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1. INTRODUCTION

X-ray diffraction in crystals subjected to elastic
deformation is now an actively developing field in the
solid state physics.

In many works dealing with X-ray-acoustic interac-
tions, researchers aimed to obtain information on the
structure of elastic vibrations using X-ray diffraction.
This information is important for physical acoustics;
moreover, it is widely used to determine the parameters
and quality of various piezoelectric and acoustoelectric
devices. Some works deal with studying the fundamen-
tal features of X-ray-acoustic interaction, such as an
X-ray-acoustic resonance [1] resulting in the suppres-
sion of the Borrmann effect with ultrasound of a certain
frequency.

The possibility of controlling the parameters of an
X-ray beam with ultrasound is also of interest; how-
ever, the physical foundations of this control depend
substantially on the elastic-strain wavelength. We can
distinguish two main groups of interaction for different
relations between the elastic-strain wavelength 
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the crystal surface region illuminated by an X-ray
beam 
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(1) High frequencies, where 
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. In this range, an
elastic wave forms a superlattice with a period equal to
the ultrasound wavelength. This superlattice results in
the formation of additional X-ray diffraction maxima—
satellites. This range is studied in most works dealing
with X-ray acoustics (e.g., see [2–6] and references
therein).

(2) Low and medium frequencies, where 
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This range features an aperiodic (uniform or gradient)

lattice deformation across the section (aperture) of the
X-ray beam, and this range is poorly understood.

At present, works on controlling the X-ray beam
amplitude with ultrasound are advanced. A large set of
works dealt with the modulation of an X-ray beam by
ultrasound [2–5]. In essence, the authors of these works
propose electronic analogs of a mechanical inter-
rupter—chopper [6]. Work [7] on modulation by long-
wave ultrasound is also of interest.

Ultrasound can also be used to change the angular
position of the diffracted X-ray beam. In the case of low
frequencies, this control can be reached by a uniform
change in the lattice parameter across the X-ray beam
aperture due to the mechanical deformation of an ultra-
sonic wave in the crystal. Long-wave ultrasound can
also create a gradient elastic deformation, which affects
the structure of the X-ray beam, in the crystal.

Controlling the spatial position and structure of the
X-ray beam with long-wave ultrasound has only been
studied in theoretical works [8, 9]. The authors of these
works showed that fresh opportunities for developing
controlled X-ray optics appear in the case of low-fre-
quency bending ultrasonic vibrations for Bragg dif-
fraction.

In this work, we theoretically and experimentally
study the effect of long-wave ultrasonic vibrations on
the characteristics of an X-ray beam under conditions
of dynamical diffraction. We think that our results can
serve as a basis for long-wave ultrasonic vibrations to
be applied to control the angular position and spatial
structure of the X-ray beam.
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Abstract

 

—X-ray diffraction is experimentally studied in the Laue geometry in a germanium crystal carrying a
long-wave ultrasonic wave that creates an alternating lattice deformation along the sample surface. Strobo-
scopic equipment is used to separate different phases and, correspondingly, different profiles of a spatial defor-
mation distribution from the periodic deformation. A uniform deformation is shown to change the angular posi-
tion of the X-ray beam, and a nonuniform deformation broadens the angular region of reflection and decreases
the peak intensity. Ultrasound can be used to compensate for the static deformation at the place where the sin-
gle-crystal sample and the resonator are glued together. Apart from the fundamental long-wave harmonic, the
crystal contains a parasitic deformation with a shorter wavelength. A simple theoretical model is developed, and
it rather accurately describes the experimental results. 

 

© 2005 Pleiades Publishing, Inc.

