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1. INTRODUCTION

In recent years, much attention has been paid to the
problem of obtaining submicron (and even nanometer)
beams of hard synchrotron radiation using different
focusing systems. Among many such systems, the most
widespread are curved reflecting systems: grazing inci-
dence mirrors [1], multilayer coatings [2] and crystals
[3, 4], Fresnel zone plates (FZPs) [5], and compound
refracting lenses (CRLs) [6, 7]. FZPs and CRLs are rel-
atively similar in their properties. They do not change
the beam direction; i.e., they are in-line devices. This
circumstance makes it possible to easily combine them
with other elements of an optical scheme. They focus
coherent quasi-monochromatic radiation and make it
possible to obtain both an ordinary image of an object
(including the source) and the Fourier image. Finally,
they have a limited aperture.

However, the mechanism of aperture limitation of
FZPs and CRLs is radically different. A CRL aperture
is restricted by the absorption of radiation in the lens
material. For this reason, CRL is preferential for hard
radiation with photon energies 

 

E

 

 above 30 keV. For the
FZPs, absorption is insignificant, and the aperture is
restricted by the impossibility of formation of very
small zones with a sufficient etch depth. This problem
is serious exactly for hard radiation with high photon
energy. As a result, the FZP efficiency decreases pro-
portionally to 

 

ϕ

 

2

 

 at 

 

ϕ

 

 < 1/2, where 

 

ϕ

 

 is the phase shift

in radians for zones with a material. Note that 

 

ϕ

 

decreases inversely proportionally to 

 

E

 

.

A system of two zone plates can be used to over-
come the noted difficulty. In this case, different meth-
ods are possible. One of them consists in such a distri-
bution of zones between two plates at which each sec-
ond zone has a material [8]. In this case, the width of
etched zones in each FZP is about a factor of 3 larger
than the effective width of the outermost zone (and,
therefore, the focus size) in a system consisting of two
FZPs. This technique has made it possible to decrease
the size of the outermost zone to about 10 nm. Another
way consists in the maximum close alignment of two
identical FZPs [9]. In this case, it is obvious that two
such FZPs should operate as one FZP with a doubled
phase shift in the zones with a material, in contrast to
CRLs. Thus, application of this technique may signifi-
cantly (by a factor of 4) increase the efficiency of a two-
FZP system based on zone plates with a low efficiency.

Since absolute alignment is almost impossible in
practice, the problem about the allowable limits of
transverse and longitudinal displacements of two FZPs
with respect to each other arises. Although an analytic
theory of intensity distribution in a focus has been
developed for one FZP, it is very difficult to construct
such a theory for two FZPs at an arbitrary (in particular,
small) distance between them and the corresponding
calculations have not been made.
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—Results of numerical experiments on focusing of a monochromatic spherical wave by a system of
two linear zone plates are reported. Calculations were performed for a photon energy of 12.3985 keV and zone
plates with a radius of the first zone of 5 

 

µ

 

m, a number of zones of 628, and an aperture of 250 

 

µ

 

m. To calculate
the Kirchhoff integrals, the double Fourier transform method was used and the fast Fourier transform procedure
on a grid with a number of points 65 536 = 2

 

16

 

 was applied. On the basis of the calculation results, a conclusion
was drawn that two zone plates operate as one with a doubled phase shift in zones with a material if the longi-
tudinal distance between them is smaller than 1/3 of the focus depth and the transverse displacement is smaller
than 1/3 of the outermost zone width (the focus size). If the distance (displacement) exceeds the focus depth
(size), the two zone plates operate independently, similar to refracting lenses with a set of different focusing
orders, including the zero order. The nature of the moiré pattern at a transverse displacement of the zone plates
is discussed.
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In this study, an analysis of the optical properties of
a system of two FZPs is performed by the method of
numerical simulation in the ideal schematic of experi-
ment with a point source of monochromatic radiation.
The calculation was performed for two linear FZPs
with a total number of zones of 624 and an outermost
zone size of 0.1 

 

µ

 

m. Currently, computational abilities
do not make it possible to perform calculations for
round FZPs with such a large number of zones. How-
ever, we believe the results obtained to be applicable for
round FZPs. In Section 2, the calculation formulas are
given and method of calculation is described. In Sec-
tion 3, the values of the parameters are given and the
analysis of the calculation accuracy by comparison
with the analytic theory for one FZP is performed. The
results of the calculations of the optical properties of a
system of two FZPs are presented in Section 4.

