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INTRODUCTION

With the advent of third�generation synchrotron
sources (ESRF, APS, Spring�8, etc.), where X�ray
beams have a high degree of spatial coherence, the
phase contrast method [1], which allows a nonde�
structive study of the internal structure of weakly
absorbing noncrystalline objects, became widespread.
In this method, the change in the phase (rather than
amplitude) of the wave passing through an object is
registered; the data obtained allow one to learn infor�
mation about the object. However, this method has
some shortcomings. First, it yields not the direct
image of an object but only the Gabor hologram from
which the object should be reconstructed. In fact, this
hologram reproduces the contours of the object only
at small distances (in the near field). In the Fraun�
hofer diffraction region, the hologram is essentially
different from the object image. Reconstruction is
not a simple problem, because the change in the field
amplitude related to the change in the phase during
radiation propagation in air is registered, while the
beam coherence is incomplete and the solution of an
inverse problem by the known methods of deriving a
phase from two intensities can yield unpredictable
distortions.

Second, this method is weakly sensitive to smooth
variations of density in an object. Third, it was shown
in [2] that this method is ineffective in the study of
submicron objects. The above shortcomings can be
avoided by the use of the Zernike phase contrast
method [3], which is widely employed in optics, in the
X�ray range. Lately, the Zernike method has been used
only in a few experimental studies, e.g., in [4–6],
where the focusing element was a zone plate. In [7],

the experiment on the visualization of microobjects
involving the Zernike method in the one�dimensional
case was numerically simulated. It was shown that a
refracting lens used as an objective allows a better res�
olution.

This study is the second part of the investigation
started in [7]. Below we present the results of two�
dimensional calculations, which confirm and supple�
ment the results of [7]. We also show that the image
quality can be significantly improved using a method
similar to ptychography [8], where a diaphragm is
inserted into the object plane and the object image is
obtained by parts.

SCHEMATIC OF NUMERICAL EXPERIMENT 
AND CALCULATION METHOD

A schematic of the experiment is shown in Fig. 1.
Let r1, r2, r3, and r4 be the distances from the X�ray
source to the object, the focusing element (a lens or a
zone plate), the point of source focusing, and the
coordinate detector. An object O is situated at the dou�
ble focal distance from the focusing element
(object L); i.e., r2 – r1 = 2F. A phase�shifting element
(object S) is placed at the source image point (r3 = r2 +
F/(1 – F/r2), which was determined from the lens for�
mula (here, F is the focal distance of the lens). A
detector (object D) is placed at the distance r4 – r2 =
2F from the lens. As a result, the image is inverted and
not enlarged.

When solving the problems of hard�X�ray propaga�
tion, the paraxial approximation is satisfied with high
accuracy. Correspondingly, the X�ray transport in air is
described by the Kirchhoff integral formula for the
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solution to the Maxwell equations. Let the z axis of the
Cartesian coordinate system be parallel to the optical
axis along which the radiation propagates. The prob�
lem consists of a calculation of the dependence of the
wave field amplitude on the transverse coordinates x
and y at each point on the z axis. The specific feature
of this problem is the fact that the wave field changes
significantly in the transverse directions at distances
less than a micron, while the characteristic range of
the wave field variation along the z axis exceeds 1 cm.
Since the polarization does not change in the pro�
cesses under consideration, we can restrict ourselves to
the scalar wave function of the field.

Let E1(x, y) be the wave function at the point z1.
Then the wave function E(x, y) at the point z is

(1)

on the condition that there are no objects between
points z1 and z. Here, P(x, y, z) is the Kirchhoff prop�
agator in the paraxial approximation and λ is the radi�
ation wavelength. If the longitudinal sizes of the
objects do not differ significantly from the transverse
sizes, we can neglect the changes in the trajectories of
the rays during the passage through the objects,
because the scattering angles are quite small (usually
tens of microradians). In this case, when describing
the interaction of radiation with an object, one can
neglect the longitudinal length of the object and con�
sider it flat and situated in the plane passing through
the middle of its longitudinal extension. However, the
object length is taken into account as an empty space.
Sometimes this is important, e.g., for the composite
refracting lens with a length comparable to its focal
distance. Thus, the radiation–object interaction is
described by multiplying the radiation field wave func�
tion by the so�called transmission function

, (2)

where t(x, y) is the local change in the material thick�
ness inside the object along the z axis on the condition
that the object consists of one material and δ and β are
the quantities specifying the complex refractive index
of the object material n = 1 – δ + iβ.