 

 

 

ATOMS, MOLECULES, 
OPTICS



 

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS

 

      

 

Vol. 101

 

      

 

No. 5

 

      

 

2005

 

POSSIBILITIES OF CONTROLLING AN X-RAY BEAM 771

 

By analyzing the use of bending vibrations in the
Bragg geometry, we revealed substantial difficulties in
practical realization of this scheme. Therefore, we
designed and actualized a scheme using long-wave
ultrasonic vibrations for Laue diffraction. In this work,
we present the results of the first stage, where we exper-
imentally confirm and theoretically ground the possi-
bility of controlling the spatial characteristics of the
X-ray beam using diffraction in a crystal subjected to
long-wave ultrasonic vibrations. In the next section, we
describe a designed experimental scheme. In Section 3,
we present the time-integrated and stroboscopic exper-
imental results. In Section 4, we develop a theoretical
model to analyze the results obtained and show that this
model can adequately describe the structure of the
appearing deformation from the angular dependence of
the intensity of the diffracted X-ray beam.

2. EXPERIMENTAL SCHEME

The experimental setup was based on a TRS-1 X-ray
spectrometer [10]. The X-ray optical scheme of the
experiment is shown in Fig. 1. We used a double-crystal
dispersion-free X-ray diffraction scheme, Mo

 

K

 

α
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 radi-
ation, and a 0.2 

 

×

 

 8-mm

 

2

 

 radiation-source focus. The
angle of the main goniometer was set to an accuracy of
0.025

 

″

 

. After a crystal monochromator, the collimated
beam passes through a 0.2-mm slit in the diffraction
plane and falls on the crystal to be studied and sub-
jected to periodic ultrasonic vibrations. The intensity of
the diffracted X-ray beam is measured by a BDS scin-
tillation detector.

As the monochromator and samples, we used sin-

gle-crystal [ ] and [111] germanium plates, respec-
tively. In both cases, we generate the symmetrical (220)
reflection: the monochromator was in the Bragg dif-
fraction position, whereas the sample was in the Laue
diffraction position.

 

2.1. Scheme for the Excitation
of Ultrasonic Vibrations 

 

We used the resonance vibrations of an elastic lon-
gitudinal wave along the sample in the Laue diffraction
geometry. When vibrations are excited in the crystal, a
standing wave with the spatial deformation-amplitude
distribution shown in Fig. 2a forms in the ideal case
(pure mode). The deformation distribution along the
crystal is seen to have the shape of a half-sinusoid with
nodes at the sample ends and an antinode at its center.
At the center of the crystal, the deformation distribution
is quasi-uniform; at its periphery, a near-linear defor-
mation gradient appears, just as a deformation is cre-
ated in statically bent gradient X-ray monochromators.
The difference from this static case consists in a peri-
odic change in the deformation in time.

The samples were 19.5 

 

×

 

 10 

 

×

 

 0.4 mm

 

3

 

 in size, and

their working surface was elongated in the [ ] axis.
They were part of a composite resonator consisting of a
sample and a piezoelectric crystal resonator glued
together (Fig. 3). An alternating electromagnetic signal
was applied to the lateral faces of the crystal resonator
to create longitudinal elastic vibrations along the crys-
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Fig. 1. 

 

X-ray optical schematic diagram of the experimental setup.
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tal. To this end, a conducting platinum or nickel layer
was deposited on the lateral surfaces by cathode sput-
tering.

The piezoelectric resonators were made of crystal-
line quartz with the (XYtwl-18.5
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/0
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/0

 

°

 

) cut or lan-
gasite with the (XYtwl-0

 

°

 

/0

 

°

 

/0

 

°

 

) cut. Such resonators
are the best to provide longitudinal tension–compres-
sion vibrations almost without parasitic excitation of
other vibration types. For effective ultrasound excita-
tion, the resonance frequencies of the sample and the
exciting piezoelectric plate must be coincident. In this
case, when an alternating electromagnetic signal with a
frequency equal to the resonance frequency is applied,
high-Q vibrations appear in the crystal–piezoelectric
element system. Then, an elastic half-wavelength with
a deformation maximum at the center of the crystal is
along the length of each plate (Fig. 2a). If parasitic
vibrations are not excited, the deformation amplitude is
a simple sinusoidal function in space and time (see
Fig. 2b). The interface contains a deformation node;
therefore, we can retain the high-Q state of the reso-
nance system and rather simply generate high vibration
amplitudes.