2. THEORY AND METHOD OF NUMERICAL 
CALCULATION

Calculation of the wave field of radiation in the in-
line experimental scheme is formally simple. Since
synchrotron radiation is strongly polarized and, in addi-
tion, polarization does not affect the result, it is suffi-
cient to consider a scalar field with an amplitude 

 

E

 

(

 

x

 

, 

 

y

 

, 

 

z

 

).
The 

 

z

 

 axis is directed along the optical axis and corre-
sponds to large distances (from a millimeter to several
meters). The 

 

x

 

 and 

 

y

 

 axes are directed perpendicularly,
and the units of measurement in these directions are
micrometers. Since the scattering angle for X rays is
very small, the paraxial approximation is used, in
which a spherical wave is replaced with a cylindrical
one. If a field is known at some point of the optical axis
with the coordinate 

 

z

 

1

 

, the transport of this field through
free space to a point with the coordinate 

 

z

 

2

 

 is described
by the Kirchhoff integral [10]

(1)

in which the Kirchhoff propagator in the paraxial
approximation has the form

(2)

Here, 

 

λ

 

 is the wavelength of monochromatic radiation.
Since numerical calculation in infinite limits is

impossible, it is necessary to restrict the model region.
To this end, an arbitrary field at the point 

 

z

 

1

 

 can be writ-
ten as

(3)

If a relatively thin object which is illuminated by a
point source located on the optical axis is placed at the
point 

 

z

 

1

 

, this field form describes a real situation in

E x2 y2 z2, ,( )

=  x1 y1P2 x2 x1– y2 y1– z2 z1–, ,( )E x1 y1 z1, ,( ),d

∞–

∞

∫d

∞–

∞

∫

P2 x y z, ,( ) P x z,( )P y z,( ),=

P x z,( ) iλz( ) 1/2–
iπx

2
/λz( ).exp=

E x1 y1 z1, ,( ) T x1 y1 z1, ,( )P2 x1 y1 z1, ,( ).=

 

which the function 

 

T

 

(

 

x

 

, 

 

y

 

) is the object transmission
function. In the widely used geometric-optics approxi-
mation, this function has the form exp(

 

i

 

Φ

 

(

 

x

 

, 

 

y

 

) – 

 

M

 

(

 

x

 

, 

 

y

 

)).
Here, 

 

Φ

 

(

 

x

 

, 

 

y

 

) describes the phase shift along the beam
directed parallel to the optical axis and transmitted
through the object at the point with the coordinates 

 

x

 

 and

 

y

 

 and exp(–

 

M

 

(

 

x

 

, 

 

y

 

)) describes the radiation absorption
in the object material along the beam path. We will con-
sider only the cases where an object has inhomoge-
neous structure inside a finite rectangular region with
sizes 

 

X

 

 and 

 

Y

 

, while beyond this region, the object trans-
mission function is equal to a constant 

 

C

 

. Then, with
the use of the property of the Kirchhoff propagator, for-
mula (1) can be rewritten as

(4)

The constant 

 

C

 

, in particular, can be zero if the
object is placed in an opaque gap of finite size. Note
that, if the constant 

 

C

 

 is set improperly or is zero, arti-
facts appear at the edges of the model region. The effect
of artifacts on the object image can be avoided through
selection of a the model region that is larger than the
object. However, a more exact result can be obtained by
using a correct value of the constant 

 

C

 

. Note also that
the constant phase factor does not affect the intensity.
Therefore, the object transmission function can always
be chosen so that the constant is a real number. At the
same time, uniform absorption in objects can be taken
into account explicitly and only such object transmis-
sion functions for which 

