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X-ray optical schemes capable of producing a highly monochromatic beam with

high angular collimation in both the vertical and horizontal planes have been

evaluated and utilized to study high-resolution diffraction phenomena in the

Renninger (222/113) case of three-beam diffraction in silicon. The effect of the

total reflection of the incident beam into the nearly forbidden reflected beam

was observed for the first time with the maximum 222 reflectivity at the 70%

level. We have demonstrated that the width of the 222 reflection can be varied

many times by tuning the azimuthal angle by only a few mrad in the vicinity of

the three-beam diffraction region. This effect, predicted theoretically more than

20 years ago, is explained by the enhancement of the 222 scattering amplitude

due to the virtual two-stage 000 ! 113 ! 222 process which depends on the

azimuthal angle.

1. Introduction

The general theory of n-beam diffraction is based on the

assumption that the incident beam is a perfect plane mono-

chromatic wave and the theory describes the wavefield in a

crystal as a superposition of n plane waves. To compare theory

with experiment the resulting intensities are integrated over

the finite angular spread on the incident beam (Colella, 1974).

While this is sufficient for the analysis of the effects related to

the phases of the reflections involved in multiple diffraction

(which is one of the main established application areas for

multiple diffraction), any high-resolution dynamical phen-

omena taking place within a narrow angular range of a few

Darwin widths for a particular reflection are washed out and

lost from the analysis.

In non-coplanar multiple X-ray diffraction, the diffraction

conditions are usually defined by two angles, a polar angle

� and an azimuthal angle ’. In a typical experiment at

synchrotron sources the primary scattering plane is vertical,

the polar angle is associated with the rotation around the

horizontal axis perpendicular to this plane and the azimuthal

angle is associated with the rotation around the axis lying in

the vertical plane. Thus, for a well known Renninger scheme

the � angle corresponds to the Bragg angle for the forbidden

222 reflection and the ’ angle describes the rotation around

the normal to the crystal surface.

In spite of a great number of theoretical and experimental

works on multiple diffraction, including the Renninger effect,

published so far (see Chang, 2004; Authier, 2005 and refer-

ences therein), there are very few experimental works in

which dynamical diffraction effects accompanying multiple

diffraction have been studied with sufficiently high resolution.

Indeed, to observe these effects one needs to condition the

incident X-ray beam to a degree approaching a perfect plane

wave. That requires a two-dimensional angular collimation

and a high degree of monochromatization. The excitation of

the X-ray standing wavefields in three-beam (111/220)

diffraction was studied by Kazimirov et al. (1992) and Kazi-

mirov, Kovalchuk, Kohn, Kharitonov et al. (1993). In these

works, a two-dimensional angular collimation was achieved by

using another interesting dynamical diffraction effect – the

effect of the enhancement of the anomalous transmission

(super-Borrmann effect) in a six-beam symmetrical Laue

diffraction (Afanas’ev & Kohn, 1977). In the work by Kazi-

mirov, Kovalchuk, Kohn, Ishikawa et al. (1993) this effect was

experimentally measured and compared with theory. Pahl

(1994) proposed a novel ultra-small-angle scattering camera

based on a super-Borrmann effect, and its feasibility was

experimentally verified. The idea of using the Renninger

effect for a two-dimensional collimation was proposed by

Colella (1974) and analyzed later in both Bragg and Laue

cases by Stepanov et al. (1994), theoretically and experimen-

tally.

Most of the multiple diffraction experiments were

performed at second-generation synchrotron radiation (SR)

sources. The beams produced by modern third-generation SR

sources, due to a very high intensity and a high degree of the

‘natural’ angular collimation of undulator radiation, can be

more easily conditioned in terms of both a two-dimensional

angular collimation and a monochromatization. Next-



generation sources such as X-ray free electron lasers (XFELs)

and energy-recovery linacs (ERLs) will be able to produce

almost perfect plane-wave X-ray beams. These new experi-

mental opportunities provide strong motivations to continue

the study of multiple diffraction effects and their potential

applications in X-ray optics.