The resonance frequency of the germanium plate
was 126 kHz. The sizes of the piezoelectric elements
were chosen so that the resonance frequencies were
equal, since vibration excitation was most effective in
this case. To generate a pure vibration mode, the width
of the piezoelectric element was several times smaller
than its length. Using this experimental scheme, we can

measure a diffraction reflection curve (DRC) averaged
over the ultrasound period, i.e., the angular dependence
of the intensity of the diffracted X-ray beam for a small
rotation of the sample about the X-ray beam.

 

2.2. Reflected-Beam Detecting Unit 

 

The unit for detecting the intensity of the diffracted
X-ray beam consisted of a scintillation detector of
X-ray quanta, an amplifier with a discriminator, and a
stroboscopic system (Fig. 4). This scheme allowed us to
count X-ray quanta reflected by the crystal under study
both continuously and periodically. The counting sys-
tem processed and converted signals from the detector,
and the stroboscopic system differentiated them with
respect to time (i.e., presented them as a function of the
crystal vibration phase).

In the stroboscopic experiments, a synchronizing
signal from the sinusoidal-signal generator that excited
the crystal resonator was applied to a pulse generator,
whose main purpose was to form a pulse displaced in
phase with respect to the synchronizing signal. The
pulse generator generated pulses having the crystal-res-
onator vibration frequency and a controlled phase shift
with respect to crystal-resonator vibrations (the vibra-
tion phase was set to an accuracy of 10%). According
to each coming pulse, the coincidence circuit allowed
the counting system to count the X-ray quanta reflected
by the sample. The counting time (the time of recording
signals from the detector) was set in the coincidence
circuit and was one-tenth of the resonator vibration
period. Using this scheme, we could detect the dif-
fracted X-ray beam only at a given resonator vibration
phase.

3. EXPERIMENTAL RESULTS

We experimentally studied X-ray-acoustic interac-
tion during the excitation of long-wave ultrasound with
and without stroboscopic analysis. As noted above, in
the absence of excited parasitic vibrations, the defor-
mation amplitude should be a simple sinusoidal func-
tion in space and time. If the crystal length is much
larger than the X-ray beam width, we can change the
distribution (gradient) of the ultrasonic-deformation
amplitude within the X-ray beam width by moving the
crystal with respect to the X-ray beam.

 

3.1. Time-Integrated Measurements 

 

The evolution of DRC measured when the position
of the X-ray beam is scanned from the free end of the
sample to the place of gluing with the piezoelectric
transducer without stroboscopy gives information on an
actual deformation distribution along the crystal. The
sample thickness meets the conditions of the Borrmann
effect with an absorption factor 
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 12 (where 
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 is the
linear absorption factor and 
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 is the sample thickness).
The samples, i.e., the germanium plates, have a high
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Fig. 2. 

 

(a) Estimated spatial distribution of the deformation
amplitude in the resonator and sample and (b) the time vari-
ation of the deformation. The hatched region demonstrates
the area illuminated by the beam of the vibrating crystal.
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Schematic diagram of the composite resonator.
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quality: the DRC half-width is close to the theoretical
value and does not exceed 6

 

″

 

 along the whole plate (the
angle measurement error was less than half a percent,
and the intensity measurement error was less than one
percent). The only exception is a region about 3 mm
wide next to the place of gluing with the piezoelectric
transducer, since it excites ultrasonic deformation. In
this region, the DRC differs from a Gaussian shape and
has a strongly broadened asymmetric shape caused by
a nonuniform static mechanical deformation in the ger-
manium crystal. When ultrasound is turned on, the
DRC width increases and the integrated intensity
remains the same. The DRC is found to change signifi-
cantly depending on the X-ray beam position on the
crystal. We measured the dependence of the DRC half-
width on the X-ray beam coordinate on the sample
(Fig. 5). As follows from Fig. 5, short-wave modulation
is superimposed on the pure deformation mode, when
the half-wavelength of excited ultrasound is along the
sample length. This finding indicates the excitation of
additional parasitic vibrations and allows us to make
preliminary conclusions regarding a real deformation
distribution in the sample.