 

C

 

 = 1 can be considered.
If all objects have a homogeneous uniform structure

along the 

 

y

 

 axis, the calculation formula is simplified
and takes the form 

 

E

 

(x, y, z) = P(y, z)E(x, z) and

(5)

During calculation of the system of two FZPs
located successively along the optical axis, it is suffi-
cient to apply formula (5) successively two times. In
this case, the field directly behind the first FZP at the
point z1 is equal to Tzp(x)P(x, z1) and the field directly
behind the second FZP at the point z2 is equal to
Tzp(x)E(x, z2), where the function E(x, z2) is obtained as
the result of calculation by formula (5). Finally, the
field E(x, z3) at the point of observation z3 is obtained by
repeated calculation by formula (5).

When calculating the zone plates, we disregarded
the weak absorption in the zones and the presence of a
homogeneous substrate. Therefore, the function Tzp(x)

E x2 y2 z2, ,( ) CP2 x2 y2 z2, ,( )=

+ x1 y1P2 x2 x1– y2 y1– z2 z1–, ,( )W x1 y1,( ),d

Y /2–

Y /2

∫d

X /2–

X /2

∫
W x1 y1,( ) E x1 y1 z1, ,( ) CP2 x1 y1 z1, ,( ).–=

E x2 y2,( ) CP x2 z2,( )=

+ x1P x2 x1– z2 z1–,( )W x1( ),d

X /2–

X /2

∫
W x1( ) E x1 z1,( ) CP x1 z1,( ).–=
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was modeled as follows: Tzp(x) = exp(–iϕ) in intervals
r1(2k + 1)1/2 < x < r1(2k + 2)1/2 and Tzp(x) = 1 in the inter-
vals r1(2k)1/2 < x < r1(2k + 1)1/2 and x > A/2. Here k are
integers in the interval from 0 to K/2 – 1, K is the total
number of zones, r1 is the radius of the first Fresnel
zone, A = 2r1K1/2 is the FZP aperture, and ϕ is the actual
phase shift in the zones with a material (ϕ ≤ 0). Note
that the object transmission function defined above was
modified to equate it to unity at the edges of the model
region beyond the aperture.

The integral in formula (5) has the form of a convo-
lution even for relatively small distances z2 – z1; until
the image sizes exceed the sizes of the model region, it
is convenient to calculate this integral by the double
Fourier transform method. In the first stage, the Fourier
transform FW(q) of the function W(x) is calculated.
Then, it is multiplied by the Fourier transform of the
Kirchhoff propagator FP(q, z) = exp(–iλzq2/4π) and the
inverse Fourier transform of the product FW(q)FP(q, z)
of the two functions is found. The corresponding inte-
grals were calculated by the fast Fourier transform
method, which is described, for example, in [11]. To
use this method, the integral over the region of size X is
approximated by the sum of values of the integrand on
the uniform grid of N points, multiplied by the grid step
∆x = X/N. The number of points N is chosen to be suffi-
ciently large and equal to an integer power of 2; i.e.,
N = 2p, where p is an integer. Accordingly, the coordinates
of grid points in the x space are xn = ∆x(n + (1 – N)/2). The
number of points in the q space coincides with the num-
ber of points in the x space, and the coordinates of these
points are qm = ∆q(m + (1 – N)/2). The grid step in the
q space is ∆q = 2π/X. It is easy to check that, in this case,
the argument of the exponential of the Fourier trans-
form is qmxn ⇒ 2πmn/N and the necessary conditions
are satisfied.

