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Abstract
We show that x-ray phase contrast images of some objects with a small cross-section diameter
d satisfy a condition for a far-field approximation d � r1 where r1 = (λz)1/2, λ is the x-ray
wavelength, z is the distance from the object to the detector. In this case the size of the image
does not match the size of the object contrary to the edge detection technique. Moreover, the
structure of the central fringes of the image is universal, i.e. it is independent of the object
cross-section structure. Therefore, these images have no detailed information on the object.

Widely used techniques of x-ray imaging are based on
absorption because they do not require a coherent source.
However, absorption of hard x-rays in soft materials is small,
and it leads to a weak contrast. Meanwhile, the complex
refractive index n = 1 − δ + iβ has also a real part, whose
difference from unity δ exceeds β by two orders or more [1, 2].
Therefore, a passage of plane wave through matter changes its
amplitude by the factor exp(−2πβt/λ) where t is the matter
thickness, λ is the wavelength of monochromatic radiation,
and its phase by the value −2πδt/λ compared with the case
of free space.

The phase cannot be imaged just behind the object because
any detector registers the intensity. However, the phase
variation may be transformed to an intensity variation by
means of some interference phenomenon [3]. Of course, this
is possible only with a coherent illumination of the object
and only at some distance from the object. It was first
discovered in 1995 [4] that the sources of synchrotron radiation
of third generation are just able to provide a necessary coherent
illumination, so the x-ray phase contrast imaging becomes
possible since 1995 as a widely used tool. We note that there
are also three techniques which do not require synchrotron
radiation [5–7], a full bibliography can be found in [2].

Here we will consider an approach based on synchrotron
radiation (SR). In this case the experimental setup is very

simple. A point source of divergent radiation is placed at
large distance from the object. Since refraction of hard x-rays
is very small we have large distances (centimetres or more)
along the optical axis (z-axis) and rather small distances across
the optical axis (x- and y-axes). The object is illuminated
by spherical wave in a paraxial approximation which can be
described by the Kirchhoff propagator

P(x, z) = (iλz)−1/2 exp(iπx2/λz) (1)

in a one-dimensional case. Very often the objects are rather
thin and weakly reflect the x-rays. In this case they can be
described by the transmission function

T (x) = exp(2π i(n − 1)t (x)/λ). (2)

Similarly, in the case of visible light [3] one can distinguish
three various regions behind the object where imaging the
object is different.

The first region is called near field (small distances). In
this region the size of the object greatly exceeds the size of
the first Fresnel zone (λz)1/2. The third region is called far
field (large distances). In this region the first Fresnel zone
exceeds much the size of the object. The second region is
just between those mentioned above. Since for hard x-rays
the parameter λ is equal to 0.1 nm or less, the size of the first
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Fresnel zone at a distance of 1 cm is equal to 1 µm. As a rule,
the size of the object is more than 10 µm, so the near-field
approximation is valid for distances up to 100 cm. There is a
rather good method which allows one to reconstruct the phase
profile from the intensity profile with the use of transport-of-
intensity equation [8]. One can use as well the stationary phase
approximation [9]. These methods work well for the objects
with a smooth thickness profile t (x), i.e. if the phase profile
of the wave field has no sharp jumps.

However, many objects have a circular cross-section like
a fibre and a rather large diameter of about 100 µm. For
these objects t (x) has sharp jumps at the boundaries. These
boundaries well incline the rays out of the object where they
interfere with the free space rays. This interference leads to a
sharp peak of intensity even at very small distance from the
object. Therefore many objects can be imaged just by its
boundaries. This technique was called edge detection [10, 11].
We note that edge detection does not require a very high level
of coherence. It allows one to image the object even with the
synchrotron radiation source of second generation [12].

The goal of this paper is to show that there are some
objects of small cross-section for which the methods of near-
field approximation are not applicable. Moreover, the far-field
approximation has to be used. Such objects exist in some
crystals as crystal lattice defects: hollow core dislocations,
or micropipes, in silicon carbide [13]; micro-channels in
synthetic quartz [14], etc. Similar objects may exist as a part
of a biological sample: a lung’s airways and blood vessels.
Despite the ability of phase contrast imaging and coherent-
enhanced CT to provide high resolution images of lung airways
and vessel morphologies [15, 16], quantitative evaluations of
their diameters (<100 µm) are prohibited. For these objects
the phase contrast image has a universal shape and this shape
has no detailed information on the object.

As an example, we consider a silicon fibre of 1 µm
diameter with the axis perpendicular to the x-ray beam
direction. The energy of x-ray photons is 20 keV. The near-
field image is too small for a registration by modern detectors.
In addition, the edge detection is impossible because the
maximum phase shift is 0.123, and the geometrical optics is
not realized. At a distance of 1 m from the object the size of
the image becomes larger. Of course, one prefers to choose
this distance for the experiment.