As follows from Fig. 5, the wavelength of the para-
sitic harmonic is 2.5 mm. This distance is much larger
than the X-ray beam width on the crystal (0.2 mm).
Note that this modulation substantially increases the
deformation gradient in some areas of the crystal across
the X-ray beam width. On the other hand, using this
modulation, we can create a situation where the acous-
tic deformation compensates for the static deformation

and where the total deformation becomes virtually uni-
form in a certain portion of the sample.

When ultrasound is turned on, the DRCs in regions
close to deformation maxima are strongly broadened
(by almost an order of magnitude at the ultrasound
amplitudes used) (Fig. 6). In regions with a strong lin-
ear ultrasound-deformation gradient, the DRC shape is
asymmetric.

We detected a rather interesting effect in a statically
stressed region (near the place of gluing with the piezo-
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 General experimental scheme for studying the effect of an ultrasonic wave on X-ray diffraction in the crystal.
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Dependence of the DRC half-width on the position
of an illuminated site on the crystal and the assumed defor-
mation distribution in the case of a pure deformation mode.
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electric transducer). In this region, the DRC has a trian-
gular shape with a large half-width when ultrasound is
turned off. If ultrasound is turned on, the rocking curve
changes its shape from an asymmetric triangular with a
half-width of 50

 

″

 

 to an almost Gaussian shape with a
half-width of 15

 

″

 

 (Fig. 7).

 

3.2. Stroboscopic Measurements 

 

We performed time-resolved (stroboscopic) mea-
surements in several crystal regions with characteristic
deformation distributions. First, this is a central region
with a quasi-uniform deformation distribution across
the beam aperture (region 1). Two other chosen regions

have a gradient deformation distribution. One of them
is near the free end (region 2), where the DRC half-
width without ultrasound is close to the theoretical half-
width. The other region (region 3) is chosen near the
place of gluing to study the effect of interaction
between static and dynamic deformations. In each
region, we measured a series of DRC as a function of
the resonator vibration phase. The equipment used
allowed us to perform stroboscopic measurements with
a given delay.

 

Region 1.

 

 The DRCs measured when an X-ray
beam passes through the center of the germanium plate
at various resonator vibration phases are slightly broad-
ened (Fig. 8). The DRCs measured at phases 

 

ϕ

 

 = –

 

π

 

/2
and 

 

π

 

/2 are shifted –20

 

″

 

 and +20

 

″

 

 with respect to the
DRC recorded at 

 

ϕ

 

 = 0. These shifts can explain the
broadening of the DRC recorded without stroboscopy.

In the germanium crystal, the Bragg condition
(more specifically, the Bragg angle) changes because of
a periodic change in the lattice parameter, and the cen-
ter of DRC shifts with respect to the normal (zero) posi-
tion. In this case, the maximum shift at the center of
DRC is 40

 

″

 

; the corresponding change in the lattice
parameter is 0.0023 Å; and the relative change is
0.11%.

 

Region 2.

 

 We also carried out measurements at
three characteristic values of the vibration phase in the
region near the free end of the crystal, where a linear
deformation gradient is assumed to occur. The results
are shown in Fig. 9. The DRC corresponding to a zero
vibration phase is the slightly broadened DRC of the
germanium crystal in the absence of ultrasound vibra-
tions. The curves corresponding to vibration phases 

 

ϕ

 

 =
–

 

π

 

/2 and 

 

π

 

/2 were recorded at the instant of the maxi-
mum deformation. They have a complex asymmetric
shape that is close to a distorted asymmetric triangle.
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DRC for Ge(220) at different ultrasound powers. The
ultrasound intensity is indicated in percent of the maximum
power: (
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) 100% power.
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Effect of ultrasound on the DRC shape of the Ge
crystal at the place of gluing with the crystal resonator:
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The DRC half-width is several times that of the ideal
germanium crystal. An analysis of the DRC suggests
that, within the X-ray beam width, the deformation is
nonuniform and the gradient changes its sign as the sign
of the generator vibration phase changes.