In this article we present the high-resolution study of

dynamical diffraction phenomena accompanying the

Renninger Si (222/113) case of three-beam diffraction. First

experimental rocking-curve measurements at the exact (222/

113) excitation in Ge were performed by Colella (1974) using

a double-crystal setup in the antiparallel arrangement. Much

better collimation than that provided by a double-crystal setup

is required in both directions to observe the details of the

dynamical diffraction interaction. In particular, the goal of this

work was to observe the effect of a total reflection of a parallel

incident beam into the forbidden 222 reflected beam predicted

by Kohn (1988). This effect takes place in a very narrow polar

angular range and rather wide azimuthal angular range near

the three-beam diffraction region where the 113 reflection is

very small. It has never been observed experimentally because

of the difficulty of preparing an incident beam approaching a

perfect plane wave. This work presents such attempts. We

studied five optical setups that provide various degrees of

monochromatization and angular collimation in both the

vertical and horizontal planes. For each of these optics we

measured the 222 and 113 diffraction curves in the vicinity of

the three-beam (222/113) diffraction region. For our best

optics we recorded 68% reflectivity of the 222 reflected beam.

We observed experimentally a remarkable phenomenon: the

width of the 222 strong reflection region can be changed many

times (about four times in our setup) by tuning the azimuthal

angle by a few mrad while still at the 60% reflectivity level. In

x2 the theoretical description of the excitation of the forbidden

reflection is presented. Then we present the experimental

results followed by the discussion and conclusions.

2. Theory

The general theory of plane-wave multiple diffraction in a

single crystal is well developed (Colella, 1974; Kohn, 1979;

Chang, 2004). In this section, we formulate the theoretical

approach which has been effectively utilized for computer

simulations. The normalized reflection powers for the beams

which leave the crystal through the entrance surface can be

calculated by means of the formula

RðsÞm ð�; ’Þ ¼
P

s0

����P
j

Bms0 ð jÞcsð jÞ

����2; ð1Þ

where the index m is used for the beams (m ¼ 0 for the

incident beam), s; s0 ¼ �; � indicate the polarization state of

the electric field vector of the beams, the index j allows one to

distinguish various Bloch waves or zones of dispersion surface,

and the parameters csð jÞ determine the rate of excitation of

the jth Bloch wave. The summation is performed over the

values which correspond to the positive value of the absorp-

tion coefficent �j ¼ =ð"jÞ. The Bloch-wave amplitudes BmsðjÞ

and the dispersion parameters "j are the solution of the

eigenvalue problemP
ns0

Gss0

mnð�; ’ÞBns0 ð jÞ ¼ "jBmsð jÞ; ð2Þ

where the scattering matrix G is determined as

Gss0

mnð�; ’Þ ¼
2��mn

��1=2
m �1=2

n

ðemsens0 Þ � 	mð�; ’Þ

ss0

mn: ð3Þ

Here ems are the unit polarization vectors, � is the wavelength

of X-ray radiation, �m is the cosine of the angle between the

direction of the mth beam and the internal normal to the

entrance surface, �mn is the Fourier image of the complex

polarizability of the crystal with the reciprocal-lattice vector

hm � hn, 
ss0

mn is the Kroneker’s symbol,

	mð�; ’Þ ¼
2

�m

½ðhme1Þ�� þ ðhme2Þ�’� ðhms0Þð��=�Þ�; ð4Þ

where �� ¼ � � �B and �’ ¼ ’� ’0 mean the angular

deviation of the incident-beam direction from the direction of

kinematically exact multiple diffraction. The unit vectors e1

and e2 are normal to the incident-beam direction s0. We

choose e1 to be in the scattering plane for the forbidden

reflection (m ¼ 1), so e2 is normal to this plane.

It is known (Kohn, 1979) that in a thick crystal the para-

meters csðjÞ ¼ 0 if j indicates the Bloch wave with �j < 0. The

remaining values may be found from the linear set of equa-

tions P
j

Bms0 ðjÞcs0 ðjÞ ¼ 

ss0

m0; ð5Þ

where the index m runs only over the Laue beams with �m > 0.

If all the diffracted beams are the Bragg-diffracted beams

with �m < 0 the situation becomes simpler and we have

csð jÞ ¼ 1=B0sð jÞ. Equations (1), (2), (3), (4) and (5) allow one

to calculate numerically the angular dependence of the

reflection power for the diffracted beams. We are interested

mainly in the first beam (m ¼ 1) which we will treat as a pure

forbidden. To illustrate the phenomena analytically we

simplify the problem and consider hard enough radiation so

that the Bragg angles are small which is, in fact, close to our

experimental conditions. In this case, one can choose the

polarization vectors in such a way that all � vectors are

approximately parallel to each other, all � vectors are also

approximately parallel to each other, but all � vectors are

normal to the � vectors. Then, the general sixfold system can

be divided into two threefold systems of equations and the

index s can be omitted.

