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INTRODUCTION

It is well known that a thick single-crystal plate
poorly scatters X rays for the following reason: a crys-
tal is homogeneous if its electron density is averaged
over the lattice constant; therefore, the crystal can scat-
ter only in the forward direction. If the density is not
averaged, additional scattering at the double Bragg
angle occurs at a certain crystal orientation; this scatter-
ing is limited to a very narrow angular region, whose
width is determined by the diffraction parameter 

 

χ

 

rh

 

 ~
10

 

–5

 

, i.e., the Fourier component of the polarizability at
the reciprocal lattice vector. It is also known that the
integrated Bragg reflection intensity increases if a crys-
tal contains defects or when its lattice is deformed.
Hence, deformed crystals are interesting not only for
diagnostics of their structure but also as objects having
enhanced reflecting ability. A general formulation of
the trajectory method in the theory of X-ray diffraction
in the Laue geometry, where the reflected beam
emerges from the opposite crystal face, was given in
[1]. This method makes it possible to easily study the
diffraction of a spherical wave in a crystal with slowly
varying deformation.

In this study, the trajectory method is used for
detailed analysis of the total reflection phenomenon in
the case of Laue diffraction in a crystal with bending
deformation. This effect, first observed in [2], was
referred to as beam switching from the transmission to
the reflection direction. The case in point is that the
integrated intensity of a beam of finite width (for exam-
ple, limited by a slit) increases and reaches a maximum
with an increase in the strain of special kind. Simulta-
neously, the intensity of the transmitted beam tends
toward zero, as a result of which the reflection can be

considered as complete. A large number of experimen-
tal and theoretical studies were devoted to the switching
effect; a brief review can be found in [3].

However, the trajectory method has not been used,
although this method gives a simple qualitative descrip-
tion of the effect and significantly reduces the compu-
tation time. Analytical analysis is given in the next sec-
tion. The essence of the effect is that the diffraction
conditions are not satisfied near the input crystal sur-
face, and X rays first propagate in the incident beam
direction. As a result of the change in the crystal defor-
mation, the Bragg condition becomes satisfied at a cer-
tain depth, and rays are effectively reflected. Then, the
Bragg condition is violated again and the rays propa-
gate in the reflection direction until they reach the crys-
tal boundary. Independent of the angle at which a ray
enters a crystal, it exits in the reflection direction. Its
initial direction determines only the depth in the crystal
at which reflection occurs. At the same time, a perfect
crystal deviates rays at the input surface, after which
they do not change their direction since the Bragg con-
dition remains the same throughout the crystal. There-
fore, only the rays entering the crystal in the appropri-
ate direction are reflected.

Numerical calculations were performed for two lim-
iting cases of large (40 m) and small (50 cm) distances
between the spherical-wave source and the crystal. In
the first case, the spatial structure of the reflected beam
almost reproduces the angular dependence of reflection
in the case of plane-wave diffraction. The second case
is similar to the problem of diffraction of a spherical
wave in the Kato formulation [4, 5], where the source is
placed on the crystal surface. In both cases, an increase
in deformation leads to complete reflection of a beam of
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limited width, although with a certain loss of intensity
for absorption in the crystal.

ANALYTICAL ANALYSIS
The general formulation of the trajectory method

was given in [1]—the first part of this investigation.
Below, the formulas of the first part are referred to with
indication of the Roman numeral I before the number.
The basic concepts of the theory are as follows. The
variable scalar amplitudes of the electric field of the
transmitted (
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) and diffracted (
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z

 

)

 

) waves in
a crystal, corresponding to one of the two possible
polarization states, are investigated. The coordinate
axes 

 

x

 

 and 

 

z

 

 lie in the scattering plane and are oriented,
respectively, parallel and perpendicularly to the crystal
surface; the 

 

x

 

 axis is directed toward the incident beam
and the 

 

z

 

 coordinate is zero at the input crystal surface.
These amplitudes in a deformed crystal satisfy the Tak-
agi equation (I,2) with a variable parameter of deviation
from the Bragg condition.

We consider the case where the strain only slightly
changes at a distance of about the extinction length. In
this case, the solutions to the equations are sought in the
form of two independent Bloch waves in the eikonal
approximation; i.e., the amplitude of each Bloch wave
has the form 
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 (

 

λ

 

 is the X-ray wavelength and 
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0

 

 is the
average complex crystal polarizability, equal to its zero
Fourier component). The oblique coordinates 
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 and 
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along the beam direction are linked to the Cartesian
coordinates 

 

x

 

 and 

 

z

 

 by the following relations: 
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, where 
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0

 

and 

 

θ
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 are, respectively, the angles made by the vectors
of the incident and diffracted waves with the internal
normal to the crystal surface. Obviously, 
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 = 2
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,
where 
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B

 

 is the Bragg angle. In the case of symmetric
diffraction, 
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. The factor 
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, where 

 

h 

 

is the diffraction vector, the function 

 

u

 

(

 

r

 

)

 

describes the field of strain-induced atomic displace-
ments, and 

 

u

 

0

 

 takes into account the choice of the refer-
ence point in the unit cell of the crystal (details in [1]).