Region 3. Figure 10 shows DRCs for the same
vibration phases but in the region near the boundary
with the piezoelectric element, where the DRC of the
unexcited crystal was strongly and asymmetrically
broadened because of gluing-induced stresses. In this
region, as in the previous case, the ultrasound-induced
deformation gradient is almost linear. The curve mea-
sured at ϕ = 0, as in the previous cases, agrees well with
the curve measured without stroboscopy. It has a dou-
ble-humped shape with a small dip at its center and
maxima spaced approximately 100″ apart. The DRC
measured at ϕ = –π/2 has a similar shape, but the inter-
maximum distance increases approximately to 140″.
The amplitude of the higher maximum decreases, and
the amplitude of the lower maximum increases by a
factor of 1.5. The most interesting effect is observed at
a vibration phase ϕ = π/2, where the amplitude of the
higher maximum increases by about an order of magni-
tude, and the lower maximum almost disappears. The
intermaximum distance decreases to 60″. An analysis
of these curves suggests that, at different signs of defor-
mation gradients, the ultrasound-induced dynamic
deformation partly compensates for the static deforma-
tion and that the dynamic deformation enhances the
static deformation if their signs coincide.

4. THEORY

In our experiment, the deformation of the crystal
substantially breaks the space uniformity in the direc-
tion normal to the X-ray beam propagation direction;
therefore, the plane wave method, which is usually
applied to calculate the angular dependences of the
X-ray intensity in the case of diffraction in ideal crys-
tals, is invalid in this case. It should be replaced by the
general scheme developed for the calculation of X-ray
topograms or phase-contrast images (see [11, 12]). In
this scheme, a coherent radiation component is sepa-
rated in the first stage; it is the monochromatic compo-
nent of the spherical wave emitted by individual atoms
in the anode of an X-ray tube or by orbital electrons in
the case of synchrotron radiation. The propagation of
this wave along a preferred trajectory (optical axis) is
described by Kirchhoff’s equations in space and by the
Takagi equations in crystals. At the detector, the electric
field (amplitude) of this wave and the local intensity
(the amplitude modulus squared) depend on the coordi-
nates, and this dependence can be measured with a pho-
tographic film or a position-sensitive detector. If the
detector counts all photons, the recorded dimensionless
intensity (the number of photons per measurement
time) is an integral of many parameters with respect to
the coherent intensity. The differential intensity should
be integrated with respect to all wavelengths, to the

source size with allowance for the transverse position
of each atom, and to the detector window size. More-
over, we can use the Huygens–Fresnel principle and
introduce a propagator for not only space but also for a
crystal to describe the diffraction of a point source by
the crystal surface.

We have actualized this calculation scheme, and we
will use it in our next works. In this work, deformation
in the sample changes very slowly over transverse dis-
tances comparable with the region of diffraction scat-
tering of a point source located on the sample surface
(the so-called Borrmann delta). Moreover, due to suffi-
ciently strong absorption, the transverse size of the dif-
fraction region becomes even narrower. Therefore, by
making allowance for the relatively large sizes of the
source and the slit that limits the beam in front of the
crystal, we can use the so-called “ray” approximation
(not to be confused with geometrical optics used for
coherent radiation) to ensure a reasonable accuracy. In
this approximation, independent trajectories of a coher-
ent X-ray beam in space are considered for each wave-
length and each transverse coordinate (point) in the
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source; when this beam enters the crystal, it is dif-
fracted by a local region in the crystal as a plane wave.

The result of diffraction of such a local coherent
X-ray beam that meets a crystal monochromator and a
sample is a function R(∆θ(s)) that describes the diffrac-
tion reflection curve. This function is dimensionless
and presents the convolution of the reflection curves of
the monochromator and sample with allowance for the
local misfit of the lattice parameters and the angular
positions of these two crystals. It is important that this
function is independent of the incident-radiation fre-
quency for a dispersion-free scheme. More specifically,
the argument is the difference in the Bragg angles in the
sample and monochromator, which depends on the
coordinate of the incident beam on the sample, since
the Bragg angle depends on the coordinate along the
plate surface due to a deformation in the sample. In this
approach, all the coherent properties of the radiation
enter in this function, and various trajectories of the
“rays” that correspond to different source points, differ-
ent frequencies, and different detector coordinates are
assumed to be incoherent.

For simplicity, instead of a coordinate x on the crys-
tal, we use a coordinate s on the slit located in front of
the crystal. These coordinates are related by a ray tra-
jectory and are at the opposite ends of the trajectory
from the slit to the crystal. Since the slit is usually
located normal to the optical axis, we have

where C is the coefficient that is slightly lower than
unity and is equal to the ratio of the source–slit to
source–crystal distance along the ray trajectory. Thus,
we obtain

where ∆θ0 is the angle of rotation of the sample about
the monochromator; in other words, this is a parameter
changing in experiment. On the other hand, ∆d(s) is the
change in the interplanar spacing in the sample as com-
pared to the monochromator. This parameter depends
on the crystal deformation, and it is not known in
advance.

We introduce a dimensionless normalized function
B(δE) to describe the spectral line of the X-ray source as
a function of δE = ∆E/E, where E is the photon energy.
For the sake of simplicity, we approximate the slit and
source by rectangles of widths S and P, respectively,
located normal to the trajectory, and the coordinate on
the source is denoted by p. Each trajectory begins at a
point p on the source and ends in a point s on the slit. In
the middle section, the trajectory changes its direction
upon reflection by the monochromator, and the point of
reflection by the monochromator depends on the pho-
ton frequency. Reflection occurs in a very narrow
region, which serves as a basis for the application of the
ray approximation. Having passed through the slit, the
beam broadens substantially after Laue diffraction in

s Cx θB,cos=

∆θ s( ) ∆θ0 ∆d s( )/s( ) θB,tan–=

the crystal; however, this is not important for us, since
the detector records the integrated intensity. The only
important parameter is the trajectory coordinate in the
crystal. When considering all possible coordinates for
the signal measured experimentally, we obtain the for-
mula

(1)

Here, the left-hand side contains the dimensionless
integrated intensity (the number of photons); δ(x) is the
delta function; and LB = L , where L is the source–
sample distance; and I0 is the differential intensity of
the incident radiation per unit transverse source length
for the whole spectral line width. Like the delta func-
tion, this integrated intensity has the dimension of
reciprocal length. Note that, in the absence of deforma-
tion, all integrals only give the coefficient of propor-
tionality, and the result is equal to I0PR(∆θ0).

In our case, certain simplification can be made,
since the R(∆θ(s)) function is independent of both the
source coordinate and the photon energy. Due to the
presence of the delta function, one integral is easily
computed, and the result can be written in the form

(2)

Formulas (1) and (2) have common features, and the
result depends substantially on the source and slit sizes
through the F(s) weight function.

In our case, P/2 = S/2 = 100 µm and LB = 63.5 ×
0.18 cm = 11.4 cm. Thus, for the center of the slit
(s = 0), the maximum argument of the function under
the integral taken over the source coordinates is equal
to 10–3. This value should be compared with the half-
width of the MoKα1 spectral line used in the experi-
ment, which is equal to 3 × 10–4 [13]. It is obvious that,
at these parameters, the F(s) function is equal to the
integrated value of the spectral function virtually
throughout the whole slit width, and it only halves at
the slit edges. To a first approximation, we may neglect
its shape and change it into unity; then, we have

(3)

With this formula, we can rather simply interpret the
experimental curves. The reflection intensity upon dif-
fraction is independent of both the radiation wave-

I ∆θ0( ) I0 p s δEB δE( )d

∞–

∞

∫d

S/2–

S/2

∫d

P/2–

P/2

∫=

× δ s p– LBδE–( )R ∆θ s( )( ).