The calculation involves several steps and starts
from the point source. Formally, the wave function in
the plane of the source can be taken as the δ function,
E0(x, y) = δ(x, y). Substituting this expression into (1),
we obtain the wave function in front of the object
under study in the form of a Kirchhoff propagator.
Next, it is necessary to multiply the wave function by
the transmission function of the object, in which the
specific form of the dependence t(x) is taken into
account, and apply (1) once again
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In the first calculation, r2 is equal to the distance
from the source to the focusing element (a refracting
lens or a zone plate, Fig. 1). Then the calculation from
formula (3) should be repeated with a new object in the
form of the focusing element. In this case, the replace�
ments r2 → r3 and r1 → r2 should be made. For a bicon�
cave refracting parabolic lens, we have t(x, y) = (x2 +
y2)/R, where R is the curvature radius at the parabola
vertex. The infinite limits of integration are effectively
cut off due to the absorption in the lens, since it is suf�
ficiently thick at the aperture edges. For the zone
plate, the absorption can be neglected and the prob�
lem of the integration limits remains. A zone plate has
a finite aperture. Outside the aperture, the plate is uni�
form and has a thickness t0. Inside the aperture of the
zone plate, t(x, y) = 0 in the zones without material
and t(x, y) = t0 in the zones containing material. The
zone boundaries are given by the formula rn = r1(n)1/2,

2 1 1 1 1 2 1

1 1 1 1 1
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Fig. 1. Schematic of the Zernike phase contrast method for
X rays. A nearly parallel synchrotron radiation beam is
incident from the left and from above: (O) object, (L)
refracting lens or zone plate, (S) phase�shifting plate, and
(D) coordinate detector. In the case of imaging without
enlargement, the object and detector are situated at the
double focal length from the objective and the phase�shift�
ing plate is at the point to which the source is focused.
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where r1 is the radius of the first zone and n is the zone
number. In the third calculation, the object is a phase�
shifting element with sizes of the same order of magni�
tude as the beam diameter in the objective focus. In
this case, the replacements r2 → r4 and r1 → r3 should
be made in (3).

Integral (3) is a convolution of two complex func�
tions. It is convenient to calculate this integral with the
use of a Fourier transform. First, the Fourier trans�
form of the product of the functions of the arguments
x1 and y1 was calculated. Then, it was multiplied by the
Fourier transform of the Kirchhoff propagator, which

has the analytical form P(qx, qy, r) = exp(–iλr(  +

)/4π). Finally, the inverse Fourier transform was
calculated using the fast Fourier transform [9].

CALCULATION RESULTS FOR A SCHEME 
WITH A LENS

The calculations were performed for the standard
parameters of the third�generation synchrotron

2
xq

2
yq

sources. The distance from the source to the object
r1 = 50 m and the source size S0 = 50 μm. A compound
parabolic beryllium lens was considered the objective.
The lens consisted of 60 elements with the radii of cur�
vature R = 50 μm; the lens focal distance was 31.4 cm.
The energy of the incident radiation was E = 16 keV.
The calculation grid contained 1024 × 1024 points.
Such a number of points resulted in a reasonable cal�
culation time and caused no trouble with the array
sizes. The source is incoherent in the sense that each
of its points emits independently in phase. Since the
source transverse dimension is S0, the size of its image
in the focus is S = S0(r3 – r2)/r2. The source sizes were
taken into account by calculating the convolution of
the intensity distribution for a point source and a
Gaussian curve with a half�width Sd = S0(r4 – r2)/r2.

Figure 2a shows the image of a series of silicon
objects of the same longitudinal size formed by the
lens. We can see a gradual decrease in the intensity
when moving from the center to the edge; the contrast
also decreases in this case. The figure is cut at the
edges, since artifacts appear near the boundaries of
images. The main difficulty in performing two�dimen�
sional calculations is that it is impossible to use a grid
with a large number of points because a long compu�
tation time and a large memory are required. It is
known that the FFT method has restrictions imposed
on such parameters as the steps in the direct and
reciprocal spaces and the size of the calculation
domain in the direct space. These restrictions often
give rise to artifacts in the object images. As a result,
only the diffraction patterns from small objects with
sizes much lower than that of the calculation domain
are obtained sufficiently reliably. There are no such
problems in the one�dimensional case, since large
sizes of the calculation domain and small step can be
set simultaneously.

It can be seen in Fig. 2a that the objects situated in
the aperture center are imaged most clearly. However,
the images of the same quality can be obtained for all
the other objects using a method similar to ptychogra�
phy. In this method, a large object is imaged not as a
single whole but by parts. Each time the imaged part of
the object is placed opposite of the region of the objec�
tive, an image of highest quality is yielded. For a lens,
this region is the aperture center. Then, the images of
the object portions are composed into a unified pat�
tern. It is important that the imaged part of the object
is separated by a slit, while the other part of the beam
is blocked. Figure 2b shows the image of the same
objects as in Fig. 2a, but obtained by the above�
described method. In this case, the slit was placed in
the aperture center and cut only the central region of
the image, while the objects were moved with respect
to the slit. It can be seen in Fig. 2b that such an
approach allows a significant improvement of the
image quality and leveling of the contrast.
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Fig. 2. Imaging of a series of silicon objects by a lens (a)
without and (b) with the application of ptychography. The
coordinate in micrometers is indicated by numbers.
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Using one�dimensional calculations, it was shown
in [10] that specific oscillations appear in the image of
elliptical objects elongated in the longitudinal direc�
tion. These oscillations allow one to determine the
longitudinal size of the object. In this study, this result
is confirmed by the two�dimensional calculations.
Figure 3 shows the image of a series of ellipsoidal pores
in the SiC crystal (the image is cut at the edges). In this
case, like in [10], a dent in the substance rather than
the phase�shifting plate was used. In Fig. 3, the upper
left pore has a longitudinal diameter of 3 μm; the next
to the right, is 5 μm in diameter. Then, 5 μm is added
to the diameter of each following pore.

As the introduced phase shift increases, the inten�
sity first increases. Then the intensity in the center
decreases and characteristic oscillations appear in
the center. The nature of the oscillations is as follows:
the longitudinal thickness of the ellipsoidal pore
decreases more and more rapidly as the distance
increases from the center and so does the phase shift
introduced by the pore. Each time when the phase
shift 2π is “lost” in the pore, the pore transmission
function is multiplied by the quantity exp(2πi) = 1;
i.e., it takes equal values. Thus, the oscillations, the
thickness of which decreases with an increase in the
distance from the center, appear in the pore image.
With the total number of oscillations known, one can
easily find out how many times the phase shift of 2π
is accumulated in the pore and, thus, determine its
longitudinal size.

Nevertheless, minor artifacts are seen at the edges
of the images in Figs. 2 and 3. To obtain a nearly arti�
fact�free image, a small�aperture lens should be con�
sidered as a focusing element. Figure 4 shows the

imaging of silicon objects with a beryllium lens sur�
rounded by an opaque slit with an aperture of 80 μm
and a curvature radius R0= 0.83 μm. The longitudinal
size of the left�most object is 1 μm, which corresponds
to the phase shift ϕ ~ 0.2; 1 μm is added to each next
object. It can be seen that, like in the one�dimensional
case, the height of the peak elevation is equal to the
doubled phase shift introduced by the object.

CALCULATION RESULTS FOR A SCHEME 
WITH A ZONE PLATE

We considered a gold zone plate with an aperture
A = 160 μm, a number of zones of 200, and a focal
length F = 16 cm. In contrast to the refracting para�
bolic lens, the zone plate has many focusing orders.
Even for the ideal zone plate, which shifts the wave�
field phase by π in the zones, the first order, which
accounts for 40% of the total intensity, is directly
responsible for the image formation. The remaining
60% of the radiation are not directly involved in the
image formation but interfere with the principal wave
and, thus, decrease the image quality.

In this study we consider a perfect zone plane with
no zero order. To eliminate the effect of the minus first
order on the image formation, the object was placed
not at the center but at some distance from the axis. In
this case, the inverted image of the object in the first
focusing order is formed in the opposite part of the
zone plate aperture, while the unfocused image in the
minus first order is produced in the same part of the
aperture and outside of it; therefore, the two images do
not overlap.
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Fig. 3. Imaging of a series of ellipsoidal pores in a SiC crys�
tal by a lens. The upper left pore has a longitudinal diame�
ter of 3 µm and the next to the right is 5 µm in diameter;
then, 5 µm is added to the diameter of each following pore.
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Fig. 4. Imaging of silicon rectangles of different longitudi�
nal sizes by a lens with an aperture of 80 µm.
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Another reason for the image degradation is that
the degree of coherence of the light beam is too high.
Such a coherence level is known to frequently result in
the formation of destructive speckles [11]. Therefore,
a phase noise is intentionally produced in some exper�
iments. In this study we averaged the calculated pat�
tern with a Gaussian function of a certain half�width
to suppress the parasitic interference of various orders.
The optimal half�width was S = 1.5 μm.

Figure 5 shows the calculation results for the grid
with 2048 × 512 points. The figure presents an image
of a series of silicon objects of the same longitudinal
size placed in the lower part of the central region of
aperture. The image being inverted, the objects are
seen in the upper half�plane. The image of the objects
themselves is superimposed by the image of the central
zones of the plate. It is also seen that the image of the
central zone is repeated at the edges of the calculation
domain. This is related to the fact that the Fourier
integral is substituted by the Fourier series and to the
existence of the minimum vector of the reciprocal lat�

tice. The grid step in the q space is dq = 2π/X, where X
is the size of the calculation domain. Since the number
of grid points is even, there is no zero point and the
minimum vector of the reciprocal lattice is dq/2.
Therefore, the image in the direct space is periodic
with a period of X/2. The intensity of these artifacts
weakens with an increase in the distance from the cen�
ter due to the presence of higher harmonics in the
Fourier series.

As in the case of a lens, a method similar to pty�
chography can also be applied to imaging with a zone
plate. However, in the latter case, the slit (diaphragm)
cutting a part of the object should be placed not in the
center but at a certain distance from it. In experi�
ments, the object is placed closer to the aperture edge
(where the zones are smaller) to increase resolution.
In numerical simulation, the object should be situated
so that, on the one hand, the zones are sufficiently
small and, on the other hand, a sufficient number of
points falling in one zone are provided to adequately
describe the zone plate relief. Figure 6 shows images of
the same objects as in Fig. 5, but obtained with the aid
of ptychography. The slit center was at the point with
the coordinates (0, –40). As for the case of a lens, this
approach made it possible to improve the image.

CONCLUSIONS

The specific features of the Zernike phase contrast
method in the two�dimensional case were studied by
computer simulation. It was shown that the refracting
lens as a focusing element allows better resolution than
a zone plate. One specific feature of the two�dimen�
sional calculations is that artifacts can appear in the
images, especially in the scheme with a zone plate,
because of the small number of points along both axes.
The image can be corrected using ptychography. In the
scheme with a lens, the slit should be placed in the
aperture center; in the one with a zone plate, it should
be closer to the aperture edge.
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Fig. 5. Imaging of a series of silicon objects of the same longitudinal size by a zone plate.

Fig. 6. The same as in Fig. 5 but with the application of
ptychography.
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