Taking into account that G10 ¼ 0 we have for the amplitude

of the forbidden beam in the three-beam case

B1 ¼
G12B2

ð"�G11Þ
: ð6Þ

As we see from this equation, the forbidden beam can be

excited by the beam B2 and there are two mechanisms for this

excitation. The first one corresponds to the large value of B2 in

the angular region where the value of ("�G11) is not too
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large. In this region the forbidden beam is pumped by another

strong reflection, so this is the case of a double reflection

(0! 2! 1). This excitation is realized in the angular region

of the multiple diffraction which satisfies the two-beam

diffraction condition for beam 2. The second type of excitation

takes place if the denominator is small, i.e. ð"�G11Þ ’ 0. This

corresponds to the angular region of the two-beam Bragg

condition for the forbidden beam. Now the significant value of

B1 can be obtained even for a small value of B2. This case can

be called a virtual Bragg diffraction, or a resonance diffrac-

tion. Indeed, the value B2 may be small but the amplitude

is strongly enhanced by a small value of the resonance

denominator.

Let us consider this case in more detail. We have strong B0

and B1 amplitudes but a small B2 amplitude. Also we have

small �� and rather large �’. The amplitude B2 can be

calculated by means of the perturbation method from the

system [equation (2)] as

B2 ¼
G20B0 þG21B1

½"�G22ð�’Þ�
: ð7Þ

Substitution of this equation into equations for B0 and B1

leads to the system

g00B0 þ g01B1 ¼ "B0; ð8Þ

g10B0 þ g11B1 ¼ "B1: ð9Þ

This system of equations describes a two-beam diffraction

with the reflection of the incident beam B0 into the forbidden

beam B1. The matrix of this system is

gmn ¼ Gmn þ
Gm2G2n

½"�G22ð�’Þ�
; m; n ¼ 0; 1: ð10Þ

Since these equations are written for the case of a large value

of �’ and we consider small values of ", we can replace the

denominator by the value 	2ð�’Þ ¼ ½2ðh2e2Þ=�2��’. Equa-

tions (9) and (10), in a more general case and with taking into

account polarizations, were obtained for the first time by

Høier & Marthinsen (1983) as a method of approximate

numerical solution of the multiple diffraction problem.

However, we can perform the numerical solution accurately.

Thus, we obtained the case of a two-beam diffraction with a

nonzero diffraction parameter for the forbidden beam. It is

easy to calculate the solution analytically assuming a sym-

metrical case (�1 ¼ ��0) and a pure forbidden first reflection

(�01 ¼ 0),

" ¼ g00 þ ð�g01g10Þ
1=2
½�y� ðy2

� 1Þ1=2
�; ð11Þ

where

y ¼
g00 � g11

2ð�g01g10Þ
1=2
¼

�� sinð2�BÞ � X0

X1

; ð12Þ

X0 ’ � �0 þ
D0

�’

� �
; D0 ¼

�02�20 � �12�21

ð�=�Þðh2e2Þ
; ð13Þ

X1 ’
D1

�’
�� �� ; D1 ¼

ð�02�20�12�21Þ
1=2

ð�=�Þ h2e2

�� �� : ð14Þ

The angular dependence of the reflection power to the

forbidden beam is determined as

R1 ¼
B1

B0

����
����2¼ MeRR1; ð15Þ

where

M ¼
g10

g01

����
���� ¼ �12�20

�02�21

����
����; ð16Þ

eRR1 ¼ �yþ ðy2 � 1Þ1=2
�� ��2: ð17Þ

Here the square root should be taken with the positive

imaginary part. It can be verified straightforwardly that

eRR1 ¼ Y � ðY2
� 1Þ1=2; ð18Þ

where

Y ¼ y
�� ��2þ y2 � 1

�� ��; y ¼ yr þ iyi: ð19Þ

The imaginary part of the parameter y is determined by the

absorption. If the absorption is negligible then the total

reflection takes place in the region of yr

�� ��< 1. According to

equation (13) the angular width of the total reflection region is

determined by the equation

��j j<
D1

�� ��
sinð2�BÞ

1

�’
�� �� : ð20Þ

It depends on the deviation of the azimuthal angle from

the exact multiple diffraction condition. Interestingly, this

dependence is slower compared to the reflection power of

beam 2, which is proportional to �’
�� ���2

.