Numerical calculation of the diffraction of radiation
from a zone plate with a large number of zones is a rel-
atively difficult problem. The number of points in the
x space should be sufficiently large to ensure exact
description of the structure of the outermost zones and
the focus. That is why the fast Fourier transform
method is the best for this purpose. Calculation on the
grid with N points includes Nlog2N operations; hence,
a very large number of points can be used. Calculation
of the first Fourier transform generally causes no prob-
lems. For the overwhelming majority of actual objects,
the function FW(q) decreases with increasing |q | and is
almost equal to zero at the edges of calculated grid.
Therefore, calculation of the inverse Fourier transform
likewise meets no problems. Unfortunately, for a zone
plate, the behavior of the function FW(q) is different. At
the same time, the function FP(q, z) does not decrease
and, what is more, strongly oscillates at the edges of the
calculation grid. The change in the phase of the func-
tion FP(q, z) at a step ∆q at the edges of the calculation

grid is ∆φ = πλzN/X2. At the focal length z = F = /λ,r1
2

the phase change can be expressed in terms of the aper-
ture A and the number of zones K of the zone plate in
the form ∆φ = (π/4)(A/X)2(N/K). The optimal values are
X ≈ 3A and N > 100 K. It can be seen from this formula
that the phase change is unacceptably high at these val-
ues of X and N. Accordingly, this circumstance results
in the appearance of pronounced noise (random devia-
tions from the average line) on the calculated curves at
a small variation in the distance between the lenses or a
transverse displacement.

The situation can be improved and the noise on the
curves can be eliminated with the modified Fourier trans-
form of the propagator that was previously integrated over
the step of the calculation grid. Specifically, the computer
program used the function with an additional factor in the
form FP(q, z) = exp(–iλzq2/4π)sin(Bq)/Bq, where B =
λz∆q/4π. In the central region, i.e., at small values of
|q |, this modification does not affect the form of the
propagator. At the edges of the calculation grid, the
function effectively decreases, thus leading to a
decrease in the noise.

3. PARAMETERS OF THE NUMERICAL 
EXPERIMENT AND VERIFICATION 

OF ACCURACY

The calculation was performed for the photon
energy E = 12.3985 keV (λ = 1 Å). The linear FZP had
the radius of the first Fresnel zone r1 = 5 µm and the
total number of zones K = 624. Accordingly, the FZP
aperture A = 2r1K1/2 = 250 µm, the size of the outermost
zone ∆rK = 0.5r1K–1/2 = 0.1 µm, and the focal length F =

/λ = 25 cm. The distance from the point source to the
FZP was zs = 50 m; accordingly, the source image in the
first-order focus was obtained at the distance zf =
25.1256 cm behind the FZP. A grid consisting of 65536 =
216 points with a step of 0.01 µm was used in calcula-
tions. In this case, the size of the model region was
655.36 µm, i.e., larger than the lens aperture by a factor
of 2.6. Note that only 10 points fall in the focal region
despite a very large number of points of the calculation
grid.

If two identical FZPs having the phase shift ϕ = π/2
are ideally aligned to each other, we have one FZP with
a phase shift of π. Exact calculation of the relative
intensity distribution along the optical axis for one FZP
can be performed by the formula

(6)

r1
2

I z( ) 1 i–( ) 1 T–( ) 1–( )k
G 2ck( )1/2( ) T+

k 1=

K

∑
2

,=

c F
zs z+( )
zsz

-----------------, G x( ) t i
π
2
---t

2

⎝ ⎠
⎛ ⎞ .expd

0

x

∫= =
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Here, T = exp(iϕ) = –1 in the case under consider-
ation. Intensity peaks (in focuses) arise at integer odd
values of c. The first-order focus corresponds to z = zf .

Two curves of relative intensity near the first-order
focus in a 2-mm interval are shown for comparison in
Fig. 1. The thin line shows the results of calculation by
formula (6) for the parameters noted above. Squares
show the calculation points taken from the general 2D
(x, z) intensity distribution pattern by the fast Fourier
transform method. It can be seen that the fast Fourier
transform data are in good agreement with the results of
exact calculation. However, the maximum value (in the
focus) is slightly underestimated. This discrepancy is
partially related to the limited range of integration in
the q space. However, the main reason for this circum-
stance lies in the use of the modified propagator. Aver-
aging of the propagator at the point of maximum
(focus) independently of the function FW(q) is not quite
justified, since both functions correlate well at the
focus. Nevertheless, on the whole, this test shows that
the use the fast Fourier transform method with the aver-
aged propagator gives quite reasonable results.