The intensity profile I (x) at the detector is calculated
theoretically as a convolution of the transmission function with
the Kirchhoff propagator modified by scaling factors which
account for a divergence of the beam

I (x) = |a(x0)|2, a(x0) =
∫

dx1P(x0 − x1, Z)T (x1),

x0 = x
z0

zt

, Z = z0z1

zt

, zt = z0 + z1, (3)

where z0 is the distance from the source to the object and z1 is
the distance from the object to the detector. The integral has to
be calculated in the infinite limits while the integrand is a non-
vanishing function at the limits. Therefore, it is convenient to
use a transformation of the integral to the form

a(x0) = 1 +
∫

dx1P(x0 − x1, Z)[T (x1) − 1]. (4)

Such an integral shows a contrast directly and the integrand
differs from zero only inside the object.

For our small object we can neglect absorption and expand
the exponent of the transmission function into the Tailor series
considering only the term of the first order. Then

T (x1) = 1 + iP

(
1 − x2

1

R2

)1/2

, |x1| < R,

T (x1) = 1, |x1| > R, P = −4πδ

λ
R0. (5)

Here R, R0 are the transverse and longitudinal radii of the
elliptical cross-section of the fibre. On the other hand, we can
explore a standard far-field approximation and neglect the term
π(x1/r1)

2 in the phase of the propagator, where r1 = (λZ)1/2

is the first Fresnel zone radius. As a result, we have

a(x) = 1 − i1/2 2π2δ

λr1
RR0 exp

(
iπ

x2

r2
1

)
b(x), (6)

where

b(x) = 2

π

∫ 1

−1
dt exp

(
−2iπ

xR

r2
1

t

)
(1 − t2)1/2

= 2xc

x
J1

(
x

xc

)
, xc = r2

1

2πR
. (7)

Here J1(x) is the Bessel function of the first order. We note
that b(0) = 1. Within the linear approximation over R, R0 we
obtain the following expression for the intensity:

|a(x)|2 ≈ 1 − 4π2δ

λr1
RR0b(x) cos

(
π

x2

r2
1

+
π

4

)
. (8)

This formula allows us to make some interesting
conclusions. In the far-field region xc � r1. Then in
the central part of the image, i.e. |x| < xc, the structure
of the image is determined by the cosine term, which is
independent of the object. The object structure is described by
the function b(x) which modifies only far fringes. However, if
the incident radiation is not monochromatic, i.e. it is described
by some incoherent spectral function, then far fringes will be
smoothened and only the central fringes will be visible which
does not contain detailed information on the object. The only
parameters, which can be determined, is a product RR0 which
influences a contrast level.

We consider below objects for which the problem
mentioned above really exists, namely, micropipes in the
SiC single crystal. Phase contrast images of the individual
micropipes were obtained using white beam at a third-
generation SR source, namely, Pohang Light Source, Pohang,
Korea. The experimental setup does not contain a
monochromator. However, the radiation intensity of high
energy harmonics decreases sharply in the SR spectrum. On
the other hand, the crystal itself forms the effective spectrum
by means of absorption of soft x-ray radiation harmonics. We
reveal that the effective x-ray spectrum of a high brilliance
has a pronounced maximum at 16 keV, and it enables us to
form partially coherent images even for transparent objects.
Of course, only central fringes were visible. The crystal
plate of thickness 490 µm was cut from the boule parallel to
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Figure 1. A series of images of the same micropipe in SiC crystal registered at various distances from the crystal which are shown on the
panels by numbers in centimetres.

the growth direction and was placed normally to the beam.
The images were recorded by high resolution CCD detector
of 14-bit gray scale and 1600 × 1200 pixels range preceded
by CdWO4 fluorescent crystal to transfer x-rays to a visible
light and optical system for a magnification of the images
up to 50 times. The view field was 310 µm horizontally.
Correspondingly the effective pixel size was 0.194 µm. The
details of the experimental setup can be found in [17–19].

Figure 1 shows a series of images of the same micropipe
obtained at various distances from the object from 2 to 55 cm.
At a distance of 2 cm one can clearly see that a transverse cross-
section diameter of the micropipe increases from bottom to top,
i.e. it is inhomogeneous. However, the contrast is small. For
long distances the contrast becomes more pronounced, but the
structure of images is changed drastically. Now the transverse
size of the images is constant from bottom to top, but the
contrast level increases. This effect correlates completely with
formula (8) where the minus sign must be replaced by a plus
sign for a hole inside a matter. The images have a bright centre
(i.e. the relative intensity is more than 1) followed by dark lines.
The distance between dark lines is determined completely by
the first Fresnel zone radius r1 for a maximum intensity in the
spectrum (16 keV).

The observation of this micropipe and many other similar
micropipes provide strong evidence for the fact that their
images have all properties of the far-field phase contrast
described above. This understanding is new in the phase
contrast physics. Up to now, many researchers have been
keen on thinking about an edge detection and have tried to
estimate the transverse size of the object through measuring
the transverse size of the image. We would like to note that our
conclusion is independent of the elliptical shape of a section
of the object by the x-ray beam. The same conclusion may
be done with any kind of section. In the arbitrary case the
function b(x) may have any shape, but the property b(0) = 1
and the parameter xc remain unchanged. The structure of the
cross-section cannot be revealed from the image. The only
parameter which can be estimated is a size of cross-section
area. Our conclusion is verified by other experimental results
as well as computer simulations which will be presented in a
more extended paper.
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