In the center of the angular region of total reflection we

have yr ¼ 0, Y ¼ 1þ 2y2
i , eRR1 ’ Y � 2yi for small values of yi.

For large values of �’
�� �� we have an approximate expression

for the parameter yi as yi ¼ �0Lex=2�0, where �0 ¼ 2��0i=� is

a linear absorption coefficient, Lex ¼ 2=<ð�g01g10Þ
1=2 is an

extinction length. Therefore yi describes the absorption on the

extinction length. Since Lex becomes very large for the large

azimuthal angles the total reflection cannot be realized for all

azimuthal angles. For example, eRR1 ¼ 0:5 for Y ¼ 1:25 and

yi ¼ 0:35.

Inside the total reflection region the maximum value of the

reflection power corresponds to the angle where yi is minimal.

From equation (13) we can write approximately

yi ¼
�0i þ yr X1i

�� ��
X1r

: ð21Þ

In the normal two-beam case X1i

�� �� is comparable with �0i, and

in the left part of the total reflection region at yr ¼ �1 a

significant decrease in the value of yi takes place and this is the

reason for the Borrmann anomalous transmission phenom-

enon. However, in our case X1i

�� �� is much smaller than �0i;

therefore the Borrmann effect is not observed.
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There is an interesting peculiarity of the reflection into the

second reflection if the Bragg condition (including refraction)

is fulfilled completely for the first (forbidden) reflection.

Indeed, the set of equations (2) without polarizations can be

written as

G00 0 G02

0 G11 G12

G20 G21 G22

0
@

1
A B0

B1

B2

0
@

1
A ¼ " B0

B1

B2

0
@

1
A: ð22Þ

The Bragg condition for the first reflection reads G11 ¼ G00.

One can verify straightforwardly that in this case the system

has a solution with B2 ¼ 0, " ¼ G00, B1 ¼ �G20B0=G01. This

solution is independent of the azimuthal angle, i.e. even in the

exact multiple diffraction region the reflection into a second

beam vanishes. In reality we can satisfy the condition only for

the real parts <ðG11Þ ¼ <ðG00Þ if �� ¼ �<ð�0Þ= sinð2�BÞ. The

imaginary parts do not satisfy this condition; therefore the

reflection into the forbidden beam vanishes for very large

values of the azimuthal angle. Nevertheless, the phenomenon

of vanishing of the reflection into the second beam inside the

multiple diffraction region seems to be rather interesting.

3. Experiment

The experiment was performed at the Cornell High Energy

Synchrotron Source (CHESS) at the A2 beamline. The X-ray

beam from the 49-pole wiggler was monochromated to an

energy of 24.982 keV by a double-crystal Si 111 upstream

water-cooled monochromator. Post-monochromator optics for

additional monochromatization and angular collimation were

assembled on the optical table in the experimental hutch. The

sample, an Si (111)-oriented thick perfect crystal, was

mounted on a four-circle diffractometer. The diffraction plane

for the forbidden 222 reflection was vertical. The 222 and 113

diffracted intensities were recorded as a function of the polar

angle � for various values of the azimuthal angle ’. The 222

intensity was normalized to the intensity of the incident beam

recorded by the intensity monitor installed in front of the

sample.

The optical arrangements are shown schematically in Fig. 1.

Two diffraction planes, vertical (V) and horizontal (H), are

shown for each setup. The values for the energy bandwidth

and the angular collimation characteristic for each setup are

summarized in Table 1. Experimental diffraction curves

measured by using each setup are compiled in Fig. 2 (note

different angular and intensity scales). Each column in Fig. 2

contains diffraction data obtained by using a particular optical

setup.

We start with a ‘standard’ beamline setup in which the

energy bandwidth and the angular collimation are determined

by the double-crystal Si 111 monochromator, the source size

and the slits. With a wiggler source size of 0.38 (vertical) �

3.38 mm (horizontal), a size of the S3 slit in front of the sample

of 0.5 � 1 mm and a distance between the source and the slit
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Figure 1
Experimental setups are indicated by the numbers shown on the left.
Each setup is shown by two panels: one, marked by ‘V’, is in the vertical
plane (diffraction plane for the 222 reflection) and the other one, marked
by ‘H’, is in the horizontal plane.

