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INTRODUCTION

The X-ray standing-wave method implies measure-
ment of the angular dependence of the yield of second-
ary radiations under the conditions of dynamic X-ray
diffraction in perfect crystals or in crystals with a
deformed crystal lattice (see, for example, [1–3]). Gen-
erally, electron photoemission (external photoelectric
effect) and the fluorescence of atoms of any sort of the
main crystal matrix or impurity atoms are measured.
Most often, the symmetric double-crystal dispersion-
less scheme of diffraction in reflection (the Bragg
geometry) is used, where a standing wave is formed
along the normal to the surface. In this case, the exper-
imental angular dependences of the X-ray reflection
and the secondary radiation yield depend only on the
lattice strain along the normal to the surface. This strain
arises upon treatment of surface layers of semiconduc-
tor crystals by different methods, for example, diffu-
sion or ion implantation of impurities and growth of
epitaxial films on the surface of an ideal substrate.

Determination of the strain profile in a sample from
the shape of the angular dependences of the X-ray
reflection and secondary radiation is the main purpose
of the X-ray standing-wave method. Generally, it is a
very difficult problem since an experimental result
depends on a large number of parameters. Until now, it
has been solved only by theoretical simulation of the
experiment and choice of such scattering parameters
for which the theoretical and experimental curves
almost coincide. It is convenient to model a crystal

deformed along the normal to surface by a multilayer
crystalline system composed of several layers with an
ideal crystal lattice but different scattering parameters
in each layer. For a slowly varying strain, the number of
layers can be large, but in the case of epitaxial struc-
tures one or two layers on the substrate may be suffi-
cient. The calculation formulas and the description of
the computer program for calculating such a model
were reported in [4].

Nevertheless, there is a problem of correct determi-
nation of the main scattering parameters in such layers,
which should be set relatively exactly. Only in this case
will the determined variable parameters correspond to
reality. Note that the moduli and the phase difference of
the complete Fourier components of the crystal polariz-
ability can be obtained on the Internet [5] by way of
Stepanov’s online program. However, these data are
insufficient for application of the X-ray standing-wave
method. In addition, such an approach does not allow
one to correct the calculation program and cannot be
used for the crystals that are not included in the data-
base. This is especially urgent for epitaxial films of
variable composition. Therefore, another, more flexible
program is necessary in order to allow a user to con-
struct a personal database for required crystals and
obtain all parameters that are necessary for calculating
the secondary radiation yield. In this paper, we describe
such a program and report the calculation formulas that
are used in it.
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X rays, which are Fourier components of the crystal complex susceptibility, as well as some of their combina-
tions, is presented. The values calculated by the program can be used for computer simulation of experimental
results obtained by the X-ray standing-wave method. Methods for calculating these parameters on the basis of
well-known tables are described in detail. For crystals of complex structure, it is necessary to know their struc-
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FOURIER COMPONENTS OF POLARIZABILITY

The polarizability 
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 of a medium in the X-ray
range can be determined from the relation between the
complex amplitude 
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 of the radiation electric field
and the amplitude of the electric current induced by this
field by the formula 
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process is the Rayleigh scattering, i.e., the elastic scat-
tering of a photon from electrons. This process is clas-
sical; therefore, the correct value is obtained even with
the use of the Newtonian mechanics. The electric field
acts on an electron with the force 

 

eE

 

, where 

 

e

 

 is the ele-
mentary charge. Accordingly, the field-induced acceler-
ation of the electron can be found from the Newton
equation, while the current is 

 

e

 

v

 

, where 

 

v

 

 is the induced
electron velocity. As a result, we have
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From the second relation, taking into account the polar-
izability definition, we obtain
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Here, 
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 is the classical radius of an electron, 

 

λ

 

 is the
X-ray wavelength, and 

 

c

 

 is the speed of light.

Formula (2) describes the contribution of a single
electron to the polarizability. The polarizability of a
crystal is determined for its volume unit. Accordingly,
the zeroth Fourier component of polarizability will be
obtained through multiplication of formula (2) by the
number of electrons per volume unit. With allowance
for the crystal structure, this number can be divided into
two components, specifically, the number of unit cells

in a crystal, which is equal to  (
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 is the unit-cell
volume), and the number of electrons per unit cell. It is
convenient to represent the latter component as a sum
of the products of the number of electrons in each atom
and the number of such atoms per unit cell.

In addition, the corrections to other scattering pro-
cesses should be taken into account. The main process
of such processes is the photoelectron absorption. This
is a quantum process and its calculation is a fairly diffi-
cult problem. Photoelectron absorption corresponds to
transitions between discrete electronic states in an
atom; therefore, it resonantly depends on frequency and
is described by the imaginary part of polarizability. The
corrections related to the photoelectric effect are gener-
ally referred to as the dispersion corrections. Some-
times, an additional correction related to the inelastic
Compton scattering may contribute to the imaginary
part of polarizability, i.e., to the absorption, especially
at high photon energies (exceeding 30 keV). Let us
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write the formula for the zeroth Fourier component of
polarizability in the form

 

(3)

 

Here, the sum is over the types of atoms: 
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 is the num-
ber of atoms of a given type, 
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 is the number of elec-
trons per atom (the atomic number), 
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correction to the number of electrons due to the photo-
electric effect, 
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 is the contribution of an atom to the
imaginary part due to the photoelectric effect, and 
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is the correction to 
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 due to the Compton scattering.

This form is convenient because the sum in square
brackets describes processes at the single-atom level. In
Henke’s tables and other similar tables (see, for exam-
ple, [6]), the number of electrons 
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 in the scattering
amplitude at the atomic level is replaced with the com-
plex quantity 
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. The imaginary part of this quantity
is generally derived from the experimental values of the
absorption coefficients and 
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 is derived from the
imaginary part with the use of the dispersion relations.
The latter link the real and imaginary parts of polariz-
ability and are a consequence of the causality principle.
The additional correction 
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 that is due to the Comp-
ton scattering is not taken into account in the above-
mentioned tables and should be calculated separately.
Note that the photon absorption in the photoelectric
effect has been theoretically calculated also (see, for
example, [7]).

The Fourier component of polarizability on the
reciprocal lattice vector 

 

h

 

 should take into account the
actual spatial distribution of electrons in a crystal. In
the case of the Rayleigh scattering, this characteristic
depends, in particular, on the spatial distribution of
electron density in an atom. Obviously, the valence-
electron density of an atom in a crystal may differ from
that in a free atom. However, this deviation is appar-
ently small and, until now, no attempts have been made
to calculate it. Concerning the Fourier component of
the electron density of free atoms, such calculations
have been performed repeatedly in different approxi-
mations. The most reliable results were obtained in the
Hartree–Fock relativistic approximation and reported
in the form of tables in [8]. Since an atom is spherically
symmetric, the calculated function 
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 depends only
on the modulus of the reciprocal lattice vector and is
generally written as a function of the argument 
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 is the Bragg angle. For crys-
tals with a rectangular lattice, 
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(l/c)2]1/2, where h, k, and l are the Miller indices of the
corresponding reflection and a, b, and c are the lattice
constants.

An additional source of the spatial change in the
electron density is the thermal vibrations of atoms.
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Their effect on the Fourier component of electron den-
sity is taken into account by the thermal factor

(4)

where 〈u2〉 is the mean-square atomic displacement
from a lattice site. The square of FT(s) is equal to the
Debye–Waller factor. In addition, it is necessary to take
into account the phase factors arising for the atoms that
are not located at the center of a unit cell. These phase
factors are determined by the position of atoms and are
independent of their sort. Therefore, a new factor will
appear in the sum over the types of atoms, which is
referred to as the structure factor. In this factor, it is nec-
essary to perform summation over all possible coordi-
nates of the atoms of a specific type:

(5)

where km is the maximum number of positions that can
be occupied by an atom of a specific type. Note that
atoms of each type generally have their own coordi-
nates and, in this case, km = N. However, in some epi-
taxial structures, atoms of different types substitute for
each other at the same positions. In this case, km > N.

Concerning the dispersion and absorption correc-
tions, their dependence on the reciprocal lattice vector
is weak and can be neglected in calculations of the Fou-
rier components of polarizability by the X-ray stand-
ing-wave method. As a result, we obtain the formula

(6)

An analogous parameter for the reciprocal lattice vector
with a minus sign, , is obtained from formula (6) via
replacement of S(h, j) with a complex conjugate value.
In crystals with an inversion center, χh =  and the
structure factor S(h) does not have an imaginary part;
therefore, the imaginary parts of all parameters are
related only to the absorption.

Formula (6) corresponds to the σ polarization of an
X-ray wave. In this case, the electric field vector is
directed perpendicularly to the scattering plane. This
polarization is conventional when synchrotron radia-
tion is used. In the case of unpolarized radiation, it is
additionally necessary to take into account the π polar-
ization, in which expression (6) is multiplied by the
polarization factor. For the dipole interaction (Rayleigh
scattering and the main part of photoelectron absorp-
tion), this factor is equal to cos(2θB). For the quadru-
pole correction to the photoelectron absorption and for
the Compton scattering, the dependence on polariza-
tion is different. However, these contributions are small
and become significant only in the investigation of the
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multiwave effect of anomalous transmission (see, for
example, [9]). In calculations by the X-ray standing-
wave method, it is sufficient to take into account the
polarization (when necessary) at the level of dipole
interaction. This approach is used, for example, in the
program proposed in [4].

Calculation of χ0. The zero Fourier component of
polarizability describes the coherent forward scattering
for radiation in the form of a plane wave. It is important
not only in diffraction experiments but also in numer-
ous absorption or phase contrast investigations. In these
experiments, a beam that passes through a sample does
not change its direction, and the specific sample struc-
ture can even be unknown in this case. The value of χ0
can be calculated from the known chemical formula of
the sample material and its density. The chemical for-
mula gives information about the types of atoms and
the numbers of atoms of each type, while the number of
molecules per volume unit is obtained by dividing the
density ρ of the material (in g/cm3) by the molecule
mass (in grams). It is convenient to divide the density
by the mass of a molecule Mm (in au) and multiply the
result by Avogadro’s number. As a result, formula (3)
can be rewritten in the form

(7)

Here, Nj is the number of atoms of the jth type in a mol-
ecule and E is the photon energy (in keV).

The parameters f1 and f2 are calculated by interpola-
tion of the corresponding tables, which can be obtained
on the Internet, either with the distributive of the XOP
program [10] or directly [11]. The program uses the
values from the f1f2_Windt.dat file in the range from 1
to 100 keV. The correction due to the Compton scatter-
ing is calculated through the interpolation formula [12]

(8)

The values of the coefficients C0, C1, C2, and C3 for
94 chemical elements were taken from [12].

Calculation of χh. To calculate the diffraction
parameter, it is necessary to know the crystal structure
because it determines the structure factors S(h, j). In
experiments, the standing-wave method can be used to
investigate samples with a very complex structure;
therefore, it is unrealistic to develop a database of all
structures. Calculation of the structure factors should
be performed independently—only in this case can a
program be universal. Concerning the atomic scattering
factor FA(s), it is convenient to calculate it from again

χ0 8.303– 10
4– ρ
MmE

2
--------------×=

× N j f 1 j( ) i f 2 j( ) ∆ f 2 j( )+( )–[ ].
j

∑

∆ f 2 E j,( ) = 1.4312 10
5–
E Ckj E( )ln[ ]k

k 0=

3

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

.exp×



CRYSTALLOGRAPHY REPORTS      Vol. 51      No. 6      2006

PROGRAM FOR CALCULATING THE SCATTERING PARAMETERS USED 939

the interpolation formula, which in this case has the
form

(9)

The coefficients ak, bk, and c are known for all practi-
cally important elements [13].

Let us consider the procedure of calculation of the
thermal factor FT(s). In a strict sense, this factor
depends on the type of an atom. However, such depen-
dences have not been theoretically calculated, since
such a calculation requires knowledge of the density of
phonon states for each specific atom in a specific com-
pound. Finding of such data is a very difficult problem.
In some experimental studies, the values of mean-
square atomic displacements 〈u2〉 were reported for
each type of atoms in crystals with a complex chemical
composition (see, for example, [14]). These values can
be used for direct calculation of the thermal factor by
formula (4). However, there are very few such data.

Concerning relatively simple crystals, it is known
that the thermal factor is determined mainly by the
long-wavelength lattice vibrations (acoustic phonons),
in which a unit cell moves as a whole. For this reason,
the dependence on the type of an atom can be
neglected, and a unified factor can be considered for all
atoms. Using an average value 〈u2〉 (see, for example,
[15]), one can calculate the average thermal factor by
formula (4).

The other way consists in parameterizing the den-
sity of states of acoustic phonons by a single parame-
ter—the Debye temperature TD. The Debye model is
used, which gives the formula

(10)

where h is Planck’s constant, Ma is the average mass of
an atom, and kB is the Boltzmann constant. If s has a
dimension of 108 cm–1, the mass of an atom is measured
in au, and the Debye temperature is measured in K, the
coefficient in the formula for B(T) before the parenthe-
ses is 11 490.4/(MaTD).

In general, the Debye temperature should be deter-
mined from the results of special X-ray diffraction
experiments. However, only a few such experiments
have been performed. The corresponding studies were
reviewed in [16]. If such data are absent, one can use
the value of TD that is obtained from the measurements
of specific heat at low temperatures. For monoatomic
crystals, such values of TD are known for almost all ele-
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ments (see, for example, [17]). As is known, the for-
mula for the specific heat CV in the Debye model has the
form [17]

(11)

If the average mass of an atom is measured in au and
CV is measured in (J/(g K)), the coefficient before the
integral is 74.82/(Max3). At low temperatures, i.e., at
large x, the integral tends toward a constant equal to
4π4/15 = 25.98.

When the Debye temperature is unknown, it can be
determined from the known specific heat by formula (11).
Unfortunately, the value of CV in tables is generally
given at room temperature when formula (11) is insuf-
ficiently correct, especially for materials with a low
Debye temperature. If CV is calculated by formula (11)
at room temperature with the use of known values of
average atomic mass and the Debye temperature, the
values obtained are always smaller than the experimen-
tal ones, although the difference is insignificant. How-
ever, the inverse problem of calculation of the Debye
temperature from a known value of CV is extremely sen-
sitive to overestimated values and sometimes cannot be
solved at all. The reason is that, according to formula (11),
CV has a finite maximum value at TD = 0, which is equal
to 3kB/Ma. Concerning the compounds with a variable
composition, there are generally no data for them. In
this case, one can use the values obtained by interpola-
tion among the compounds for which TD is known.

In the standing-wave method as applied to measure-
ment of fluorescence, according to [4], it is additionally
necessary to know the partial values (j)/χi0(j), i.e.,
the ratio of the Fourier components of the imaginary
part of polarizability for a certain type of atoms that
make a contribution to the fluorescence signal
recorded. The modulus of this expression in the approx-
imation under consideration is equal to the product of
the thermal factor and the modulus of the structure fac-
tor, and the phase is equal to the phase of the structure
factor. In the program, along with the values of χh, the
parameters X = ( )1/2 and Y = ( )1/2 are calcu-
lated also. The listing contains the parameters f1, f2, ∆f2,
and FA for each type of atoms and the thermal factor FT
when it is calculated by formula (10). The specific orga-
nization of the input and output data of the program is
not described here, since it may change in the long run.
This information can be obtained directly from the
technical documentation for the program.
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