In particular, the value of the focal depth sharpness
(the width at half-maximum) is obtained with a very good
accuracy. In this example, it is equal to ∆zf = 0.71 mm. An
approximate analytic estimate for the focal depth
sharpness can be obtained from (6) by replacing the
Fresnel integrals with their asymptotic expansions and
leaving of only the first two terms. This procedure leads
to the formula

(7)

Considering the region near the nth-order focus, we
will assume that c = n + ε, ε � 1. In this case, the argu-
ment in the exponent slowly varies with increasing k
and the sum can be approximately replaced with an
integral. As a result, leaving only the main contribution,
we obtain

(8)

This formula yields the estimate Imax =
(16K/π2n)sin2(ϕ/2) for the maximum relative intensity
at the n th order focus. The focal depth is obtained from
the condition that the function |G(x)|2/x2 = 0.5 at x =
(2Kε)1/2 = 1.32. For simplicity, we will consider the
case of an infinitely distant source zs = ∞. Then, ∆zf =
1.7F/(Kn2). In the first-order focus, we obtain the fol-
lowing estimates for the parameters noted above: Imax =
1018 and ∆zf = 0.68 mm. These values are in good
agreement with the results of the calculation.

I z( ) T 1–( )
πc

1/2
----------------- iπk c 1–[ ]( )exp

k
1/2

---------------------------------------
k 1=

K

∑ T+

2

.=

In ∆z( ) 4 T 1–
2
K

π2
n

------------------------- G 2Kε( )1/2( )
2Kε( )1/2

-----------------------------

2

.=

4. RESULTS OF THE NUMERICAL 
EXPERIMENTS

It is well known that a zone plate focuses radiation
in the first order similarly to a refracting lens with the
same focal length. In particular, a zone plate satisfies
the lens formula. A system of two zone plates located at
some distance from each other also has focuses corre-
sponding to the lens formula. However, in contrast to
refracting lenses, two combined zone plates operate as
one zone plate with a doubled phase shift. Moreover,
with an increase in the distance between them, each of
the two zone plates focuses some part of radiation inde-
pendently of the other zone plate; i.e. two close focuses
of lower intensity arise on the optical axis. Simulta-
neously, their common focus arises at a distance that is
smaller by a factor of 2. This focus is an analogue of the
common focus of two refracting lenses. In addition,
other focuses arise.

The entire set of focal lengths satisfies the lens for-
mula and can be obtained from consideration of the ray
paths in two refracting lenses. The specificity of a zone
plate consists in that it can be considered as a set of
lenses with different focal lengths corresponding to dif-
ferent focus orders. The corresponding focal lengths
can be denoted by two indices (n, m), which indicate
the focus order in the first and second zone plates,
respectively. For the distances to the source image
counted from the first zone plate, we obtain the formula

(9)

zf n m,( ) L F2m

1 LAn–
1 F2m L–( )An+
--------------------------------------,+=

An
1

F1n

--------
1
zs
----.–=

–1.0 –0.5 0 0.5 1.0
z – zf, mm

1000

800

600

400

200

I, arb. units

Fig. 1. Dependence of the relative intensity along the opti-
cal axis near the focus. Comparison of (squares) the fast
Fourier transform data with (solid line) the results of the
exact calculation.
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Here, L is the distance between two zone plates and
F1n = F/n and F2m = F/m are the focal lengths of differ-
ent orders in the first and second zone plates, respec-
tively. In this case, along with the first, third, and higher
orders, it is also necessary to take into account the
zeroth order, for which the focal length is equal to infin-
ity; i.e. F10 = F20 = ∞. From formula (9), in particular,
we obtain zf(1, 0) = F/(1 – F/zs) and zf(0, 1) = L + F/(1 –
F/(zs + L)). At L = 0, these distances coincide and the
common focus turns out to be more effective owing to
the phase shift doubling. An increase in L should lead
to the appearance of two focuses.