Table 1
The estimated values of the energy and angular resolution for the
experimental setups in Fig. 1.

Setup 1 Setup 2 Setup 3 Setup 4 Setup 5

��/� (10�6) 290 25.6 3.6 25.6 3.6
��V (mrad) 23 4.7 1.4 4.7 1.4
��H (mrad) 115 115 115 7.6 7.6



of 38 m, we estimate the angular collimation in the vertical

plane as 23 mrad and in the horizontal plane as about 115 mrad.

(These values are smaller than the angular spread of the

wiggler radiation of 150 mrad in the vertical and 285 mrad in

the horizontal plane.) The estimated energy bandwidth �E=E

is 2:9� 10�4, close to the experimentally measured value of

3:0� 10�4. The experimental curves (first column in Fig. 2) are

much narrower for the 222 reflection than for the 113 reflec-

tion because the 222 reflection does not depend on the

azimuthal angle ’ whereas for the 113 reflection the region of

the strong reflection projected on the � axis shifts with chan-

ging ’. The enhancement of the 222 peak in the center of the

three-beam region is clearly seen with the maximum 222

reflectivity of about 2%. Any dynamical effects described in

the previous sections are washed out by the angular spread of

the incident beam.

In all other optical schemes two double-bounce channel-cut

crystals in the antiparallel (+/+) setting were used to obtain

a higher degree of monochromatization and improve the

angular collimation in the vertical plane: Si 004 in setups 2 and

4, and Si 008 in setups 3 and 5 (Fig. 1). For the antiparallel

setting both the energy bandwidth and the angular spread are

determined by the intrinsic rocking-curve width !in of the

crystals: ��=� ¼ !in=tanð�BÞ and ��V ¼ !in. The calculated

values are 2:56� 10�5 and 4.7 mrad for setups 2 and 4, and

3:6� 10�6 and 1.4 mrad for setups 3 and 5. As one can see by

comparing the results shown in the first three columns in Fig.

2, the additional collimation/monochromatization has a strong

effect on the 222 reflection: the reflectivity of 36% was

measured using setup 3.

These improvements do not affect the width of the 113

curves but lead to a sharp intensity drop in the angular range

of the 222 reflection. To improve the angular collimation in

the other direction an additional Si 022 channel-cut crystal

diffracting in the horizontal plane was installed (setups 4 and

5). The width of the 113 reflection changes from about 80 mrad

for setup 1 to 6.8 mrad for setup 4. The best two-dimensional

collimation and monochromatization were achieved with
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Figure 2
The 222 (thick black lines) and 113 (thin red lines) diffraction curves measured using the experimental setups shown in Fig. 1. The 222 curve is
normalized on the incident intensity. Setup 1 (first column): the azimuthal angle ’, from top to bottom: 86, 63, 31, 1.0, �35, �59 and �101 mrad; setup 2:
90, 53, 12, 2.7,�28,�53 and�88 mrad; setup 3: 134, 65, 21,�9,�39,�74 and�109 mrad; setup 4: 45.5, 27.6, 12.9, 0,�7.7,�21.8 and�38.8 mrad; setup 5:
21.6, 9.5, 5.1, 1.9, �2.2, �8.5 and �19.4 mrad.



setup 5, which resulted in the maximum 222 reflectivity of

68%. The experimental width of the 222 curve off the three-

beam condition was 1.2 mrad. The deep minimum in the 113

intensity is observed in the central three-beam diffraction

region for the angular interval of the 222 reflection. According

to the theory presented in the previous section, for a perfect

incident plane wave the 113 intensity should be zero for the

exact 222 diffraction condition. This effect may serve as an

indicator of the quality of the plane-wave optics. The azimu-

thal dependence of the maximum reflectivity (thick black line)

and the integral intensity (thin red line) of the 222 reflection

measured using setup 5 are shown in Fig. 3. Both curves show

a strong ’ asymmetry.

