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Abstract—A theory is developed of image formation with an X-ray lens that consists of a large number of ele-
ments. Each element has a biconcave parabolic profile and weakly refracts an X-ray beam. Since such a lens
can have a relatively large length comparable to the focal length, the thin-lens approximation is inapplicable.
An exact expression for the propagator of a continuously refractive lens is derived that describes the transfer of
radiation through a refractive parabolic medium. We calculate the image propagator that describes the focusing
of a parallel beam and the image transfer (the focusing of a microobject), as well as the Fourier transform of
the transmission function for a microobject with a lens, is calculated. The effective aperture of an X-ray lens is
completely determined by the absorption of radiation and does not depend on its geometrical cross-sectional
sizes. If we write the complex refractive index as n = 1 – δ + iβ, then the beam diameter at the focus is approx-
imately a factor of 0.8β/δ smaller than the diameter of the effective aperture, with the index depending only
slightly on the wavelength. A continuously refractive lens has no aberrations in the sense that all of the rays that
passed through the lens aperture are focused at a single point. The lens can focus radiation inside it and has the
properties of a waveguide; i.e., it can reconstruct the beam structure for some lengths to within the absorption-
caused distortions. Nonuniform X-ray absorption in the lens leads to the interesting visualization effect of trans-
parent microobjects when their image is focused. In this case, the phase shift gradient produced by the microob-
ject is imaged. We discuss the properties of the Fourier transform pertaining to the absorption of radiation in
the lens. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The focusing of electromagnetic radiation by refrac-
tive lenses is of great importance both in everyday prac-
tice and in scientific research. In particular, the human
eye has a lens in its structure that focuses visible light
at various distances. A microscope and a telescope
extend the vision of the world to mini- and macrosizes,
respectively. Because of its high penetrability, hard
X-ray radiation with photon energies E from 10 to
50 keV allows the internal structure of microobjects to
be studied by nondestructive methods. Clearly, the
development of effective refractive lenses for hard
X-rays could significantly enhance the possibilities of
scientific research into the structure of matter in many
fields of science. However, this could not be done for
100 years since the discovery of X-ray radiation mainly
for two reasons. First, the refractive index of X-rays is
very close to unity. Second, all materials absorb X-ray
radiation. For example, for aluminum and E = 25 keV,
the complex refractive index is n = 1 – δ + iβ, where δ =
8.643 × 10–7 and β = 1.747 × 10–9.

The problem of weak refraction was first solved in
1996 [1] by using compound lenses made up of a long
row of elementary lenses. Each elementary lens has a
biconcave shape and a radius of curvature R on the
order of 1 mm that is large enough for it to be easily
produced. Accordingly, the focal length of such a lens,
1063-7761/03/9701- $24.00 © 20204
F1 = R/2δ, is very large and can reach hundreds of
meters. In this case, the focal length of a compound lens
with N elements is F = F1/N. Therefore, the focal length
can be decreased to a value acceptable for experiments
by increasing the number of elements. Fortunately,
Ren < 1 for X-rays; as a result, the focusing lens is
biconcave. In this case, the thickness of the material in
the central part of the lens is small compared to the
absorption length. Nevertheless, absorption does exist
and causes both an overall reduction in the beam inten-
sity and a restriction of the aperture of X-ray compound
refractive lenses. The nonuniform absorption of radia-
tion in an X-ray lens is a new property compared to
lenses for visible light, which leads to interesting prop-
erties of the image, as we show below.

The relatively small aperture of an X-ray lens (frac-
tions of a millimeter) is not a drawback because the
X-ray beams generated by synchrotron radiation
sources have small cross-sectional sizes and weak
divergence. Thus, on third-generation (ESRF, APS,
SPring-8) synchrotron radiation sources, the vertical
size of the emitting region does not exceed 30 µm,
while the distance from the source to the sample is
more than 50 m. At present, many papers in which var-
ious methods of producing compound refractive lenses
for X-rays have been published. The simplest method
involves drilling a row of circular holes to obtain a lin-
003 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) A compound refractive X-ray lens and (b) the parameters of an individual lens element.
ear focus [1] or two mutually perpendicular rows of
holes to obtain a point focus [2–4]. An advantage to
such lenses is their extremely low expense; drawbacks
are the high surface roughness, the spherical aberra-
tions, and the anomalously large length for a large
radius of curvature of the holes. An alternative method
consists in forcing air bubbles into a glue [5]. An “alli-
gator” lens in which the parabolic phase shift profile is
roughly specified by two rows of perpendicular teeth
located at a small angle to the X-ray beam was sug-
gested and tested [6, 7]. Planar lenses in which an accu-
rate parabolic profile with a radius of curvature on the
order of 1 µm is produced in a thin layer on a silicon
surface were produced by using the complex deep
lithography technique [8].

However, compound lenses with circular apertures
and parabolic profiles are of greatest interest in terms of
their imaging properties. The cross section of such a
lens and the parameters of one element are shown in
Fig. 1. The elements of a compound parabolic lens are
produced by embossing a parabolic profile in alumi-
num plates [9–12] or in plates of various plastics (see,
e.g., [13, 14]). The number of elements in a compound
lens can be varied to obtain the required focal length.
Presently, lenses with up to several hundred elements
are used. A lens with 1000 elements or more can be eas-
ily produced. In this case, the length of the compound
lens of L = Np increases with N, while its focal length
F decreases. Clearly, as long as L ! F, the focal length
can be estimated using the thin-lens formula, F ≈
R/2Nδ. Otherwise, the problem of radiation transfer
through a long compound lens with allowance made for
the change in the path of rays in the lens itself should be
solved. This can be easily done by geometrical optics
techniques [15].

The complete solution of the problem must be in the
form of an integral equation similar to the Kirchhoff
integral. If the change in the transverse structure of the
wave field in the thickness p of one element of a com-
pound lens is small, then we may average the density of
the lens material over the length p and treat the lens as
a homogeneous parabolic medium along the beam
direction. A compound lens that satisfies this require-
ment is called a parabolic continuously refractive
F EXPERIMENTAL AND THEORETICAL PHY
(PCR) X-ray lens. The kernel of the integral equation
for such a lens is a continuous function of its length and
has an analytic form, as was first shown in [16].

Here, we present an exact theory of image formation
with a continuously refractive X-ray lens. Apart from
deriving the propagator of the lens itself and studying
its properties, we calculate the image propagator and
analyze the imaging properties of a PCR lens. We show
that a continuously refractive lens has no aberrations in
the sense that all of the rays emerging from a single
point and passing through different parts of the lens
aperture converge to a single point in the image. Its
effective aperture is completely determined by the
absorption of radiation in the lens and decreases with
increasing wavelength. At the same time, the beam
diameter at the focus is approximately a factor of
0.8β/δ smaller than the diameter of the effective aper-
ture, and the numerical coefficient depends on wave-
length only slightly. Nonuniform absorption leads to
the visualization of transparent microobjects when they
are imaged, with the phase shift gradient produced by
the microobject being imaged. We also discuss absorp-
tion-related properties of the Fourier transform of the
transmission function for the object.

2. THE EXACT PROPAGATOR
OF A PARABOLIC CONTINUOUSLY 

REFRACTIVE X-RAY LENS

Let us assume that the synchrotron radiation is pre-
monochromated and has a high degree of spatial coher-
ence. These conditions are satisfied on third-generation
synchrotron radiation sources [17]. We choose the opti-
cal axis along the z axis (see Fig. 1) and represent the
general solution of the Maxwell equation as

where k = ω/c is the wave number in a vacuum. The
function At(x, y, z) describes the transfer of the trans-
verse dependence of the wave field along the z axis.
Since the wavelength λ = 2π/k is many orders of mag-
nitude smaller than the scale length of the X-ray inter-
action with the material λ/δ, we can use the paraxial
approximation with a high accuracy; i.e., we can disre-

E x y z, ,( ) ikz( )At x y z, ,( ),exp=
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gard the second derivative of At with respect to z com-
pared to its first derivative. As a result, substituting this
solution into the Maxwell equation yields the parabolic
equation for the function At(x, y, z)

(1)

where η = 1 – n = δ – iβ = δ(1 – iγ). In the radiation
transfer problem, the wave field on the entrance lens
surface is assumed to be given, i.e., At(x, y, 0) if the z
coordinate is measured from the entrance lens surface.
Inside an actual compound lens, the function s(x, y, z)
is equal to 1 in the regions filled with the lens material
and 0 in the voids (see Fig. 1).

Passing to the limit of a PCR lens implies that the
thickness p of one element tends to zero, while the
number of elements N increases in such a way that the
total length of the lens and its aperture do not change.
The radius of curvature of the surfaces also increases.
In this case, instead of the actual function s(x, y, z), we
may use its average value, which does not depend on
the longitudinal coordinate,

(2)

This dependence holds only within the geometrical lens
aperture of diameter

(see Fig. 1). We are interested in sufficiently long lenses
where the effective working area (effective aperture) of
the lens is determined by the absorption of X-rays in the
lens material and has a size smaller than the geometri-
cal aperture. In this case, we may ignore the edge
effects and formally assume that dependence (2) holds
in the entire region of the transverse xy plane con-
cerned.

After the substitution of  for s, the general solution
of Eq. (1) can be written as the integral equation

(3)

The propagator of a PCR lens, i.e., the kernel of Eq. (3),
is the solution of Eq. (1) with the initial function

where δ(x) is the Dirac delta function. Given the form
of the initial function, it is easy to understand that the
solution can be sought by the separation of variables,

(4)

dAt

dz
-------- –ikηs x y z, ,( )At

i
2k
------

d2At

dx2
----------

d2At

dy2
----------+

 
 
 

,+=

s x y,( ) s0
x2

pR
-------

y2

pR
-------, s0+ +

d
p
---.= =

a 2 R p d–( )[ ] 1/2=

s

At x y z, ,( ) = x' y'PL
t( ) x y x' y' z, , , ,( )At x' y' 0, ,( ).dd∫

PL
t( ) x y x' y' 0, , , ,( ) δ x x'–( )δ y y'–( ),=

PL
t( ) x y x' y' z, , , ,( )

=  ikηs0z–( )PL x x' z, ,( )PL y y' z, ,( ).exp
JOURNAL OF EXPERIMENTAL 
The partial propagator PL(x, x ', z) satisfies the equation

(5)

This equation is formally identical to the Schrödinger
equation for a particle in a parabolic potential if the z
coordinate is substituted with time. In quantum
mechanics, one is usually interested in stationary states
and writes the solution as a series each term of which
contains the product of the functions of each individual
coordinate.

In [16], we obtained a solution in the form of a sim-
ple analytic expression by using the Fourier transform
and recurrent equations for the coefficients of various
powers of x in the argument of the exponent. Below, we
derive the same solution in a more straightforward way.
Taking into account the reciprocity principle, the solu-
tion should be sought in the form of a symmetric func-
tion of the x and x' coordinates. In addition, at small lon-
gitudinal distances, the solution must be close to the
propagator in the empty space, i.e., to the Kirchhoff
propagator,

(6)

which is significant when the lens is illuminated by a
point source. On the other hand, it must contain the
phase factor characteristic of a thin lens when it is illu-
minated by a plane wave. Taking into account these
considerations, we will seek the solution in the form

(7)

with the two unknown functions r(z) and a(z).

The initial condition is satisfied if r(z) ≈ z and a(z) ≈
z2 for z  0. Substituting this form of the solution into
the equation and equating the coefficients of the same
powers of x and x', we obtain the system of two ordinary
differential equations

(8)

whose solution can be easily found:

(9)

dPL

dz
--------- –ik

x2

2zc
2

-------PL
i

2k
------

d2PL

dx2
-----------,+=

PL x x' 0, ,( ) δ x x'–( ), zc
pR
2η
------- 

 
1/2

.= =

P x x'– z,( ) 1

iλz( )1/2
----------------- iπ x x'–( )2

λz
------------------- ,exp=

PL x x' z, ,( ) T x
r
a
---, 

  P x x'– r,( )T x'
r
a
---, 

  ,=

T x z,( ) iπx2

λz
-----– 

 exp=

dr
dz
----- 1 a,

da
dz
------–

r

zc
2

----,= =

r z( ) zc
z
zc

----, a z( )sin 1 dr
dz
-----– 1

z
zc

----.cos–= = =
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Fig. 2. The experimental scheme for imaging an object with an X-ray PCR lens.
As a result, the propagator of a PCR lens can be written
as

(10)

where we denoted

This expression differs from the formula derived in [16]
only by the notation. This notation better takes into
account the symmetry properties of the propagator. If
the PCR-lens length L ! Rezc , then

(11)

where

is the complex focal length of a thin PCR lens. Since we
used the relation F @ L to derive this expression, we
may roughly substitute x for x' in the exponential factor.
In addition, if the second derivative of the incident wave
phase with respect to the transverse coordinates is
much smaller than 2π/λL, then the propagator of the
empty space can be roughly substituted with the delta
function to give

This expression is commonly used in the thin-lens
approximation. Formula (11) gives a more universal
approximation for the thin-lens propagator.

Clearly, a PCR lens for which the parameter γ = β/δ
is at a minimum has the best properties. For this reason,
the actual lenses are made of elements with a small
atomic number Z (lithium, beryllium, carbon, alumi-
num). In virtually all interesting cases, γ < 0.005. If we

PL x x' z, ,( )

=  
1

iλzcsz( )1/2
------------------------ iπ

x2 x'2+( )cz 2xx'–
λzcsz

------------------------------------------- ,exp

sz
z
zc

----, czsin
z
zc

----.cos= =

PL x x' L, ,( )

–iπ x2 x'2 xx'+ +( )
3λFc

----------------------------------- P x x'– L,( ),exp
L → 0

Fc
F

1 iγ–
-------------

zc
2

L
---- R

2Nη
-----------= = =

PL x x' L, ,( ) T x Fc,( )δ x x'–( ).≈
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ignore the absorption, which can be done at least for the
rays near the optical axis, then the waveguide properties
of a PCR lens follow from the exact expression for the
propagator. For

,

we obtain sz = 1 and cz = 0. Therefore, a PCR lens
makes the Fourier transform of the incident wave. For
L = 2L0, the propagator is δ(x + x '); accordingly, the
PCR reproduces the incident wave at the exit in an
inverse form. For L = 3L0, the lens again makes the
Fourier transform but with the opposite sign. Finally,
for L = 2L0, the lens faithfully reproduces the incident
wave. As the PCR-lens length increases further, these
phases are repeated again and again. Since X-rays are
absorbed in the PCR lens, both the image and the Fou-
rier transform are produced in a bounded region within
the gradually decreasing aperture.

3. THE IMAGE PROPAGATOR 
WITH AN ARBITRARILY LONG PCR LENS

In an actual experiment, the object being studied,
the lens, and the detector are at comparatively large dis-
tances from each other, as can be seen from Fig. 2,
which also shows the notation for the distances and the
coordinate axes. Let us consider the more complex
problem of the wave field transfer from the plane
immediately behind the object to the detector plane.
Clearly, the propagator of this problem is also factor-
ized in the x and y coordinates. Therefore, it will suffice
to calculate only the partial image propagator G(xi , xo,
ro, L, ri). It is determined by the convolution of the
propagator for a PCR lens with the Kirchhoff propaga-
tors that correspond to empty space,

(12)

Below, to save space, we omit the longitudinal dis-
tances in the list of arguments for the image propagator.

L L0
π
2
--- LF( )1/2 π

2
--- pR

2δ
------- 

 
1/2

= = =

G xi xo,( )

=  x x'P xi x– ri,( )PL x x' L, ,( )P x' xo– ro,( ).dd∫
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We use the following algorithm to calculate the inte-
grals. Let us first consider the extreme case of a thin
lens where PL(x, x ', L) is substituted with T(x, Fc)δ(x –
x '). Accordingly, the propagator is determined by the
single integral

(13)

This integral reduces to the Fourier transform of the
Gaussian function and is again equal to the Gaussian
function. It is convenient to write the result as

(14)

where we introduced the parameters

(15)

Expression (14) for the image propagator of a thin
lens is identical in form to expression (7) for the prop-
agator of a PCR lens. It immediately follows from this
expression that in the limit γ = 0 and when the condition
rg = 0 (the thin-lens formula) is satisfied, the propagator

where M = ri/ro is the magnification factor. Thus, this
expression reproduces the well-known property of a
thin lens to focus the image when the lens formula
holds:

It is also easy to see that when the condition ao = 1, i.e.,

ri = F, is satisfied, the term proportional to  in the
argument of the exponent vanishes and the propagator
makes the Fourier transform of the wave field located in
the plane immediately behind the object. However, if
the object is illuminated by a point source, then the
Fourier transform of the transmission function for the
object takes place in the focusing plane of the point
source. This property also follows from propagator (14),
but further calculations are required to prove it (see
below).

Substituting expression (7) for the propagator of a
PCR lens into integral (12) yields

(16)

G0 xi xo,( )

=  xP xi x– ri,( )T x Fc,( )P x xo– ro,( ).d∫

G0 xi xo,( )

=  T xi

rg

ai

----, 
  P xi xo– rg,( )T xo

rg

ao

-----, 
  ,

rg ro ri

rori

Fc

--------, ai–+
ro

Fc

-----, ao

ri

Fc

-----.= = =

G0 xi xo,( ) M1/2δ xi xoM+( ),=

ro
1– ri

1–+ F 1– .=

xo
2

G xi, xo( ) xP xi x– ri,( )T x
rL

aL

-----, 
 d∫=

× x'P x x'– rL,( )T x'
rL

aL

-----, 
  P x' xo– ro,( ),d∫
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where rL = zcsL and aL = 1 – cL . Here, the integral over
x' is equivalent to integral (13) but with different expres-
sions for the parameters. Substituting solution (14) for
the integral again yields an integral of type (13) with
new parameters. As a result, making appropriate alge-
braic transformations, we derive an exact expression
for the image propagator of an arbitrarily long PCR lens
in a form similar to the case of a thin lens,

(17)

but now the parameters are

(18)

Interestingly, the formulas for the new parameters
can also be written in a form similar to the case of a
thin lens,

(19)

if we introduce the generalized complex distances

(20)

The result is of great importance because it shows that
the imaging properties of an arbitrarily long PCR lens
are essentially the same as those of a thin lens. In par-
ticular, such a PCR lens has no aberrations in the sense
that all ray paths converge at a single point, in contrast,
for example, to a lens with a spherical profile. If there
were no absorption, then the lens would focus a point
source to a point. The blurring of the image point due
to the absorption of radiation and the finite aperture is
usually attributed to the finite lens resolution. On the
other hand, the simple analytic expressions for the gen-
eralized distances allow the appropriate corrections that
should be made to the experimental scheme to be easily
determined.

For example, in the limit of a small lens length com-
pared to the focal length, L ! F, expanding the sine and
the cosine in a power series yields

(21)

This result, which was obtained previously [18] in an
approximate and complicated way, is a natural extreme
case of the exact theory. It follows from this result that
even when the PCR lens has an appreciable length L
(tens of centimeters) that satisfies the condition L ! F,

G xi xo,( ) T xi

r̃g

ãi

----, 
  P xi xo– r̃g,( )T xo

r̃g

ão

-----, 
  ,=

r̃g ro ri+( )cL zc

rori

zc

--------– 
  sL,+=

ãi 1 cL–
ro

zc

----sL, ão+ 1 cL–
ri

zc

----sL.+= =

r̃g r̃o r̃i

r̃or̃i

F̃c

--------, ãi–+
r̃o

F̃c

-----, ão

r̃i

F̃c

-----,= = =

r̃o ro bL, r̃i+ ri bL,+= =

F̃c
zc

sL

----, bL F̃c 1 cL–( ).= =

r̃o ro
1
2
---L, r̃i   =  r i 

1
2
--- L , F ˜
 c + +  F c 

1
6
--- L .+= =
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it can be treated as a thin lens located in the middle with
a sole difference. More specifically, the focal length
calculated using the thin-lens formula must be
increased by one-sixth of the actual lens length.

On the other hand, at zero distances, the image prop-
agator is identical to the propagator of a PCR lens. Note
yet another obvious property of the image propagator:
its convolution with the Kirchhoff propagator from a
point source P(xo – xs, rs) is described by the same
expression (17) in which xs should be substituted for x0
and ro + rs should be substituted for ro . The relation

(22)

that follows from definitions (19) is used to prove this
property.

4. ESTIMATING THE APERTURE
AND FOCUS SIZES FOR A PARABOLIC 

CONTINUOUSLY REFRACTIVE X-RAY LENS

Exact knowledge of such parameters as the size of
the effective aperture of an X-ray lens and the size of
the focal spot when a plane wave is focused is of con-
siderable practical importance. In the optics of visible
light, the aperture is determined by the geometrical
sizes of the lens, i.e., by the area through which the rays
passing then converge to a focus. For a thin absorbing
X-ray lens, it will suffice to consider the intensity dis-
tribution of the radiation immediately after the lens
when it is illuminated by a plane wave oriented along
the optical axis. In this case, the effective aperture is
determined by the absorption of radiation in the lens
material. Since the total wave intensity in empty space
is conserved, simple energy relationships exist between
the aperture and focus sizes. For the arbitrarily long
lens considered here, this approach does not work,
because the incident wave can be partially or com-
pletely focused in the lens itself. Therefore, the inten-
sity distribution of the radiation immediately behind the
lens does not give us any idea of the actual lens aper-
ture. The aperture of a long PCR lens can be defined in
terms of the properties of the propagator G(xi , xo). Let
us consider a different, simpler approach based on
energy considerations. By the effective lens aperture
we mean the total intensity of the radiation at the focus
that is equal to the intensity of the plane wave that
passed through the lens without being absorbed. In this
case, we disregard the parasitic absorption in the thin
parts of the elementary lenses of thickness d (see Fig. 1).

Below, we restrict our analysis to the case where the
lens length is

ão ãi ãoãi–+
r̃g

F̃c

-----=

L L0≤ π
2
---Lc, Lc LF( )1/2 pR

2δ
------- 

 
1/2

.= = =
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
                                             

In this range of lengths, the lens focuses the incident
wave in space at a distance ri > 0. The intensity distri-
bution of the radiation in the space behind the lens
when it is illuminated by a plane wave can be analyzed
to determine the focus sizes. The two transverse coor-
dinates are again factorized, and it will suffice to con-
sider the distribution along the x axis. Clearly, the wave
amplitude can be obtained by calculating the convolu-
tion of propagator (17) with a coordinate-independent
unit function, i.e., by integrating over the xo coordinate.
The integral reduces to the Fourier transform of the
Gaussian function, and it can be calculated exactly. As
a result, using relation (22) we obtain

(23)

Note that the result does not depend on the distance ro .
From a physical point of view, it is clear that this
expression can also be derived directly from the image
propagator (17) by considering a point near the optical
axis at an infinite distance ro and dividing it by the
amplitude of the Kirchhoff propagator at the same dis-
tance, because a point source at an infinite distance
gives a plane wave in front of the lens aperture.

As follows from (23), a plane wave in front of the
lens transforms into a Gaussian wave behind the lens at
all distances from the lens. For an arbitrarily long PCR
X-ray lens, all parameters are complex. Since the
absorption parameter γ ! 1, we use the linear (in γ)
approximation for qualitative estimation. With the
adopted constraint on the lens length, we obtain the
relations

(24)

where we introduced the real functions

The intensity reaches a maximum at the distance ri

behind the lens that satisfies the condition

A xi( ) xoG xi xo,( )d∫=

=  
F̃c

F̃c r̃i–
--------------- 

 
1/2

iπ
xi

2

λ F̃c r̃i–( )
-----------------------–exp

=  
zc

zccL risL–
------------------------ 

 
1/2

iπ–
xi

2sL

λ zccL risL–( )
-------------------------------- .exp

sL SL    i γ 
2
--- u L C L , c L –  C L i γ

 
2
--- u L S L ,+ ≈≈  

z

 

c

 

L

 

c

 

1

 

i

 

γ

 

2
---+

 

 
 

 

,=

SL uL, CLsin uL, uLcos L/Lc.= = =

Re zccL risL–( ) LcCL riSL–≈ 0,=
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i.e., ri = FLCL. In this case,

(25)

Using the derived expression, we obtain

(26)

for the total intensity of the focus (effective aperture)
and

(27)

for the full width at half maximum (halfwidth) of the
intensity peak at the focus.

For a thin lens, uL ! 1, it follows from these rela-
tions that

(28)

In the other extreme case, uL = π/2, we obtain

(29)

Thus, defining the effective aperture in terms of the
total intensity of the focus does not lead to any contra-
dictions. For a self-focusing lens, the generalized focal
length is by a factor of 1.57 smaller than the length of
the lens itself. Clearly, this is the minimum focal length
that can be obtained for a lens with a specified radius of
curvature R, thickness of the elementary lens p, and
decrement of the refractive index δ. It follows from the
derived relations that the linear size of the focus is
approximately by a factor of 0.8γ smaller than the linear
size of the effective aperture for all lens lengths, with
the numerical coefficient depending only slightly on the
lens length. Consequently, as the lens length increases,
the sizes of the focus and the effective aperture decrease
proportionally to each other and the degree of beam
compression depends only on the absorption factor γ.

To conclude this section, we give several numerical
values for the parameters of Lengeler aluminum lenses
[9–12] at a photon energy of 25 keV. These lenses have
the following parameters: p = 1 mm, R = 0.2 mm, δ =
8.643 × 10–7, γ = 2.02 × 10–3, and Lc = 34 cm. For the
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lens of 100 elements that was actually used in experi-
ments, L = 10 cm, uL = 0.294, FL = 117.4 cm, and αL =
0.986. In this case, the effective aperture is Aγ = 120 µm
and the lens resolution is sγ = 0.23 µm. These parame-
ters smoothly decrease with the increasing number of
elements. Thus, for a lens of 300 elements, it can be
easily calculated that L = 30 cm, uL = 0.882, FL = 44 cm,
and αL = 0.889. In this case, the effective aperture is
Aγ = 78 µm and the lens resolution is sγ = 0.13 µm.
Although the aperture of a long lens decreases, it has a
better resolution and can be useful in imaging small
objects or their fragments.

5. THE IMAGE OF A POINT SOURCE

Let us consider the imaging properties of an X-ray
PCR lens that follow from propagator (17). In the linear
(in small parameter γ) approximation, the image of a
point source displaced by xo from the optical axis is
focused at the distances that satisfy the condition

(30)

where roL = ro + BL , riL = ri + BL , BL = FL(1 – CL), and
FL is defined in (25). Using the generalized real dis-
tances, this condition can be written as the thin-lens
formula

When condition (30) is satisfied, the parameter 

becomes purely imaginary, and for the parameters 

and , it will suffice to use only the real part, i.e., to
set γ = 0. In this approximation, the propagator takes the
form

(31)

where

(32)

Thus, the propagator is a Gaussian function with the
maximum centered at xi = –xoM. In the general case of
a long X-ray PCR lens, the magnification factor can dif-
fer markedly from the ordinary magnification factor of
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a thin lens proportional to the ratio ri/ro . Accordingly,
the image intensity peak is described by the function

(33)

for which sγ = 1.665σ. The expression for Im  under
the image focusing conditions is simplest in terms of
the ordinary distances:

In terms of the generalized distances, the peak width
parameter is

(34)

where Aγ is the lens aperture defined in (26).

Let us again consider the extreme cases. For a thin

lens where L ! F, the focusing condition is  +  =
F–1, the magnification factor is M = ri/ro , and sγ =
0.47λri/Aγ. For a self-focusing lens with a length L =
(π/2)Lc , the focusing condition, the magnification, fac-
tor, and the halfwidth are given by the expressions

(35)

In the limit ro  ∞, we again obtain (28). On the other
hand, in the limit ri  ∞, both the magnification fac-
tor and the image halfwidth indefinitely increase in the
two cases, but the ratio of the size of the image of a
point to the size of the entire pattern is virtually con-
stant.

Note the following interesting feature of long
lenses. As was shown above, a self-imaging lens has a
length L = πLc = 3.14Lc . On the other hand, a self-
focusing lens is by a factor of 2 shorter, while the length
of the experimental scheme for imaging without mag-
nification is (2 + π/2)Lc = 3.57Lc , which is only slightly
longer. For this reason, there is little point in using
extremely long lenses.
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6. THE FOCUSED IMAGE OF AN OBJECT

In an actual X-ray experiment, a relatively thin
object illuminated by the wave emitted by a point
source located at a distance rs from the object and hav-
ing transverse coordinates xs and ys is imaged with the
lens. In general, the source has finite sizes, but different
points of the source are incoherent. Therefore, the
intensity should be integrated over the source’s coordi-
nates at the final stage of the calculation. In this section,
we restrict our analysis to the case where the distance
from the source to the object is large and the angular
sizes of the source in the object’s plane do not exceed
the object’s characteristic scattering angles. In other
words, the coherent image conditions are satisfied. The
wave field in the object’s image plane referred to the
amplitude of the wave incident on the object can be cal-
culated by using the integral

(36)

where

(37)

the function

is the partial image propagator for the object, and the
function

describes the transfer of radiation through the object,
i.e., the object’s function.

As we have shown above, under the image focusing
conditions for the object’s points (30), the modulus of

(xi , yi , xo, yo), which is considered as a function of
the xo and yo coordinates at a given point (xi , yi) on the
image plane, has a sharp maximum at the point with
(xoi , yoi) coordinates, where xoi = –xi/M and yoi = –yi/M.
Here, as in the preceding section, M = riL/roL . Let us
assume that the complex phase of the object’s function
is a smooth function within the region of the propagator
maximum. In the effective domain of integration, the
object’s function can then be approximated by the
expression

(38)
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with the complex parameters

which depend on the coordinates of the image point.

In this case, the wave field of the image is again fac-
torized,

(39)

and, for example,

(40)

The function A(x)(xi , yi) depends on yi parametrically
via ξix . Approximation (31) cannot be directly used to
calculate the integral, because the expansion in terms of
powers of γ has already been made in it and, therefore,
it is not accurate enough. The expansion in terms of
powers of γ can be made only in the final expressions.
On the other hand, an exact result can be easily
obtained from the following considerations.

The integral differs only by the phase factor from
the convolution of the image propagator with the Kirch-
hoff propagator if we substitute  = xs – rsξix for the
true coordinate of the source xs in the latter. As was
noted above, the convolution of the image propagator
with the Kirchhoff propagator is again equal to the
image propagator in which we should substitute ro + rs

for the distance ro and  for the coordinate xo . In the
expression derived, we should use the image focusing
condition

and we can set γ = 0 in the preexponential term. As
regards the exponent, it will suffice to include the terms
of the zero and first powers of γ. Although the algorithm
is simple, the calculations are cumbersome because
they contain many combinations of many parameters.
To obtain an unequivocal result, it is convenient to
choose the coordinate of the imaged point on the
object, xoi , and the angle of ray exit from the object at
this point, θo, calculated via the phase gradient as inde-
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pendent transverse coordinates. A useful parameter is
also the coordinate of ray entrance into the lens, x0 .
These quantities are defined as

(41)

It is convenient to choose ro and Lc as independent lon-
gitudinal distances. The remaining parameters are
expressed in terms of them as

(42)

Without giving the intermediate calculations, we
immediately write out the result in the linear (in γ)
approximation

(43)

When making the expansion in terms of γ, we assumed

the conditions λrs @ 2π , where σo = σ/M is the width
of the maximum of propagator (31) relative to the inte-
gration variable xo , to be satisfied. In other words, we
assumed that the phase of the incident spherical wave
also smoothly varied in the domain of integration. We
can easily consider the general case, but it is of no prac-
tical interest. As follows from the derived expression,
the phase gradient of the object’s function directly
affects the image intensity. To qualitatively analyze this
effect, let us consider the extreme case of an incident
plane wave (rs  ∞) and assume that the object is
transparent. If the sample is homogeneous, then θo = 0
at all points and the intensity of the radiation in the
image plane is described by the Gaussian function

(44)

If, however, a phase gradient exists at some points of
the sample, then θo = ξix at these points and the intensity
will deviate from law (44); depending on different con-
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ditions, the intensity can be lower and higher than the
background intensity. Thus, a unique opportunity to
visualize transparent objects and to obtain the phase
contrast through the nonuniform absorption of radia-
tion in the lens emerges. Unlike the ordinary phase con-
trast observed on synchrotron radiation sources (see,
e.g., [19–21]), this contrast has no parasitic oscillations
associated with the interference of various rays and
directly allows the local phase gradient produced by the
object to be determined. Abrupt changes in intensity
related to a sharp phase gradient have recently been
observed experimentally in the image of a sample with
a profiled surface [22].

The physical nature of the visualization of the phase
gradient in a sample with an X-ray PCR lens is easiest
to understand in terms of geometrical optics. The ray
from a source with a coordinate xs comes to the sample
at a point with a coordinate xoi . Since the lens formula
holds, all of the rays that emerge from this point at dif-
ferent angles reach a point with a coordinate xi in the
image plane after their passage through the lens. Actu-
ally, however, only one path is realized and the ray
leaves the sample, making an angle θo with the optical
(z) axis. Accordingly, the ray in front of the lens has the
coordinate x0 and angle θo . The ray path x = xt(z) in the
lens satisfies the condition under which at each point of
the path its tangent makes an angle θ = (λ/2π)(dϕ/dx)
with the z axis, where ϕ(x, z) is the phase of the wave
field in the lens. This phase is equal to the phase of the
image propagator (17) if we set γ = 0, ri = 0, and xi =
xt(z) in the latter and substitute z for L. On the other
hand, θ = dxt/dz. The equation for the path is particu-
larly simple if we write it via the derivative of θ. As a
result,

(45)

where x0 and θo are the initial point and initial derivative
on the path. The initial coordinate and initial angle of
the ray as it enters the lens correspond to the parameters
defined by (41). Calculating the absorption coefficient
integrated over the ray path in the lens,

(46)

we obtain a result that matches formula (43). Thus, the
contrast is actually related to the change in the ray path
and the nonuniform absorption in a PCR lens.

Naturally, the overall image of an object contains
both the absorptive and phase contrast and depends on
the two components of the total phase gradient along
the two coordinate axes. Unfortunately, in solving the
inverse problem, the change in intensity alone is not
enough to restore the absorption coefficient and the two
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components of the phase gradient. Additional informa-
tion can be obtained by moving the object relative to the
lens, because different portions of the lens absorb dif-
ferently.

7. THE FOURIER TRANSFORM
OF AN OBJECT WITH A PARABOLIC 

CONTINUOUSLY REFRACTIVE X-RAY LENS

A thin parabolic lens is known from classical optics
to perform the Fourier transform of the function of an
object illuminated by a spherical wave from a point
source in the focusing plane of the point source. Let us
consider this phenomenon for an X-ray PCR lens. We
write the Fourier transform of the object’s function as

(47)

In this case, the amplitude of the wave field in the image
plane is

(48)

where

(49)

is the partial image propagator for the separate compo-
nent of the Fourier transform of the object’s function.
We are interested in the conditions when this propaga-
tor is closest to the delta function.

As was noted in the preceding section, the integral
can be expressed in terms of the image propagator in
which  = xs – xq, xq = qλrs/2π is substituted for xs and

 = ro + rs is substituted for ro . As a result,

(50)
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Thus, the condition for the Fourier transform is identi-
cal to the focusing condition for a point source illumi-
nating the object, i.e., Re  = 0. However, approximate
expression (31) cannot be used directly, because the
propagator is in the integrand and, hence, the omitted
phase factor can play a significant role.

To derive an approximate expression, we represent
the complex coefficients as a series in powers of iγ:

(52)

The focusing condition for a point source then has the
approximate form R0 = 0. In this case, the following
relations hold:

where

and the propagator is defined as

(53)

where

(54)

Thus, each point xi in the source’s image plane can
have an appreciable intensity. It maps a region in the q
space of the sample’s function centered at point q = qi ,
where

(55)

In addition, because of the absorption in the lens, the
Fourier transform of the sample’s function is modified
by the phase factor; i.e., the convolution of the Fourier
transform of the sample’s function with some function
that depends on the parameters of the lens and the
experimental scheme is actually imaged. Nevertheless,
if the sample’s function is periodic and, hence, has a
discrete series of Fourier harmonics whose separation
exceeds the width of the propagator maximum, then the
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image is a system of spots that correspond to individual
harmonics of the Fourier transform of the source’s
function and the size of each spot closely corresponds
to the projected size of the source. The separation
between the spots depends on the distances used in the
experiment and is equal to

A homogeneous sample is a special case for which only
the zero Fourier harmonic exists.

An alternative approach to this problem consists in
analyzing expression (36). The Fourier transform is
obtained if the propagator G(xi , xo)P(xo – xs, rs) does not

contain the term proportional to  in the phase. This
condition can be written as ReC = 0, where

It is easy to verify that in the zeroth (in γ) approxima-
tion, this condition is equivalent to the focusing condi-
tion for a point source written above. In this case, how-

ever, a damped exponential of the type exp(–Im(C) )

remains under the integral. In addition, since  is a
complex quantity, the wave vector of the Fourier trans-
form has a small imaginary part, which depends on the
separation between the object and the lens. The mani-
festation of these features depends on specific condi-
tions and analysis of them is a problem in itself.

REFERENCES

1. A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler,
Nature 384, 49 (1996).

2. A. Snigirev, B. Filseth, P. Elleaume, et al., Proc. SPIE
3151, 164 (1997).

3. P. Elleaume, J. Synchrotron Radiat. 5, 1 (1998).

4. A. Snigirev, V. Kohn, I. Snigireva, et al., Appl. Opt. 37,
653 (1998).

5. Yu. I. Dudchik and N. N. Kolchevskii, Nucl. Instrum.
Methods Phys. Res. A 421, 361 (1999).

6. B. Cederstrom, R. Cahn, M. Danielsson, et al., Nature
404, 951 (2000).

7. D. A. Arms, E. M. Dufresne, R. Clarke, et al., Rev. Sci.
Instrum. 73, 1492 (2002).

8. V. V. Aristov, M. V. Grigoriev, S. M. Kuznetsov, et al.,
Opt. Commun. 177, 33 (2000).

9. B. Lengeler, C. Schroer, J. Tummler, et al., J. