ДИФРАКЦИЯ И РАССЕЯНИЕ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ

УДК 548.73

К 60-летию М.В. Ковальчука

ПРОГРАММА РАСЧЕТА ПАРАМЕТРОВ РАССЕЯНИЯ, ИСПОЛЬЗУЕМЫХ В МЕТОДЕ СТОЯЧИХ РЕНТГЕНОВСКИХ ВОЛН

© 2006 г. В. Г. Кон

Российский научный центр "Курчатовский Институт", Москва E-mail: kohn@kurm.polyn.kiae.su Поступила в редакцию 27.03.2006 г.

Представлена компьютерная программа для расчета комплексных параметров кинематического рассеяния χ_0 , χ_h , $\chi_{\bar{h}}$ рентгеновских лучей, являющехся фурье-компонентами поляризуемости кри-

сталла, а также некоторых их комбинаций. Рассчитываемые программой значения могут быть использованы при численном моделировании результатов экспериментов методом стоячих рентгеновских волн.Детально описаны способы расчета указанных параметров на основе известных таблиц. В кристаллах со сложной структурой для расчета χ_h , $\chi_{\bar{h}}$ пользователю необходимо знать структуру кристалла, а также температуру Дебая или удельную теплоемкость. Для расчета χ_0 достаточно химической формулы и плотности вещества.

PACS: 68.49.Uv

ВВЕДЕНИЕ

Метод стоячих рентгеновских волн представляет собой измерение угловой зависимости выхода вторичных излучений в условиях динамической дифракции рентгеновских лучей в совершенных кристаллах или в кристаллах с деформированной кристаллической решеткой (например, в [1–3]). Основными каналами регистрации вторичного излучения являются электронная фотоэмиссия (внешний фотоэффект) и флуоресценция от атомов какого-либо сорта в основной матрице кристалла или от примесных атомов. Наиболее часто используется симметричная двухкристальная бездисперсионная схема дифракции на отражение (геометрия Брэгга), в которой стоячая волна образуется по нормали к поверхности. В этом случае регистрируемые экспериментально угловые зависимости рентгеновского отражения и выхода вторичного излучения зависят только от деформации кристаллической решетки по нормали к поверхности. Такая деформация возникает при обработке приповерхностного слоя полупроводниковых кристаллов различными методами, например диффузией или ионной имплантацией примесных атомов, ростом эпитаксиальных пленок на поверхности идеальной подложки и т.д.

Определение профиля деформации в образце из формы кривых угловой зависимости рентгеновского отражения и выхода вторичного излучения является главной целью метода стоячих рентгеновских волн. В общем случае это весьма сложная задача, так как результат эксперимента зависит от большого числа параметров. До сих пор единственным ее решением является теоретическое моделирование эксперимента и подбор таких параметров рассеяния, для которых теоретическая и экспериментальная кривые почти совпадают. Удобно моделировать кристалл, деформированный по нормали к поверхности, многослойной кристаллической системой, состоящей из нескольких слоев с идеальной кристаллической решеткой, но с различными параметрами рассеяния в каждом слое. Для медленно меняющейся деформации число слоев может быть большим, но в случае эпитаксиальных структур способен оказаться достаточным одного или двух слоев на подложке. Расчетные формулы и описание компьютерной программы для расчетов в такой модели приведены в [4].

Тем не менее остается еще проблема правильного определения основных параметров рассеяния в таких слоях, которые должны быть заданы относительно точно. Только в этом случае определяемые значения варьируемых параметров будут соответствовать действительности. Заметим, что модули и разность фаз полных фурье-компонент поляризуемости кристалла в настоящее время могут быть получены в интернете [5] по программе Степанова, работающей в интерактивном режиме. Однако этих данных недостаточно для проведения расчетов в методе стоячих рентгеновских волн. Кроме того, такой подход не позволяет внести коррективы в программу расчета и не применим для тех кристаллов, которых нет в базе данных. Это особенно актуально для эпитаксиальных пленок с переменным составом. Поэтому необходима другая, более гибкая программа, позволяющая пользователю самому организовывать базу данных для нужных кристаллов и выдавать все необходимые параметры для использования в расчетах выхода вторичных излучений. Настоящая статья посвящена описанию такой программы и используемых ею расчетных формул.

