or can be calculated based on the knowledge of a preparation25

procedure, sample history, and the results of independent measurements by26

using complementary techniques. Other parameters have to be determined27

by fitting. The list of fitting parameters usually includes the thickness of28

the layer d, the shift of the Bragg angle ∆θB or energy ∆(�ωB), and the29

static Debye–Waller factor exp(−W ). Fitting is performed by minimizing30
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the function1

χ2 =
∑

i

[Ic(θi) − KIex(θi)]2, (3.32)

where Iex(θi) is the experimental data and Ic(θi) is the theoretical value2

calculated for the same data points. If experimental data are normalized,3

the scaling factor K = 1, otherwise the K value is determined for each4

combination of fitting parameters by using a well-known solution K =5 (∑
i I 2

ex(θi)
)−1∑

i Ic(θi)Iex(θi).6

3.4.1. Example: InGaP/GaAs(111)7

As an example, consider In0.5Ga0.5P film grown by the liquid phase epitaxy8

on GaAs(111) surface. The polarity of the GaAs substrate and the film9

is known and fixed such that the Ga atoms in the substrate and the In10

and Ga atoms in the film occupy top half of the (111) double layer. We11

are interested in the fluorescence yield from the In and P atoms from12

the film excited by the (111) Bragg reflection.10 Both the substrate and13

the layer materials belong to a zincblend structure with four Ga atoms14

in the substrate and two In atoms and two Ga atoms in the film occupy15

the (0, 0, 0; 0, 1/2, 1/2; 1/2, 0, 1/2; 1/2, 1/2, 0) fcc sublattice while four As16

atoms in the substrate and four P atoms in the film occupy the fcc +17

(1/4, 1/4, 1/4) sites. Then, the geometrical structure factors for In atoms18

SIn = 1 and for P atoms SP = i and, accordingly, ϕIn
c = 0 and ϕP

c = −π/2.19

The X-ray reflectivity curve from the sample is shown on the bottom panel20

of Fig. 3.1, and the In-L and the P -K fluorescence yields from the film21

are on the top panels. Striking difference in the shape of the XSW curves22

for the In and P atoms is due to the difference by π/2 in the phases23

of their structure factors. The reflectivity and the fluorescence data were24

fitted by using the layer thickness, the difference in the Bragg angles for the25

substrate and the layer and the static DW factor as fitting parameters. It26

was assumed that the static DW factor for both In and P sublattices are27

the same and equal to the static DW factor of the layer as a whole. The best28

fit within a single layer model is shown by a thin line. The quality of the fit29

can be improved if a thin layer with different lattice constant is introduced30

at the interface (thick solid line, see Ref. 6 for details). The remaining31

discrepancy in the fit of the P fluorescence data may be due to the secondary32

excitations not accounted for in this model. These results (i) proved that33

the XSW fluorescence bears direct information about the phases of the34
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Fig. 3.1. X-ray reflectivity (bottom panel) and fluorescence yield from the In (top left
panel) and P (top right panel) atoms from the In0.5Ga0.5P films grown by liquid phase
epitaxy on GaAs(111) substrate. The fluorescence data are in the angular range of the

Bragg peak from the film. The best fit within a single layer model (thin line) and the
model with a thin interface layer (thick line) are shown. The shape of the fluorescence
curve is determined by the phase of the structure factor of the corresponding sublattice.
(From Refs. 6 and 10).

structure factors of the individual sublattices in multicomponent films and1

(ii) demonstrated that a more detailed information about the depth profile2

can be obtained when the X-ray reflectivity is assisted by a phase sensitive3

XSW data.4

3.5. Brief Historical Overview and Summary5

The first version of the computer program based on the theory presented6

in this section was developed by the author in 1980s stimulated by7
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the pioneering experiments performed by Russian scientists in which1

photoelectron emission excited by the XSW from perfect crystals was2

studied.11 Potential applications of this technique as a tool to study the3

structure of surface layers had been quickly realized and first experiments4

on crystals with amorphous layers,12 ion implanted layers,13 and epitaxial5

films3 were performed. In the 1990s, the author continued developing his6

program motivated by the new experimental results and working in close7

collaboration with the researches from the laboratory of Michael Kovalchuk,8

Institute of Crystallography, Russian Academy of Science. In particular, the9

program was extended to calculate fluorescence yield from the crystals with10

multicomponent epitaxial layers10,14 and from single crystals and crystals11

with epitaxial films in the Laue case5 (see Ref. 15 for more references).12

In the last decade, the program was used to analyze experimental data13

from a variety of research projects in which the XSW method was applied14

to interesting physical and material science problems such as the isotopic15

effect on the lattice constants of Ge16 and Si17 (chapter 17), structure of thin16

HTc films,18 polarity of thin GaN,19 and ferroelectric20 films (Chapter 16),17

and others.18

In conclusion, the theory and the computer algorithm to calculate19

secondary radiation yield from the crystal consisting of several layers has20

been presented. The introduction of multilayer crystals into the XSW21

method significantly broadened the application areas of this technique.22

Indeed, in a modern world, a large variety of man-made structures can be23

considered as layered crystals. These are the homo- and hetero-epitaxial24

films grown on single crystal substrates (such as semiconductor lasers,25

photodiodes, and other optoelectronic devices), superlattices, bicrystals,26

etc. By using the theoretical approach presented in this section and27

the computer program available nowadays as a free software, the XSW28

technique in its different modifications can be effectively utilized to perform29

their structural characterization.30
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