To quantify independently setup 5, after the three-beam

measurements were complete the sample was turned off the

three-beam condition and was used as an analyzer crystal. The

Si 111, 333 and 555 analyzer curves are shown in Fig. 4 (lower

panel). The 111 curve shows a perfect Darwin curve with the

reflectivity very close to 100%. The 333 reflectivity is 86% and

the full width at half maximum is 2.9 mrad versus 99% and

1.97 mrad for the theoretical ‘intrinsic’ curve. The 555 analyzer

curve gives 40% reflectivity and 1.68 mrad width versus 97.5%

and 0.84 mrad for the ‘intrinsic’ curve. The later results confirm

that the beam produced with our best setup is far from being a

perfect plane wave. Two 222 curves are shown in the upper

panel of Fig. 4. The thick black line is the 222 curve in the

center of the three-beam diffraction region; its width is close

to the width of the 113 reflection. The 222 curve measured at

the �’ = 10 mrad off the exact three-beam condition is shown

as a thin (red) line. Note that the width of this curve is close to

the width of the 555 analyzer curve, indicating that they are

both limited by the resolution of our setup. A remarkable

effect which has never been observed before is clearly

demonstrated: the width of the 222 curve can be changed

several times (about four times with these optics) by tuning

the azimuthal angle by only a few mrad. This effect can be used

for tuning the energy resolution of monochromators based on

multiple diffraction.

4. Discussion

The analysis of the experimental results assembled in Fig. 2 led

us to the conclusion that improving the angular collimation in

the horizontal plane results in narrowing the � width of the 113

diffraction curves (compare setups 2, 4, 3 and 5), and it also

affects the 222 reflection inside the ‘intrinsic’ three-beam

region. On the other hand, better monochromatization and

angular collimation in the vertical plane lead to narrower 222

curves outside the three-beam region, and, finally, to the

observation of the fine structure in both 222 and 113 reflec-

tions in setup 5. This is remarkably different from the two-

beam diffraction curves usually measured in a non-dispersive

setup when the spreads in energy and in the azimuthal angle

do not affect the curves. The 222 reflection curves outside the

three-beam case still depend on the azimuthal angle because

of the virtual three-beam diffraction, though this dependence

is slow. As for the 113 reflection, as one can see in x2, both

angles, � and ’, as well as the energy, enter the formula in

equation (4), which describes the deviation from the exact

three-beam condition, in a very similar way.

To compare experimental results with theory, the 222 and

113 diffraction curves were calculated for approximately the

same values of the azimuthal angle ’ as for the experimental

curves in Fig. 2 (last column, setup 5). They are shown in Fig. 5.

Calculations for the perfect plane wave are in the left panel.

The 222 curves show 100% reflectivity and their shape clearly

demonstrates two excitation mechanisms as described in x2.

The first one corresponds to the ‘pumping’ of the strong 113

intensity into the 222 beam; it results in the peak with the

angular position which corresponds to the 113 reflection. The

second, a narrower peak, is excited resonantly and its center

angular position corresponds to the Bragg condition for the

222 reflection. At this angle the 113 beam has zero intensity;

therefore the total region of reflection splits into two peaks.

The effect of the finite angular and energy resolution on the

diffraction curves can be taken into account based on equation
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Figure 4
Top: the 222 reflectivity (thick black line) corresponds to the center of the
three-beam diffraction region, the thin red line corresponds to the angle
�’ = 10 mrad off the exact three-beam condition. Bottom: the analyzer
111 (black), 333 (red) and 555 (blue) curves measured with the beam
prepared with setup 5.

Figure 3
Azimuthal (’) dependences of the absolute reflectivity (thick black line,
left scale) and the intensity integrated over the polar angle � (thin red
line, arbitrary units) of the 222 reflection.



(4). The change in energy is equivalent to the angular shift in �
of both 222 and 113 curves. It was found that for the experi-

mental value of ��=� the effect of the finite mono-

chromaticity is negligibly small. To account for the finite

angular spread the 222 and 113 curves were summed over the

angular interval �’ = 8 mrad and the result was convoluted

with a Gaussian function with width �� = 1 mrad. The

resulting curves are shown in the right panel in Fig. 5. As one

can see, they reproduce the experimental curves remarkably

well. We may conclude that although the achieved resolution

was sufficient to observe the effects predicted by theory, a

better angular resolution in both vertical and horizontal

planes is required for a detailed quantitative comparison with

theory.