ФУРЬЕ-КОМПОНЕНТЫ ПОЛЯРИЗУЕМОСТИ

Поляризуемость среды $X(\omega)$ в рентгеновской области частот электромагнитного излучения можно определить через соотношение между комплексной амплитудой Е(ш) электрического поля излучения и амплитудой индуцированного этим полем электрического тока по формуле $j(\omega)$ $= (\omega/4\pi i)X(\omega)E(\omega)$. Главным процессом является рэлеевское рассеяние, т.е. упругое рассеяние фотона на электронах. Этот процесс является классическим, поэтому правильное значение получается даже при использовании ньютоновой механики. Поле действует на электрон с силой *eE*, где е – заряд электрона. Соответственно индуцированное ускорение электрона можно найти из уравнения Ньютона, а ток равен ev, где v – индуцированная скорость электрона. В результате получаем

$$m\frac{dv}{dt} = eE(\omega)\exp(-i\omega t),$$

$$j(\omega) = ev(\omega) = \frac{ie^2}{m\omega^2}E(\omega).$$
(1)

Из второго соотношения с учетом определения поляризуемости получаем

$$X(\omega) = -\frac{4\pi e^2}{m\omega^2} = -\frac{\lambda^2 r_0}{\pi}, \quad r_0 = \frac{e^2}{mc^2}, \quad \frac{2\pi}{\lambda} = \frac{\omega}{c}.$$
 (2)

Здесь r_0 – классический радиус электрона, λ – длина волны рентгеновских лучей, c – скорость света.

Формула (2) дает вклад в поляризуемость от одного электрона. В кристалле поляризуемость определяется на единицу объема. Соответственно нулевую фурье-компоненту поляризуемости получим, если умножим формулу (2) на число электронов в единице объема. С учетом структуры кристалла это число можно разбить на два числа, а именно, число элементарных ячеек кристалла, равное V_0^{-1} , где V_0 – объем элементарной ячейки, и число электронов в одной элементарной ячейке. Последнее удобно представить как

сумму по сортам атомов от произведения числа электронов в каждом атоме на число таких атомов в элементарной ячейке.

Дополнительно надо учесть поправки на другие процессы рассеяния, главным из которых является фотоэлектронное поглощение. Это квантовый процесс и его расчет представляет собой достаточно сложную задачу. Он соответствует переходам между дискретными электронными состояниями в атоме, поэтому имеет резонансную зависимость от частоты и приводит к поглощению фотонов, которое описывается мнимой частью поляризуемости. Поправки за счет фотоэффекта обычно называют дисперсионными поправками. Иногда в мнимую часть поляризуемости, т.е. в поглощение может давать вклад дополнительная поправка за счет неупругого комптоновского рассеяния, особенно при высоких энергиях фотонов (больше 30 кэВ). Формулу для нулевой фурье-компоненты поляризуемости запишем в следующем виде:

$$\chi_0 = -\frac{\lambda^2 r_0}{\pi V_0} \sum_j N_j [Z_j + \Delta f_1(j) - i(f_2(j) + \Delta f_2(j))].$$
(3)

Здесь сумма берется по сортам атомов: N – число атомов данного сорта, Z – число электронов в атоме (атомный номер), $\Delta f_1 = (f_1 - Z)$ – поправка к числу электронов за счет фотоэффекта, f_2 – вклад атома в мнимую часть за счет фотоэффекта, Δf_2 – поправка к f_2 за счет комптоновского рассеяния.

Приведенная форма записи удобна тем, что сумма в квадратных скобках описывает процессы на уровне одного атома. В таблицах Хенке и других аналогичных им (например, [6]) в амплитуде рассеяния на атомном уровне число электронов Z заменяется на комплексную величину $f_1 - if_2$. Мнимую часть этой величины обычно получают из экспериментально измеренных коэффициентов поглощения, а Δf_1 вычисляют из мнимой части, используя дисперсионные соотношения, связывающие действительную и мнимую части поляризуемости и являющиеся следствием принципа причинности. Дополнительная поправка за счет комптоновского рассеяния Δf_2 в указанных таблицах не учитывается и должна быть вычислена отдельно. Заметим, что теоретические расчеты поглощения фотонов в процессе фотоэффекта тоже проводились (например, [7]).