Substituting the solution, we obtain two equations:
one for the phase 

 

Φ

 

 (I,6) and the other for the amplitude
 (I,17). The amplitude ratio 

 

R

 

 

 

= /

 

 is com-
pletely determined by the phase 

 

Φ

 

. The equation for the
phase 

 

Φ

 

 is solved by the trajectory method. Trajectories
link each point on the input crystal surface with each
point on the output surface. The initial amplitude  at
each point on the input surface is found from expansion
of the incident wave amplitude in two Bloch waves,
with regard to validity of the local Bragg condition.

Concerning the equation, it can be solved analyti-
cally on a trajectory. The field amplitudes at the end of
a trajectory are related to the incident wave amplitude

BE0''

BFEh''

E0'' Eh'' E0''

E0''

 

 at the beginning of the trajectory by formulas
(I,24), which are given below in the explicit form 

 

(1)

 

Here, the index 

 

k

 

 = 1, 2 enumerates Bloch waves with
different refractive indices and absorption coefficients.
The first wave (

 

k

 

 = 1) is strongly absorbed, whereas the
second wave (

 

k

 

 = 2) is weakly absorbed. The parameter

 

(2)

 

has the meaning of the rate of trajectory deviation from
the 

 

Z

 

 axis. The upper sign corresponds to the first wave.
The same parameter determines the direction of the
energy flux in the crystal, since the energy flux in each
Bloch wave propagates along trajectories. The coordi-
nates 

 

X

 

 = 

 

s0 – sh and Z = s0 + sh are counted in the oppo-
site direction and perpendicularly to the diffraction vec-
tor. In the case of symmetric diffraction, their relation-
ship with the coordinates x and z, which were
introduced above, has a simple form: x = XsinθB and
z = ZcosθB.

The parameter y plays a key role in the theory, since
it corresponds to the dimensionless local parameter of
deviation from the Bragg condition. The subscripts 0
and M on the velocity in formula (1) indicate that the
values are taken at the beginning and end of a trajectory,
i.e., on the input and output crystal surfaces. The equa-
tion for the parameter y takes into account the lattice
strains in the crystal bulk. It can be written in the sym-
metric form 

(3)

Here, c = KC |χrh |/2, where C is the polarization factor
(it is equal to 1 for σ polarization and cos(2θB) for π
polarization) and χrh is the Fourier component at the
diffraction vector, taken from the real part of the crystal
polarizability. The function on the right-hand side of
the equation is taken on the calculated trajectory.

Equation (3) is solved with regard to boundary con-
dition (I,18), which can be written in a more detailed
form:

(4)

Here, all variables are taken at the beginning of the tra-
jectory, i.e., at the point X0 on the input crystal surface
(Z = 0); the angle ∆θ takes into account the possible
rotation of the crystal with respect to the optical axis;
and the phase Φ0 corresponds to the wave incident on
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the crystal and is the initial value for the phase Φ, intro-
duced above.

Equations (3) and (4) indicate that diffraction of an
X-ray wave depends only on the component of the atomic
displacement vector along the diffraction vector. In the
symmetric case, this component is ux. In this paper, we
will consider bending deformation, i.e., assume that ux

depends only on z. In this case, we have total reflection of
a plane wave in a wide angular range. Accordingly, total
reflection of a spherical wave is implemented in the wide
part of its front near the Bragg direction.

The trajectory method gives a very simple qualita-
tive explanation of the total reflection phenomenon in
the case of elastic bending of atomic planes. The sim-
plest strain of such type arises upon heating of a lateral
crystal face from the side of the reflected beam ([3] and
a reference therein). It can be shown that in this case the
strain at some distance from the lateral face is approxi-
mately described as the bending of atomic planes
according to the parabolic law

(5)

where t is the crystal thickness and R is the bending
radius. In this formula, the term linear in x, which leads
to a change in the interplanar spacing, is disregarded
since it can easily be compensated for by appropriate
choice of the Bragg angle. The formula is written in
such a form that the displacement is counted from its
value in the middle plane of the crystal. The constant
term in the displacement is equivalent to the shift of a
crystal as a whole and is also omitted. The displace-
ment on the upper and lower faces is minimum since
these faces are colder than the crystal bulk due to their
contact with air.

Let the optical axis for the incident radiation be cho-
sen in such a way that the Bragg condition is satisfied
in the middle plane of the sample. We will consider a
simple case where a plane wave is incident on a crystal
along the optical axis. Then, only the second and third
terms are nonzero in formula (4), and we have the fol-
lowing initial value of the parameter of deviation from
the Bragg condition: y0 = yc – Dt, where yc =
(sin2θB/c)∆θ and D = sin2θB/(2C |χrh |R). Further evolu-
tion of this parameter is determined by Eq. (3), in which
the right-hand side is constant; hence, the solution can
be directly written in the form y(z) = y0 + 2Dz = yc +
2D(z – t/2). To calculate the amplitudes, it is important
to know only the value at the end of the trajectory, i.e.,
yM = y(t) = yc + Dt. Thus, the parameter y has different
signs at different crystal faces if |yc | < Dt. Since the rate
of trajectory deviation is independent of x, all beam tra-
jectories are parallel to each other (as in a plane wave)
but are bent according to some law. At the exact Bragg
position of the crystal and a large radius of curvature R,
when |y | � 1, trajectories are described by the formula
x ≈ x0 ± (z – t), i.e., are close to parabolas.

ux
z t/2–( )2

2R
----------------------,–=

D θBztan

However, with a decrease in R, the trajectory will have
a parabolic portion only at some depth in the crystal;
before and after this portion, trajectories are parallel,
respectively, to the directions of the incident and
reflected beams for the second Bloch wave and vice
versa for the first wave.

It is also easy to calculate the field amplitudes
according to (1). They have the simplest form for the
Bragg position of the crystal (yc = 0), specifically,

(6)

where a = Dt/(1 + (Dt)2)–1/2. It follows from formula (6)
that, in the absence of strain, the amplitudes of both
fields are equal in modulus. However, with an increase
in strain, this equality is violated. In this case, the trans-
mitted wave amplitude similarly decreases for each
Bloch wave. The modulus of the reflected wave ampli-
tude for the first Bloch wave decreases even faster;
however, for the second (i.e., weakly absorbed) wave,
the amplitude modulus, vice versa, increases. With an
increase in strain, when Dt > 1, saturation occurs, at
which the incident beam intensity tends toward zero at
the crystal output, and the reflected beam intensity
approaches a maximum, which is determined with
allowance for the absorption loss. It is of interest that,
for low strains, the effect relatively weakly depends on
absorption, since specifically the weakly absorbed
Bloch wave is reflected. The amplitudes behave simi-
larly at an angular deviation of the crystal from the
Bragg position only when this deviation satisfies the
condition |yc | < Dt. With an increase in strain, the
angular range of total reflection increases, and the size
of the crystal region where trajectories are rotated
decreases.

Thus, formula (6) describes all observed features of
beam switching in the reflection direction: the linear
increase in the integrated intensity at low strains and
saturation at high strains. The latter process occurs only
when the angular range of incident radiation is limited
in the experiment. Since only one Bloch wave is
excited, the interference oscillations in both the thick-
ness and angular dependences of the reflection disap-
pear.

It is also useful to discuss the qualitative description
of the switching effect using the concepts of dispersion
surface [4, 5] and energy-flux vector in each Bloch

wave S = s0( )2 + sh( )2, where s0 and sh are the unit
vectors in the directions of the transmitted and dif-
fracted beams. According to the Kato theorem [6], the
energy flux is always directed perpendicularly to the
local dispersion surface at the excitation point. In turn,
the excitation point on the input surface is determined
by the deviation of the wave vector of the incident wave
from the exact Bragg position for a local region in the
crystal, with allowance for strains. The above-consid-
ered case is illustrated in Fig. 1.
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Let the crystal be first located in the exact Bragg
position. Then, owing to the strain on the input surface
(z = 0), the excitation point is on the right. In this case,
the energy flux direction (normal to the dispersion sur-
face) for the upper zone, corresponding to the second
(weakly absorbed) wave, almost coincides with that of
the incident wave. Naturally, specifically this region is
most strongly excited, whereas the lower zone is almost
unexcited. For a strain slowly varying with an increase
in z, as was noted above, the waves corresponding to
different regions are almost independent; therefore, it is
sufficient to consider each of them separately. If the
lower zone is unexcited, there is no point in analyzing
its behavior. Concerning the upper zone, during trans-
mission of radiation into the crystal bulk, the local
Bragg condition slowly changes, as a result of which
the excitation point moves along the dispersion surface
from the right to the left. Finally, on the output surface
(z = t), the excitation point moves to the left region,
where the energy flux direction coincides with that of
the reflected wave. At the output of the crystal, the
energy flux should be expanded in projections on the
directions of the incident and reflected waves. Obvi-
ously, the expansion coefficient for the reflected wave
will greatly exceed that for the incident wave. If the
crystal is rotated by a certain angle, the excitation
points on the input and output surfaces are displaced;
however, this displacement does not change the general
pattern until the crystal rotation extracts the initial and
final excitation points from the crystal sides.

An even simpler interpretation of the switching
effect follows from consideration of ray trajectories in
a crystal, as was discussed above. In [1], it was shown
that the energy flux direction coincides with the tangent
to the trajectory. For a weakly absorbed wave, the tra-

jectories are first almost parallel to the incident beam.
Then, they are bent toward the reflected beam at the
depth where the dynamical diffraction condition is sat-
isfied. At the output of the crystal, they are almost par-
allel to the reflected beam. For the strongly absorbed
wave, everything is vice versa; however, the amplitude
of such a wave is small.

Obviously, if a crystal is heated from the opposite
side, the entire analysis holds true. The only difference
is that the beam will be reflected via the strongly
absorbed wave and, therefore, will be more strongly
absorbed at a low strain. A similar effect will occur in
the case of crystal deformation by ultrasound forming
an appropriate strain, for example, when a piezoelectric
quartz crystal is used.

NUMERICAL SIMULATION

The trajectory method not only makes it possible to
qualitatively describe the total reflection phenomenon
but also provides a relatively simple technique of
numerical simulation of the most complicated case of
spherical wave diffraction in a deformed crystal at any
distances from the source to the crystal. In this case, a
significant gain in computation time is obtained in com-
parison with not only the direct solution of the Takagi
equations [7] but also the Wentzel–Kramers–Brillouin
approximation [8, 9]. Numerical calculations were per-
formed using the program described in [1].

The calculations were performed for an example of
a Si crystal with the thickness t = 500 µm for the 220
diffraction of MoKα radiation (E = 17.48 keV). Two
cases were considered: large (40 m) and small (50 cm)
distances from the point source to the crystal. The dif-
fraction parameters were calculated using the program
reported in [10] and found to be µ0 = Kχi0 = 1.435 cm–1

and Kχh = (–169.9 + 1.39i) cm–1. The Bragg angle is
θB = 10.64°.

The results of the calculation for the first case are
shown in Fig. 2. The intensity of the reflected wave is
shown relative to the intensity of the incident wave
before the crystal. The trajectories are considered in a
finite region of the wavefront with a width of
1.6384 mm; such consideration is equivalent to the sit-
uation where a slit with such a width is installed in the
beam path before the crystal. Figure 2a shows the spa-
tial structure of the reflected beam directly behind the
crystal in the case of absence of strain. The spherical-
wave focusing thickness [1] for a distance of 40 m from
the source is 1.144 mm, a value that exceeds the crystal
thickness by a factor of more than 2. Therefore, the tra-
jectories do not cross each other; however, they slightly
and nonuniformly change their direction. Accordingly,
the spatial structure of the reflected beam shows extinc-
tion beatings, as in the angular dependence of the plane
wave reflection; i.e., the oscillations are caused by the
interference of two Bloch waves with a changing phase
difference between them. Nevertheless, for the first

z = t z = 0

sh s0

Fig. 1. Schematic diagram of the dispersion surface with the
directions of the energy-flux vectors along the normal to the
surface at the excitation point.
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wave, the reflected beam width slightly exceeds the slit
width (trajectories diverge), whereas for the second wave,
vice versa, the reflected beam width is somewhat smaller
(trajectories converge). Correspondingly, oscillations can
be seen in a narrower region, where both waves exist.

At the radius of strain curvature R = 36 m, reflection
increases in the central part of the wavefront, whereas
the oscillation amplitude decreases (Fig. 2b). Since it is
the weakly absorbed Bloch wave that reflects, owing to
the Borrmann effect, the reflectance is higher than in
the case of normal absorption with the factor
exp(−µ0t/cosθB) = 0.482. The asymmetry of oscilla-
tions is related to the finite distance to the spherical-
wave source. For the purely angular dependence, the
pattern is similar but symmetric [11]. It can clearly be
seen that the intensity of the first Bloch wave (at the
edges) is almost zero, whereas the oscillation amplitude
is still fairly large. This is a general property of interfer-
ence effects.

In Fig. 2c, the radius of curvature is R = 18 m. Now,
the wider part of the wavefront maximally reflects,
although the maximum value itself is smaller. The rea-
son for this fact is that the dynamic reflection region in
the crystal is reduced and the absorption losses increase

at the expense of the parts where reflection is absent. In
Fig. 2d, the radius R = 9 m. Almost the entire beam
maximally reflects; however, the maximum value
became smaller. In addition, since only the second
Bloch wave reflects, the reflected beam is somewhat
smaller in width than the incident one. With a further
decrease in the radius of strain curvature, almost noth-
ing occurs, except for the fact that the oscillation ampli-
tude tends toward zero, while the maximum value tends
toward 0.482. At the same time, if there were no slit, the
width of the maximum reflection front would continue
to increase. Thus, the bending-deformed crystal is an
extremely good reflector in the case of Laue diffraction.

Figure 3 shows the calculation results for the case
where the spherical-wave source is located at a small
distance (50 cm) from the crystal. In this case, the
focusing thickness is 14.3 µm, i.e., much smaller than
the crystal thickness. This situation is closer to the well-
known case of the Kato diffraction of a spherical wave
[4, 5], where the source is assumed to be placed on the
input crystal surface. In this case, the source formally
exposes the entire input surface, although the area on
the surface where rays are under the dynamical diffrac-
tion conditions is small. Its size can easily be estimated

Fig. 2. Spatial structure of the reflected beam in the case of
diffraction of a spherical wave from a point source located
at a distance of 40 m from a crystal (a) without bending and
(b–d) with atomic-plane bending characterized by the
radius R = (b) 36, (c) 18, and (d) 9 m.

Fig. 3. Spatial structure of the reflected beam in the case of
diffraction of a spherical wave from a point source located
at a distance of 50 cm from a crystal (a) without bending
and (b–d) with atomic-plane bending characterized by the
radius R = (b) 18, (c) 6, and (d) 2 m.
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as the size of the region in Fig. 2, diminished by a factor
of 80 (i.e., 15 µm).

In the calculation, we considered the trajectories in
the region with a size of 104.8 µm; i.e., it can be
assumed that a slit with such a width is located before
the crystal. In most cases, this assumption absolutely
does not affect the results. Figure 3a shows the well-
known intensity distribution for an unstrained crystal.
Strong reflection occurs in the crystal in the region
referred to as the Borrmann fan [4], which is limited by
the peaks arising during rotation of trajectories and
their crowding (caustics). As was shown in [1], the tra-
jectory method slightly overestimates the height of
these peaks; therefore, the peak height in the figure was
corrected to smaller sizes. In the middle of the beam,
the average intensity is lower than the incident intensity
by a factor of 100. One of the reasons for such a
decrease is that the region 15 µm in size is extended
(nonuniformly) to 160 µm.

At the radius of curvature R = 18 m, as in the case of
a large distance, strain enhances reflection and reduces
oscillations; i.e., the degree of reflection via the second
(weakly absorbed) Bloch wave increases (Fig. 3b). The
beam width decreases because trajectories for this wave
in an unstrained crystal cross each other (are focused)
and then diverge again. The strain as if corrects the nor-
mal run of trajectories, as a result of which the focusing
depth increases, and the focusing becomes less sharp.
Accordingly, trajectories fail to diverge as strongly as in
the absence of strain.

In Fig. 3c, the radius of strain curvature is R = 6 m.
As follows from the calculation, the above-described
tendencies are enhanced; i.e., reflection increases,
oscillations disappear, and the beam narrows. The pres-
ence of caustics means that the slit does not affect the
beam size. In Fig. 3d, the radius of curvature is R = 2 m.
Only in this case of very high strain is reflection homo-
geneous throughout the beam width, whereas the beam
size is proportional to the entrance slit width. This fact
indicates that strain in the initial stage “straightens” all
the considered trajectories in the second wave along the
incident beam direction and then bends them toward the
reflection direction. However, different rays fall in the
dynamical reflection region at different depths in the
crystal. Therefore, the reflected beam is effectively nar-

rowed. At a higher strain, it slightly increases in size
again, and then saturation occurs. However, it is diffi-
cult to obtain such high strains in practice.

Thus, the trajectory method is an effective tool for
describing the total reflection phenomenon in the case
of Laue diffraction in crystals with bending deforma-
tion. This method makes it possible to describe not only
qualitatively but also quantitatively all fine features of
the noted effect and, at the same time, sharply reduce
the computation time. Although all calculations were
performed only for case of parabolic plane bending,
similar results can be obtained in the case of ultrasound
excitation of crystals, where a half of the ultrasonic
wavelength corresponds to the crystal thickness.
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