θBtan

I ∆θ0( ) I0LB
1– sF s( )R ∆θ s( )( ),d

S/2–

S/2

∫=

F s( ) pB s p–( )/LB( ).d

P/2–

P/2

∫=

I ∆θ0( ) I0 sR ∆θ s( )( ).d

S/2–

S/2

∫=
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length and the position of a point source, and it is only
specified by the local difference in the Bragg angles in
the crystal and monochromator. The summation of the
local reflection coefficients does not depend on the tra-
jectory of a certain ray, and it is only determined by the
total illumination of each point inside the slit (and,
hence, on the crystal surface). This illumination is vir-
tually uniform inside the space limited by the slit. If the
deformation is uniform inside the beam width, the
experimental curve should be equal to the curve of the
ideal crystal, and the peak position can shift if the
deformation is nonzero. This experimental result seems
to be obvious. If the deformation is nonuniform inside
the beam width, we have to integrate the reflection
intensity with respect to the beam width by making
allowance for the local difference in the Bragg angles at
each point.

The experiment shows that some curves have a
width well above the width of the reflection curve of the
undeformed crystal. In terms of the theoretical model
proposed, this means that the deformation in the sample
changes sufficiently strongly inside the beam width, so
that the region of a changed Bragg angle is significantly
larger than the width of the R(dθ) function. When ana-
lyzing such curves, we may neglect the width of the
R(∆θ) function and replace it by the R0δ(∆θ) function,
where R0 is the integral of the reflection curve of the
undeformed crystal. From a physical standpoint, this
means that only a part of the beam width having the
corresponding Bragg angles is reflected rather than the
whole beam width being reflected. The real intensity
for every angle of crystal rotation is determined by the
width of this part. Assuming that the deformation gra-
dient inside the beam width does not change its sign
and using this approximation, we obtain the simple for-
mulas

(4)

where C is a normalizing constant to be easily deter-
mined from the sizes of the angular and spatial regions.

The t parameter specifies the local deformation, and
the t(s) function describes the desired deformation pro-
file within the beam width. In real practice, we first
determine

(5)

where t0 and t1 are the boundaries of the angular region
with a noticeable intensity between two pronounced
slopes. The desired t(s) function can readily be deter-
mined graphically. It directly demonstrates an interpla-
nar-spacing profile in the beam width.

t ∆d/d( ) θBtan ∆θ0, ds/dt CI t( ),= = =

s t( ) S/2– C xI x( ),d

t0

t

∫+=

C S xI x( )d

t0

t1

∫ 
 
 

1–

,=

This simple model is found to reliably reconstruct a
deformation profile within the beam width from an
experimental curve. The experimental curves obtained
in region 3 satisfy the conditions of its applicability best
of all. Figure 11 shows three curves demonstrating such
deformation profiles. The deformation was determined
from the angular position of the crystal, and the zero
mark was set at the same accuracy. The argument is the
position of a point in the illuminated area. The upper
curve was calculated by Eqs. (4) and (5) from the
experimental curve for a phase ϕ = –π/2, and the middle
curve, from the curve for a phase ϕ = 0. It is obvious
that, in the second case, the crystal has only a static
deformation, whereas, in the first case, an ultrasonic
deformation is superimposed on the static deformation.
Both deformations have the same sign, which increases
the lattice deformation.

Note that the purely ultrasonic deformation can be
obtained by the subtraction of the lower curve from the
upper curve. For a phase ϕ = π/2, the result obtained
should be subtracted from the purely static deforma-
tion. The lower curve in Fig. 11 is obtained as a result
of this subtraction. It is seen to have an almost flat long
segment in the region of zero deformation. Therefore,
this region should correspond to a sharp reflection peak
with a width close to the width of the reflection curve
of the undeformed crystal. This behavior was detected
in the experiment (see Fig. 10). Thus, the compensation
of static and dynamic deformations can be described in
terms of the model proposed despite the fact that the
assumption of a weakly changing deformation within a
dynamic diffraction region lies on the boundary of
applicability.

The theoretical analysis supports the assumption
that, apart from the fundamental long-wave harmonic,
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Fig. 11. Deformation profiles calculated from the experi-
mental data for the region near the place of gluing with the
resonator (see Fig. 10).
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a parasitic harmonic with a smaller spatial period is
excited in the crystal.

5. CONCLUSIONS

We were the first to experimentally show the possi-
bility of both uniform and gradient periodic time mod-
ulation of the lattice parameter by long-wave ultra-
sound. This possibility allowed us to electronically con-
trol the angular position and the spatial structure of an
X-ray beam. When ultrasound is excited in a composite
resonator with a thin sample to be measured, we
detected a parasitic deformation with a significantly
smaller period. This issue has to be studied in more
detail. The static deformation was shown to be compen-
sated for by an ultrasound-induced dynamic deforma-
tion in the crystal.

We developed a simple theoretical model for X-ray
diffraction by a crystal with a spatially nonuniform
deformation that is induced by a long-wave ultrasonic
wave along the sample surface. Using this model, we
described the experimental curves even in the case
where deformation changes relatively rapidly.

ACKNOWLEDGMENTS

We thank O.P. Aleshko-Ozheskiœ, A.A. Lomov, and
E.Kh. Mukhamedzhanov for their assistance in the
experimental work and for helpful discussions of the
results.

This work was supported by the Russian Foundation
for Basic Research, project no. 04-02-0817 ofi-a.

REFERENCES

1. I. R. Éntin, Pis’ma Zh. Éksp. Teor. Fiz. 26, 392 (1977)
[JETP Lett. 26, 269 (1977)].

2. A. Hauer and S. J. Burns, Appl. Phys. Lett. 27, 524
(1975).

3. D. V. Roshchupkin, R. Tucoulou, M. Brunel, and
V. V. Shchelokov, in Proceedings of All-Russian Meet-
ing on X-ray Optics (Nizhni Novgorod, 1999), Vol. 1,
p. 83.

4. D. Shilo, E. Lakin, E. Zolotoyabko, et al., Synchrotron
Radiat. News 15, 17 (2002).

5. E. Zolotoyabko and J. P. Quintana, Rev. Sci. Instrum. 75,
699 (2004).

6. R. Tucoulou, D. V. Roshupkin, O. Mathon, et al., J. Syn-
chrotron Radiat. 5, 1357 (1998).

7. M. A. Navasardyan, J. Appl. Crystallogr. 34, 763 (2001).
8. V. L. Nosik and M. V. Kovalchuk, Nucl. Instrum. Meth-

ods Phys. Res. A 405, 480 (1998).
9. V. L. Nosik and M. V. Kovalchuk, Poverkhnost, No. 1, 91

(2000).
10. M. V. Koval’chuk, É. K. Kov’ev, and Z. G. Pinsker, Kri-

stallografiya 20, 142 (1975) [Sov. Phys. Crystallogr. 20,
81 (1975)].

11. V. G. Kohn, I. Snigireva, and A. Snigirev, Phys. Status
Solidi B 222, 407 (2000).

12. V. G. Kon, Zh. Éksp. Teor. Fiz. 124, 224 (2003) [JETP
97, 204 (2003)].

13. M. A. Blokhin and I. G. Shveœtser, X-ray Spectrum
Handbook (Nauka, Moscow, 1982), p. 376 [in Russian].

Translated by K. Shakhlevich

Spell: ok