Фурье-компонента поляризуемости на векторе обратной решетки **h** должна учитывать реальное пространственное распределение электронов в кристалле. В случае рэлеевского рассеяния ответ зависит, в частности, от пространственного распределения плотности электронов в атоме. Очевидно, что плотность валентных электронов атома в кристалле может отличаться от таковой в свободном атоме. Однако эти поправки, по-видимому, невелики и до сих пор нет ни одной попытки их расчета. Что касается фурье-компоненты электронной плотности свободных атомов, то такие расчеты проводились неоднократно в разных приближениях. Наиболее достоверными считаются результаты, полученные в релятивистком приближении Хартри–Фока и опубликованные в виде таблиц в [8]. Так как атом сферически-симметричен, то вычисляемая функция $F_A(s)$ зависит лишь от модуля вектора обратной решетки и обычно записывается в виде функции аргумента $s = |\mathbf{h}|/4\pi = \sin\theta_B/\lambda$, где θ_B – угол Брэгга. Для кристаллов с прямоугольной решеткой $|\mathbf{h}| = 2\pi[(h/a)^2 +$ $+ (k/b)^2 + (l/c)^2]^{1/2}$, где h, k, l – индексы Миллера соответствующего отражения, a, b, c – постоянные решетки.

Дополнительным источником изменения в пространстве электронной плотности являются тепловые колебания атомов. Их влияние на фурье-компоненту электронной плотности учитывается тепловым фактором

$$F_T(s) = \exp(-|\mathbf{h}|^2 \langle u^2 \rangle/2), \qquad (4)$$

где $\langle u^2 \rangle$ – среднеквадратичное тепловое смещение атомов из узла кристаллической решетки. Квадрат $F_T(s)$ равен фактору Дебая–Валлера. Кроме того, необходимо учесть фазовые множители, возникающие для атомов, расположенных не в центре элементарной ячейки кристалла. Эти фазовые множители определяются положением атомов независимо от их сорта. Поэтому в сумме по сортам атомов появится новый множитель, называемый структурным фактором, в котором необходимо просуммировать по всем возможным координатам для атомов данного сорта

$$S(\mathbf{h}) = (1/k_m) \sum_{k} \exp(i\mathbf{h}\mathbf{r}_k), \qquad (5)$$

где k_m – максимальное число позиций, занимаемое атомом данного сорта. Заметим, что обычно каждый сорт атомов имеет свои координаты и в этом случае $k_m = N$. Однако в некоторых эпитаксиальных структурах атомы разного сорта замещают друг друга в одних и тех же позициях. В этом случае $k_m > N$.

Что же касается дисперсионных поправок и поправок на поглощение, то их зависимость от вектора обратной решетки невелика и в расчетах фурье-компонент поляризуемости для метода стоячих рентгеновских волн ею можно пренебречь. В результате получаем формулу

$$\chi_{h} = -\frac{\lambda^{2} r_{0}}{\pi V_{0}} \sum_{j} N_{j} [F_{A}(s, j) + \Delta f_{1}(j) - (6) - i(f_{2}(j) + \Delta f_{2}(j))] F_{T}(s, j) S(\mathbf{h}, j).$$

Аналогичный параметр для вектора обратной решетки со знаком минус χ_h получается из формулы (6) заменой $S(\mathbf{h}, j)$ на комплексно сопряженную величину. В кристаллах с центром инверсии $\chi_h = \chi_{\bar{h}}$, а структурный фактор $S(\mathbf{h})$ не имеет мнимой части, поэтому мнимая часть всех параметров связана только с поглощением.

Формула (6) соответствует случаю сигма-поляризации рентгеновской волны, в которой вектор электрического поля перпендикулярен плоскости рассеяния. При использовании синхротронного излучения как раз такая поляризация обычно и используется. В случае неполяризованного излучения необходимо учитывать также π-поляризацию, в которой (6) умножается на поляризационный множитель. Для дипольного взаимодействия, каковым является рэлеевское рассеяние и основная часть фотоэлектронного поглощения, он равен $\cos(2\theta_B)$. Для квадрупольной поправки к фотоэлектронному поглощению и для комптоновкого рассеяния зависимость от поляризации другая. Однако эти вклады малы и становятся существенными только при изучении многоволнового эффекта аномального прохождения (например, [9]). В расчетах методом стоячих волн достаточно учесть поляризацию, когда это необходимо, на уровне дипольного взаимодействия. Так, например, делается в программе [4].

Расчет χ₀. Нулевая фурье-компонента поляризуемости описывает когерентное рассеяние вперед для излучения в виде плоской волны. Она играет важную роль не только в дифракционных экспериментах, но и в многочисленных экспериментах по поглощению или фазовому контрасту, в которых пучок проходит через образец не меняя своего направления, а конкретная структура образца при этом может быть даже неизвестной. Расчет χ_0 может быть выполнен по известной химической формуле вещества образца и его плотности. Из химической формулы получаем информацию о сортах атомов и числе атомов каждого сорта, а число молекул в единице объема получается делением плотности вещества ρ в г/см³ на массу молекулы в граммах. Удобно делить плотность на массу молекулы M_m в атомных единицах и умножать результат на число Авогадро. В результате формулу (3) можно переписать в виде

$$\chi_{0} = -8.303 \times 10^{-4} \frac{\rho}{M_{m}E^{2}} \times$$

$$\times \sum_{j} N_{j} [f_{1}(j) - i(f_{2}(j) + \Delta f_{2}(j))].$$
(7)

Здесь N_j – число атомов *j*-го сорта в молекуле, E – энергия фотонов в кэВ.

КРИСТАЛЛОГРАФИЯ том 51 № 5 2006

Параметры f_1 и f_2 вычисляются интерполяцией соответствующих таблиц, которые могут быть получены в интернете либо вместе с дистрибутивом программы ХОР [10], либо непосредственно [11]. Программа использует значения из файла "f1f2_Windt.dat", в интервале от 1 до 100 кэВ. Поправка за счет комптоновского рассеяния вычисляется по интерполяционной формуле [12], которая имеет следующий вид:

$$\Delta f_2(E, j) = 1.4312 \times 10^{-5} E \exp\left(\sum_{k=0}^{3} C_{kj} [\ln(E)]^k\right).$$
(8)

Значения коэффициентов C_0 , C_1 , C_2 , C_3 для 94 химических элементов были взяты в [12].

Расчет χ_h . Для расчета параметра дифракции знание структуры кристалла обязательно и она определяет структурные факторы $S(\mathbf{h}, j)$. В экспериментах методом стоячих волн могут изучаться образцы с очень сложной структурой, поэтому создать базу данных на все структуры нереально. Расчет структурных факторов должен осуществляться независимо. Только в этом случае программа может быть универсальной. Что касается атомного фактора рассеяния $F_A(s)$, то для его расчета удобно снова воспользоваться интерполяционной формулой, которая в данном случае имеет следующий вид:

$$F_A(s) = \sum_{k=1}^{4} a_k \exp(-b_k s^2) + c.$$
 (9)

Коэффициенты a_k , b_k и *с* известны для всех практически важных элементов [13].

Рассмотрим способ вычисления теплового фактора $F_T(s)$. Строго говоря, этот фактор зависит от сорта атома. Однако такие зависимости теоретически до сих пор не вычисляются, так как для этого необходимо знать плотность состояний фононов для каждого конкретного атома в конкретном соединении, что представляет собой весьма сложную задачу. В некоторых экспериментальных работах приводят значения среднеквадратичного теплового смещения атомов $\langle u^2 \rangle$ для каждого сорта атома кристаллов со сложным химическим составом (например, [14]), которые могут быть использованы для прямого вычисления теплового фактора по формуле (4). Однако таких данных очень мало.

Что касается относительно простых кристаллов, то известно, что этот фактор определяется в основном длинноволновыми колебаниями решетки (акустическими фононами), в которых вся элементарная ячейка движется как целое. По этой причине зависимостью от сорта атома можно пренебречь и рассматривать единый фактор для всех атомов. Используя среднее значение $\langle u^2 \rangle$ (на-

КРИСТАЛЛОГРАФИЯ том 51 № 5 2006

пример, [15]), можно вычислить средний тепловой фактор по формуле (4).

Другой способ состоит в том, что плотность состояний акустических фононов параметризуется единственным параметром – температурой Дебая *T*_D. Используется модель Дебая, которая приводит к формуле

$$F_{T}(s) = \exp(-B(T)s^{2}),$$

$$B(T) = \frac{6h^{2}}{M_{a}k_{B}T_{D}} \left(\frac{1}{4} + \frac{1}{x^{2}} \int_{0}^{x} dz \frac{z}{(\exp(z) - 1)}\right), \quad (10)$$

$$x = \frac{T_{D}}{T},$$

где h – постоянная Планка, M_a – средняя масса атома, k_B – постоянная Больцмана. Если *s* измерять в 10⁸ см⁻¹, массу атома измерять в атомных единицах, а температуру Дебая – в градусах Кельвина, то коэффициент в формуле для B(T) перед круглыми скобками равен 11490.4/($M_a T_D$).

Вообще говоря, температуру Дебая следует определять из результатов специальных экспериментов по рентгеновской дифракции. Но таких экспериментов выполнено мало. Обзор работ можно найти в [16]. Если таких данных нет, то можно использовать значение T_D , получаемое из измерений теплоемкости при низких температурах. Для моноатомных кристаллов такие значения T_D известны почти для всех элементов (например, [17]). Как известно, в модели Дебая формула для удельной теплоемкости C_V имеет вид [17]:

$$C_V = 9 \frac{k_B}{M_a x^3} \int_0^x dz \frac{z^4 \exp(z)}{(\exp(z) - 1)^2}, \quad x = \frac{T_D}{T}.$$
 (11)

Если снова среднюю массу атома измерять в атомных единицах, а C_V измерять в (Дж/(г К)), то коэффициент перед интегралом равен 74.82/($M_a x^3$). При низких температурах, т. е. больших значениях *x*, интеграл стремится к константе, равной $4\pi^4/15 = 25.98$.

В тех случаях, когда температура Дебая неизвестна, ее можно определить из известной удельной теплоемкости, используя формулу (11). К сожалению, в таблицах обычно приводят значение для C_V при комнатных температурах, когда формула (11) недостаточно верна, особенно для веществ с низкой температурой Дебая. Если вычислять C_V по формуле (11) при комнатной температуре, используя известную среднюю массу атомов и температуру Дебая, то всегда получаются значения меньшие экспериментальных, хотя и близкие к ним. Однако обратная задача вычисления температуры Дебая из известного значения и иногда может вообще не дать ответ. Это связано

с тем, что из формулы (11) следует, что C_V имеет конечное максимальное значение при $T_D = 0$, равное $3k_B/M_a$. Что касается соединений с переменным составом, то для них обычно нет никаких данных. В этом случае можно использовать значения, полученные интерполяцией между соединениями, для которых T_D известно.

В методе стоячих волн при регистрации флуоресценции, согласно [4], необходимо знать также парциальные значения $\chi_{i\bar{h}}(j)/\chi_{i0}(j)$, т.е. отношение фурье-компонент мнимой части поляризуемости для определенного сорта атомов, дающих вклад в регистрируемый сигнал флуоресценции. Модуль этого выражения в рассматриваемом приближении равен произведению теплового фактора на модуль структурного фактора, а фаза равна фазе структурного фактора. В программе кроме значений χ_h рассчитываются также параметры $X = (\chi_h \chi_{\bar{h}})^{1/2}, Y = (\chi_h / \chi_{\bar{h}})^{1/2}$, а распечатка содержит параметры $f_1, f_2, \Delta f_2, F_A$ для каждого сорта атомов и тепловой фактор F_T в том случае, когда он вычисляется по формуле (10). Конкретная организация входных и выходных данных программы здесь не описывается, так как она может меняться со временем. Эту информацию можно понепосредственно технической лучить в документации к программе.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (гранты № 04-02-17363, 05-02-16702).

СПИСОК ЛИТЕРАТУРЫ

- 1. Ковальчук М.В., Кон В.Г. // УФН. 1986. Т. 149. № 1. С. 69.
- Zegenhagen J. // Surf. Sci. Rep. 1993. V. 18. № 7/8. C. 199.
- Vartanyants I.A., Kovalchuk M.V. // Rep. Prog. Phys. 2001. V. 64. P. 1009.
- 4. *Kohn V.G.* // Phys. Stat. Solid. B. 2002. V. 231. № 1. P. 132.
- 5. Интернет ресурс Степанова "http://sergey.gmca.aps.anl.gov"
- 6. Henke B.L., Gullikson E.M., Davis J.C. // Atom. Data and Nucl. Data Tables. 1993. V. 54. P. 181.
- Hildebrandt G., Stephenson J.D., Wagenfeld H. // Z. Naturforsch. A. 1975. V. 30. P. 697.
- B. Doyle P.A., Turner P.S. // Acta Cryst. A. 1968. V. 24. P. 390.
- 9. Кон В.Г. // Кристаллография. 1987. V. 32. Р. 844.
- Интернет pecypc "http://www.esrf.fr/computing/computing/xop"
- 11. Интернет pecypc "http://www.esrf.fr / computing/scientific/dabax"
- Van Greken R.E., Markowicz A.A. // Handbook of X-Ray Spectrometry. New York: Marcel Dekker Inc., P. 21.
- 13. International Tables for X-Ray Crystallography. V. 4. Birmingham, Kynoh Press, 1974, 524 p.
- 15. Pietsch U. // Phys. Stat. Sol. 1985. V. 129. № 2. P. K99.
- 16. *Пинскер З.Г.* Рентгеновская кристаллооптика. М.: Наука, 1982. 390 с.
- Киттель Ч. Введение в физику твердого тела". М.: Наука, 1978. 229 с.