For more detailed analysis of the dynamics
described above, calculation of a series of 2D (x, z)
intensity distributions was performed at different L
from 0 to 2 mm with a step of 0.08 mm. In these distri-
butions, only 108 central points in an interval of
1.08 µm were chosen from the entire transverse calcu-
lation region. Since the distance zf (1, 0) is independent

of L, it was used as a reference point for longitudinal
distances. The interval over z from –1 to 3 mm was cal-
culated. Figure 2 shows 4 of 26 images corresponding
to the values L = 0, 0.56, 1.12, and 1.68 mm. The linear
contrast from 0 (white) to 550 (black) used here is in
best agreement with the results. It can be seen in Fig. 2
that, when the distance between the two zone plates
with the phase ϕ = π/2 is equal to the focal depth, the
maximum value sharply decreases from 950 to 350,
whereas the focal depth sharpness increases. With a fur-
ther increase in the distance between the two zone
plates, two independent focuses arise. Between these
focuses, a complex interference intensity distribution
with a focus splitting perpendicularly to the optical axis
is observed. The intensity distribution curves along the
optical axis for all 26 values of L noted above are shown
in Fig. 3. These data show that, within three steps (i.e.,
at L = 0.25 mm), the maximum value decreases by
15%. Thus, to obtain a higher efficiency in a system of
two zone plates, the distance between them should not
exceed 1/3 of the sharpness depth. The sharpness depth
can be expressed in terms of the outermost zone width ∆rN
of the zone plate. In this case, for the first-order focusing,
the above-mentioned criterion can be written as

(10)

If each zone plate has a phase shift of π, the system
of two zone plates has a phase shift 2π; therefore, it
does not focus at all. It is of interest that, with an
increase in the spacing between the zone plates, focuses
at the distances zf (0, 1) and zf (1, 0) do not arise (this
fact is confirmed by direct numerical calculation). The
reason for this phenomenon is that the zone plates with
a phase shift of π do not have a zero order. In this sense,
they maximally correspond to refracting lenses. Neverthe-
less, such a system has a focus at the distance zf(1, 1) ~
12.53 cm, which is about two times smaller than the ini-
tial focal length. In contrast to refracting lenses, this
focus can exist only when there is some gap between

L 2
∆rN( )2

λ
----------------.<

0.00 0.56 1.12 1.68

Fig. 2. 2D (x, z) distributions of the relative intensity near the focus at different longitudinal displacements of the second zone plate
with respect to the first zone plate. The intensity is shown by linear scale of blackening from 0 (white) to 550 (black). The sizes of
the model region in the horizontal and vertical directions are 1.08 µm and 4 mm, respectively. The longitudinal displacement L
(in mm) is indicated in the images.

800

2 3

200

400

600

10–1

1

0

L, mm

z – zf, mm

Fig. 3. Distribution of the relative intensity along the optical
axis at different distances L between the two zone plates.

I, arb. units
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the two zone plates, i.e., when they focus independently
of each other. The results of the calculation of the trans-
verse distribution of the relative intensity exactly at the
focal length zf(1, 1) at different values of the distance L
between the two zone plates are shown in Fig. 4. Note
that the focal distance zf(1, 1) depends only slightly on L.
As follows from the calculation, the double focus arises
fairly rapidly with increasing L and has a significant
magnitude even at L = 0.1 mm. However, at such a nar-
row gap between the plates, the secondary maxima are
still not suppressed and there is interference. Therefore,
the gap widths exceeding 0.25 mm are optimum. In
other words, criterion (10) is valid again but with the
opposite sign of inequality.

Note an important practical property of a system of
two optimal zone plates with a relatively small distance
between them. The distance at which their common
focus is located is a factor of 2 smaller than the focal
distance of a single zone plate. The size of the common
focus is also smaller by a factor of 2, in complete agree-
ment with the theory of a refracting lens, for which the
focus size is s = λF/A (F is the focal length and A is the
aperture). Thus, there is a fundamental possibility of
obtaining a focus size smaller than the size of the out-
ermost zone of a zone plate. However, the relative
intensity in the focus (efficiency) in a system of two
zone plates is smaller than that for a single zone plate.
Although the zero order is absent, there are significant
intensity losses in higher orders.