The theoretical treatment (x2) assumed a purely forbidden

reflection. This is not the case for Si 222. It is well known that

the 222 reflection is very weak but not completely forbidden

(Bragg, 1921) due (mostly) to the non-spherical valence

charge density (Roberto & Batterman, 1970; Colella, 1977). In

our experiment it can be seen in two ways (see Fig. 3): first, the

intensity of the 222 beam is approaching a nonzero value as

the crystal is rotated far from the three-beam condition;

secondly, the strong asymmetry of the ’ dependence clearly

indicates the phase of the structure factor. Most of the

experimental measurements of the structure factors for

forbidden reflections were performed by measuring the

intensity integrated over the polar angle � (see e.g. Roberto &

Batterman, 1970). Accurate rocking-curve measurements in a

double-crystal 222 nondispersive (+/�) setup were performed

by Entin & Smirnova (1989). They reported a width of the

double-crystal rocking curve measured with Mo K	 radiation

of 0.339 mrad, which was consistent with the structure factor

F222 ¼ 1:47 reported by others. This value gives us an estimate

of the intrinsic Si 222 width for our energy as 0.13 mrad. The

experimental data presented in Fig. 3 can be used for the

determination of both the modulus and the phase of the

structure factor.

A high degree of two-dimensional collimation was achieved

in this work by using perfect crystal optics. This resulted in a

loss of intensity by many orders of magnitude. Next-

generation synchrotron sources such as the ERLs (Gruner &

Bilderback, 2003) and the XFELs (Pellegrini & Stöhr, 2003)

are characterized by extremely high brilliance and produce

highly parallel X-ray beams. For such sources the require-

ments for two-dimensional collimation can be easily fulfilled

without significant loss in flux, thus making X-ray optics based

on multi-beam diffraction effects extremely attractive.

This work is based upon research conducted at the Cornell

High Energy Synchrotron Source (CHESS), which is

supported by the National Science Foundation and the

National Institutes of Health/National Institute of General

Medical Sciences under NSF award No. DMR-0225180. The

work of V. G. Kohn was supported by RFBR grant Nos. 09-02-

12164-Ofi_m and RS-4110.2008.2.

References

Afanas’ev, A. M. & Kohn, V. G. (1977). Acta Cryst. A33, 178–184.
Authier, A. (2005). Dynamical Theory of X-ray Diffraction, 3rd ed.

Oxford University Press.
Bragg, W. H. (1921). Proc. Phys. Soc. London, 33, 304–311.
Chang, S.-L. (2004). X-ray Multiple-Wave Diffraction: Theory and

Application, Springer Series in Solid-State Sciences. Berlin:
Springer.

Colella, R. (1974). Acta Cryst. A30, 413–423.
Colella, R. (1977). Phys. Scr. 15, 143–146.
Entin, I. R. & Smirnova, I. A. (1989). Acta Cryst. A45, 577–580.
Gruner, S. M. & Bilderback, D. H. (2003). Nucl. Instrum. Methods

Phys. Res. Sect. A, 500, 25–32.
Høier, R. & Marthinsen, K. (1983). Acta Cryst. A39, 854–860.
Kazimirov, A. Y., Kovalchuk, M. V., Kharitonov, I. Y., Samoilova,

L. V., Ishikawa, T. & Kikuta, S. (1992). Rev. Sci. Instrum. 63, 1019–
1022.

Kazimirov, A. Y., Kovalchuk, M. V., Kohn, V. G., Ishikawa, T., Kikuta,
S. & Hirano, K. (1993). Europhys. Lett. 24, 211–216.

Kazimirov, A. Y., Kovalchuk, M. V., Kohn, V. G., Kharitonov, I. Y.,
Samoilova, L. V., Ishikawa, T., Kikuta, S. & Hirano, K. (1993). Phys.
Status Solidi A, 135, 507–512.

Kohn, V. G. (1979). Phys. Status Solidi, 54, 375–384.
Kohn, V. G. (1988). Kristallografiya, 33, 567–573.
Pahl, R. (1994). Nucl. Instrum. Methods Phys. Res. Sect. A, 347, 491–

494.
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Figure 5
Theoretical diffraction curves 222 (thick black line) and 113 (thin red
line) calculated for the perfect plane wave (left) and taking into account
the energy and the angular resolution of the experimental setup (right).
The values of the azimuthal angle from bottom to top are: �13.5, �4.5,
�1.5, 1.5, 4.5, 7.5, 13.5 mrad. The zero point at the angle axis corresponds
to the kinematical Bragg angle.
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