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Abstract—The possibilities of using Zernike phase contrast in hard X rays for imaging micropipes in a silicon
carbide single crystal are analyzed by numerical simulation. Calculations are performed for the experimental
conditions characteristic of third-generation synchrotron radiation sources. A scheme is considered where
the focusing element is a parabolic refracting lens and the phase-shifting element is mounted at the point of
the source image. It is shown that micropipe cross sections by a beam with a longitudinal diameter reaching
10 um are imaged by the lens without distortions. At the same time, the lens makes it possible to magnify the
image several tens of times. The cross sections that are significantly elongated along the beam are imaged with
artifacts; however, their structure can also be recovered. It is shown that polychromaticity of radiation does

not significantly affect the object imaging.
DOI: 10.1134/S1063774511060137

INTRODUCTION

Silicon carbide (SiC) is a promising material of
semiconductor electronics which is superior over sili-
con in many parameters (thermal conductivity, break-
down voltage, etc.). The growth of SiC crystals is
accompanied by the formation of peculiar lattice
defects which are called micropipes. These are
strongly elongated cylindrical pores with variable cross
sections with diameters ranging from a few tenths of a
micrometer to several micrometers. Micropipes can
be considered screw dislocations with very large values
of the Burgers vector [1].

The micropipes in SiC crystals significantly deteri-
orate the functioning of devices based on them. To
reduce the density of micropipes, nondestructive
methods should be developed to study their structure
and properties. Micropipes are investigated by the
same methods as dislocations: the scanning electron
microscopy of etch pits on the surface, X-ray topogra-
phy [2] and optical microscopy. The most direct and
nondestructive technique for studying the structure of
micropipes directly in the sample bulk is the X-ray in-
line phase contrast method [3—7]. However, this tech-
nique is not efficient for studying micropipes with a
cross-sectional diameter of about 1 um or smaller [8].

In this study we performed a computer simulation
of the experiments on imaging micropipes in a SiC
single crystal using the Zernike phase contrast
method. A parabolic refracting lens was used as an
objective, and a phase-shifting element was placed at
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the point of source image. Cylindrical micropipes with
a constant diameter at some portion of their length
were considered. In this case, the micropipe cross sec-
tion by an X-ray beam propagating along the z axis has
an elliptical shape, and it is sufficient to perform a cal-
culation for only the x direction, which is perpendicu-
lar to the axis of a micropipe in its real two-dimen-
sional image. For brevity, we will characterize the
micropipe by its elliptical cross section in the (x, z)
plane for which the calculation is carried out.

The specificity of the small micropipe cross section
is as follows: first, the phase shift introduced by this
micropipe into the incident beam becomes small and,
second, the Fraunhofer diffraction conditions are sat-
isfied when the transverse micropipe diameter is
smaller than the diameter of the first Fresnel zone.
Concerning the diffraction in the in-line scheme
(standard phase contrast), the image is in the form of
Fresnel zones, the sizes of which depend on the sam-
ple—detector distance, and the information about the
micropipe cross-sectional sizes can be derived from
only the image contrast. In this case, one can deter-
mine only the area of the cross section and not its radii
along and across the beam separately.

The problem of completely determining the cross-
sectional diameters can be solved by applying the well-
known method of the Zernike phase contrast for visi-
ble light [9] to the X-ray range. This method was pro-
posed in 1934; currently, it is widely used in optical
studies of the structure of weakly absorbing microme-
ter-sized samples (biological cells, etc.). Its essence is
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Fig. 1. Schematic of the Zernike phase contrast method for
studying micropipes in silicon carbide (a synchrotron radi-
ation beam with a very low divergence is incident from the
left): (/) object (SiC crystal with a pore at the center), (2)
refracting lens, (3) phase-shifting element (hole), and (4)
coordinate detector. The distances a and b are related by
the lens formula:a ' + 51 = F!. Asa result, the image is
inverted and enlarged by a factor of M, where M = b/a.

as follows: a transparent object, which hardly changes
the intensity of radiation incident on it, is visualized by
placing a quarter-wave phase-shifting plate in the
objective focus. In this case, the contrast is equal to the
doubled phase shift introduced by the object.

The Zernike phase contrast method is rather widely
used in optical studies. However, only few experiments
on its application in the X-ray range have been carried
out to date [10—12]; a zone plate served as an objective
in these experiments. A zone plate is known to have
many focusing orders, and only a 40% incident beam
intensity is used to form the first-order image. At the
same time, the refracting lens completely focuses the
beam and, therefore, can provide a better resolution
[13]. One advantage of the Zernike method over the
in-line phase contrast technique is that in the former
case the detector directly yields an object image rather
than a hologram (the latter must be interpreted). In
addition, the refracting lens makes it possible to mag-
nify an image by several tens of times; this is a signifi-
cant advantage, because the resolution of the best
coordinate detectors does not exceed several tenths of
a micrometer.

SCHEMATIC OF THE NUMERICAL
EXPERIMENT AND THE CALCULATION
METHOD

A schematic of the experiment is shown in Fig. 1.
We will denote the distances from the X-ray source to
the object, focusing lens, source focus, and the coordi-
nate detector as ry, r,, 13, and r,, respectively. Object 1
is located at the distance r, — r; = a from the X-ray
refracting lens (object 2). A phase-shifting element
(object 3) is placed at the source image point (r; =r, +
F/(1 — F/r,), which is determined from the lens for-
mula (here, F is the lens focal distance). A detector
(object 4) is located at the distance r, — r, = b from the
lens; the distances a and b are related by the lens for-
mula: a~! + b~' = F-'. Asaresult, the image is inverted
and magnified by a factor of M, where M = b/a.
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When solving the problems of hard-X-ray propaga-
tion, the paraxial approximation is satisfied with high
accuracy. The X-ray propagation in air is described
using the solution of the Maxwell equation in the form
of Kirchhoff integral. Let the z axis of the Cartesian
coordinate system coincide with the optical axis along
which the X-ray beam propagates. The problem is
reduced to a calculation of the dependence of the
wave-field amplitude on the transverse coordinates x
and y at each point on the z axis. Note that in the trans-
verse directions the wave field changes significantly at
distances of several micrometers or smaller, whereas
the characteristic range of variation in the wave field
along the z axis is much larger. The polarization
remains not changed in the processes under consider-
ation; therefore, we will restrict ourselves to the scalar
wave function of the field. Moreover, we will consider
only one-dimensional objects homogeneous along the
y axis.

Let E,(x) be the wave function at the point z;. Then
the wave function E(x) at the point z is determined
(provided that there are no objects between z; and z) as

E() = [dx Pl = x1,2 = 2 Ey(x),

1 X’
P(x,7) =———=exp [zn—j.
(irz)"? ¥

Here, P(x, z) is the Kirchhoff propagator in the parax-
ial approximation and A is the X-ray wavelength. Con-
cerning the objects, if their longitudinal sizes do not
differ much from transverse, the change in the beam
trajectory during transmission through the object can
be neglected, because the scattering angles are fairly
small (generally several tens of microradians). When
describing the interaction of radiation with an object,
one can neglect the longitudinal object length and
consider it to be planar and located in the plane pass-
ing through the midpoint of its length. However, when
describing the radiation transport, the volume covered
by the object length is taken into account as an empty
space. Sometimes this is an important factor, for
example, for a compound refracting lens, the length of
which is comparable with its focal distance. Thus, to
describe the interaction of radiation with an object,
the wave function of the radiation field is multiplied by
the so-called transmission function

ey

T(x) = exp(—i[8 - iﬁ]%nt(x)), )
where #(x) is a local change in the object thickness
along the z axis, provided that the object consists of
one material, and o and P are the real and imaginary
parts of the complex refractive indexn =1 — 0 + i3 of
this material.

The calculation starts from the point source. The
wave function in the source plane can formally be
taken in the form of the & function: £,(x) = 8(x). Sub-
stituting it into (1), we directly obtain the wave func-
Vol. 56
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tion before the object under study in the form of a
Kirchhoff propagator: E,(x) = P(x, r;). Furthermore it
is necessary to multiply the wave function by the trans-
mission function of the object with the specific form of
the dependence #(x) taken into account and then apply
(1) again:

Exx) = [dxiPCc—x,n =nT@E®). ()

In the first calculation, r, is equal to the distance
from the source to the focusing lens (Fig. 1). In this
study we considered only elliptical cross sections of
micropipe; their transmission function has the form

2\ 1/2
(x) = 2R, [1-%} : @)

2

where R, and R, are the cross-sectional radii along and
across the beam, respectively. Then the calculation
must be repeated with a new object in the form of a
focusing lens; to this end, the replacements 7, — r; and
r, — r, must be made in (3). For a biconcave refracting
parabolic lens, we have

2
_x
1(x) = R’ %)

where R is the radius of curvature at the parabola ver-
tex. Note that the infinite integration limits are effec-
tively cut off due to the absorption in the lens, because
the lens is fairly thick at the aperture edges. In the third
calculation, the object is the phase-shifting element
with a diameter of the same order of magnitude as the
beam diameter in the lens focus. In this case, the
replacements r, — r, and r; — r; must be made in (3).
In optical studies a cylindrical plate is used as a phase-
shifting element; however (see below), to study pores
in a material in the X-ray range, it is more convenient
to use a cylindrical hole. We consider an ideal phase-
shifting element: a hole in a nonabsorbing material,
because a consideration of absorption does not signif-
icantly change the results. Thus, in our case, 7(x) = 1
at |x| > D/2 and

T(x) = exp(ig) (6)

at x| < D/2, where D is the hole diameter.

Integral (3) is a convolution of two complex func-
tions, and it is convenient to calculate it using a Fou-
rier transform. First we calculated the Fourier trans-
form of the product of functions of the argument x;
then it was multiplied by the Fourier transform of the
Kirchhoff propagator, which has the analytical form
P(q, r) = exp(—ikrg?/4m); and, finally, the inverse Fou-
rier transform was calculated. The latter was per-
formed using fast Fourier transform procedure [14].

The calculations were performed for the standard
parameters of third-generation synchrotron sources,
specifically the source—object distance r, = 50 m and
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the source size S, = 50 um. The objective was a com-
pound parabolic beryllium lens composed of N =60 ele-
ments with radii of curvature R= 50 um; the lens focal
distance was 31.4 cm. The incident radiation energy
was assumed to be £ = 16 keV. The source is phase-
incoherent; i.e., the radiation from each of its points
has an independent phase. Since the source transverse
size is S, its image in the focus is .S = Sy(r; — r,)/(r; +
r,). The source sizes were taken into account by calcu-
lating the convolution of the intensity distribution for
a point source with a Gaussian curve, the half-width of
which is S, = Sy(ry — 1) /(1) + 1y).

To select an object image in a pure form in experi-
ments, a special procedure is often used: the image is
recorded in the absence of the object and then with the
object, after which the first image is subtracted from
the second one. In [13], where the phase-shifting ele-
ment was a cylindrical plate, the image of convex sili-
con objects was above the background level (it had a
positive contrast) after this procedure. Since we use a
hole instead of a plate, it is pores in the material rather
than convex objects that must be imaged with a posi-
tive contrast.

It was noted in [13] that the quality of image objects
is significantly deteriorated in the case of transverse
shift of objects from the aperture center if a refracting
lens is used as an objective. It was found that the image
can easily be recovered by dividing the intensity profile
formed by the lens by the absorption function of the

lens: exp(—A[4nx?/AR,]B), where B =5.19x 107" is
the absorption index of beryllium; R, = R/N is the
effective radius of curvature of the lens; and A is the
correction coefficient, which only slightly differs from
unity. The use of this procedure makes it possible to
equalize not only the background, but also the con-
trast. Note that this procedure is not necessary if the
object under study is small and located at the center of
the aperture, because the central region is imaged by
the lens fairly well. However, this procedure must be
applied to the images of objects located at a rather
large distance from the optical axis.

CALCULATION RESULTS

Imaging of Objects with a Small Longitudinal Cross
Section

Let the object under study be a micropipe located
at the center of the lens aperture with longitudinal and
transverse cross-sectional radii R, = R, = 0.3 pum. Fig-
ure 2 shows how the cross section of this micropipe is
imaged at different magnifications. The doubled phase
shift introduced by the micropipe center into the inci-
dent wave is about 0.25; specifically this value is
observed on the detector at M = 1. With an increase in
magnification, the peak width increases by a factor of
M and the peak height decreases by a factor of M. This

2011
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Fig. 2. Image of a micropipe with the radii R} = R, =
0.3 um at different magnifications M (indicated near the
curves).

property is a consequence of the energy conservation
law, which is why the intensity integrated over the
beam cross section should be retained. Taking into
account these two circumstances, one can easily cal-
culate the true sizes of the micropipe cross section.
The small spread of the image at the edges is caused by
the averaging over the source projection, the size of
which linearly increases with an increase in M. An
increase in the transverse cross-sectional diameter
does not change the character of the above-described
regularities. An increase in the longitudinal diameter
up to = 10 um also causes no significant changes.

Note that adding new objects to existing ones
affects to a certain extent the image of the latter, which
manifests itself in the change in the background level.
For example, Fig. 3 shows how the image changes
when a micropipe with cross-sectional radii R, = R, =
0.3 um is supplemented with two similar micropipes.
It can be seen that in this case the background is low-
ered to conserve the integral intensity. However, for
micropipes with a small cross section, this does not
lead to image distortions; artifacts arise only when
studying objects with a large longitudinal cross sec-
tion.

Thus, magnification makes it possible to observe
small details in the structure of micropipe cross sec-
tion, and the Zernike phase contrast method is more
favorable in this context than the lensless (in-line)
phase contrast method.

Imaging of Objects with a Large Longitudinal Cross
Section

It is known that the Zernike phase contrast method
in optics allows one to observe only transparent objects
which introduce a small phase shift into the incident
wave ¢ < 1. In this case, the transmission function of
the sample exp(ip), can be expanded in a Taylor series.
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Fig. 3. Images of (/) a micropipe with the sizes R| = R, =
0.3 um located at the center of the aperture and (2) three
identical micropipes; magnification M = 1.

A numerical calculation showed that, in the X-ray
range, the limitation on the phase value can be got
around. Let us consider the images of a series of ellip-
tical cross sections of large pores in silicon carbide and
ellipses (the cross sections of convex objects) with the
same sizes (Fig. 4) in the ascending order with respect
to the phase introduced by them (from right to left in
Fig. 4). The last objects on the right have longitudinal
diameters of 3 and 5 um, respectively, and each subse-
quent object has a longitudinal diameter 5 pum larger
than the previous one. The transverse diameters of all
objects are in the range from 10 to 20 pm.

The calculation results show that the method pro-
posed yields a conventional result not only for small
pores (with a longitudinal cross-sectional diameter 7 =
1 pm and shift phase ¢ = 0.21) but also pores with
much larger longitudinal sizes (to # = 10 um). With a
subsequent increase in the longitudinal cross section,
the image starts inverting and a dip (increasing in
depth) arises instead of a peak. The mechanism of this
(at first glance incomprehensible) phenomenon
becomes clear when considering the further increase
in the longitudinal size of pores: the central peak
returns to the same position each time when a phase
shift of 27 is accumulated in the pore, because at these
values the pore transmission function takes the same
values (exp(2mi) = 1). Thus, proceeding from the total
number of oscillations and the central peak height,
one can determine the longitudinal size of highly elon-
gated elliptical cross section of pores. The images of
convex objects with an elliptical cross section exhibit a
similar regularity; however, the corresponding oscilla-
tions show a phase delay with respect to the oscillation
characteristic of pores; the first invertion in the case of
objects arises at ¢ = 1. Note that, for the objects that
introduce small variations in the phase ¢, the dip

depth is not 2¢ but 2¢ — (pz, which follows from the
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Fig. 4. Images of (a) a series of large pores and (b) a series
of large objects of the same sizes.

approximate theory of the Zernike method. This is
shown more clearly in Fig. 5, which demonstrates the
dependence of the peak height on the longitudinal
diameter of the cross sections of pore and object with
R, = R, = 0.5 um (for magnification, M = 40). It fol-
lows from Fig. 5 that, when imaging pores, the propor-
tionality of the peak height to the phase shift intro-
duced by the pore is retained in a much wider range of
thicknesses ¢ than in the case of objects. Specifically
this is the reason why we used a hole as a phase-shifting
element instead of plate; the application of the latter
from the point of view of the Zernike method would be
equivalent to the transformation of pores into objects.
In addition, the hole technology is simpler. Although
ideally it should have a high aspect ratio, numerical
calculations show that an increase in the radius of the
phase-shifting element by even several times does not
lead to significant image distortions.

Influence of Spectrum on Imaging

In [5—8], micropipes in silicon carbide were inves-
tigated in a white beam without a monochromator.
This measurement scheme leads to a partial loss of
time coherence, but it makes it possible to record more
photons and, therefore, increases the signal-to-noise
ratio. In this study we considered a Gaussian spectrum
with a maximum at an energy of 16 keV. The intensity
profiles were calculated for 21 harmonics in the range
from 6 to 26 keV with a constant step of 1 keV, after
which these profiles were summed with weighting fac-
tors corresponding to the Gaussian distribution. Fig-
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Fig. 5. Dependences of the peak height on the longitudinal
diameter 7 of the cross section of (/) a pore in silicon car-
bide with R, = 0.5 um and (2) a SiC object of the same size;
magnification M = 40. Curve 2 is inverted.

ure 6 shows how the image of a micropipe cross sec-
tion with the transverse and longitudinal radii R, =
1.5 um and R, = 0.5 um, respectively, changes when
polychromatic radiation with Gaussian spectrum is
used. It can be seen that the transverse size of the cross
section is viewed without distortions on the detector
and the peak height, which characterizes the longitu-
dinal size, changes only slightly. For objects with
smaller longitudinal sizes, the deviations are even
smaller; more significant discrepancies arise only for
samples with highly elongated elliptical cross sections.
The weak influence of the spectrum on imaging
objects with a small cross section is explained by the
fact that the modulus of the phase shift |P| = (21/)\)d¢,
which is introduced by the sample into the incident
wave, increases linearly with an increase in the radia-
tion wavelength, because 8 is proportional to A? with
high accuracy. As a result, the increase in the contrast
at lower energies compensates for its decrease at
higher energies. In addition, averaging over spectrum
eliminates spurious oscillations, which arise when
objects displaced from the center of the aperture are
imaged. In this case, the presence of a spectrum leads
to small distortions in imaging peripheral samples;
however, these distortions are insignificant.

CONCLUSIONS

A numerical simulation showed that the Zernike
method can be successfully used to study micropipes
with submicron sizes. Micropipes must be oriented
perpendicularly to the beam, because in this case they
introduce the smallest phase shifts, and the image has
a descriptive elliptical form. The refracting lens that is
used in the Zernike method makes it possible to mag-
nify the image several tens of times. With the magnifi-
cation coefficient, the height of the peak on the detec-
tor, and its transverse size known, one can easily
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Fig. 6. Images of a micropipe with the transverse diameter
Ry =1.5pmand R, = 0.5 pm obtained in (/) a monochro-
matic beam and (2) a polychromatic beam with a specified
spectrum; magnification M = 40.

reconstruct the true sizes of the micropipe cross sec-
tion. When imaging micropipes with a small cross sec-
tion, it is more expedient to use a hole in a material
instead of a plate as a phase-shifting element, because
in this case pores with a longitudinal diameter up to
t= 10 pm are imaged without distortions. Images of
objects with highly elongated elliptical cross sections
contain oscillations, and the object structure can be
reconstructed if the total number of oscillations and
the height of the central peak are known. The beam
polychromaticity does not significantly affect the
imaging of micropores and can be used to amplify the
desired signal and reduce the background noise.
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