In addition, when two zone plates are aligned, it is
important to know with what accuracy the transverse
displacement S of the plates with respect to each other
should be controlled. It is obvious, by analogy with the
previous case of longitudinal displacement, that S
should be smaller than the focus size by a factor of 3.
To demonstrate this, let us consider again two zone
plates with a phase shift of π/2, which have no gap
between them (L = 0) but are displaced with respect to
each other by S. The results of the calculation for this
case at a distance of their common focus are shown in
Fig. 5. It can be seen that at the displacement equal to
1/3 of the focus size, the intensity in the maximum
decreases only by 10%. At displacements exceeding the
focus size, the focus is split and each zone plate inde-
pendently focuses the zero order of the other zone plate.
This result is fairly unusual in the sense that the actual
profile of the phase shift for a system of two zone plates
has a very complex structure. Scattering occurs coher-
ently, and we can only arbitrarily speak about the inde-
pendence of two zone plates.

Note that when the transverse displacement S and
the gap L are nonzero, the efficiency of the system of
two zone plates decreases through both channels. Spe-
cifically, the focus expands both in the longitudinal and
transverse directions at small values of S and L,
whereas at large values each zone plate focuses accord-
ing to its own geometric position. The calculations with
nonzero S and L have been performed as well.

An interesting specific feature of the system of two
zone plates is the presence of an interference (moiré)
pattern in the aperture region of the zone plates at suf-
ficiently large transverse displacements. At the focal
length in the aperture region, the relative intensity is
much lower than unity because a significant part of the
intensity is collected at the focus. However, it is non-
zero owing to the presence of higher- and zero-order
focuses. For a system of two zone plates displaced in
the transverse direction, the intensity distribution in the
aperture region has a periodic structure of fringes with
higher and lower intensities. The results of the calcula-
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Fig. 4. Distribution of the relative intensity in the double
focus (at the distance zf(1, 1)) at different distances between
the two identical zone plates with a phase shift of π in each
plate.
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tion of the relative intensity in the aperture region for
the system under consideration are shown in Fig. 6. To
decrease the random noise in the table of points and the
total number of points (i.e., 32 768 points), every
64 points were summed into one. The 512 points
obtained were slightly smoothed by a convolution with
the Gaussian function having a half-width equal to
seven grid steps. It can be seen in Fig. 6 that the moiré
pattern has a fairly sharp contrast. Note that the intensi-
ties in the minima are different. It is of interest that the
deeper minima have tails outside the aperture in the
form of a small decrease in the background intensity.

Apparently, the main source of the moiré pattern is
the interference of the waves corresponding to the zero
order of both zone plates. This suggestion is confirmed
by the fact that period d of the moiré structure (the dis-
tance between neighboring maxima) obeys the law

(11)

where S is the displacement of the zone plates and r1 is
the radius of the first zone. The moiré pattern directly
behind the two zone plates in which phase-shifting
zones are replaced with opaque zones obeys exactly the
same law. The presence of a moiré pattern is very useful
for the initial alignment of two zone plates during prep-
aration of the experiment. However, this formula shows
that, at a displacement equal to the outermost zone
width, the distance between fringes is equal to the aper-
ture. Therefore, the moiré pattern cannot be used to per-

d
r1

2

S
----,=

form alignment with an error smaller than the outer-
most zone width.

5. CONCLUSIONS

It has been shown by numerical simulation that a
system of two linear zone plates with the same structure
can operate as a single zone plate with a higher effi-
ciency if the longitudinal distance between the zone
plates does not exceed 1/3 of the focal depth (equal to
the focal length divided by the number of zones) and
their transverse displacement does not exceed 1/3 of the
outermost zone width (equal to the focus width). If the
distance between the plates and their displacement
exceed the focus sizes along and across the optical axis,
each zone plate independently focuses the zero order of
the aligned zone plate. It has been shown that the fast
Fourier transform method is effective and sufficiently
exact for numerical experiments with zone plates hav-
ing a large number of zones.
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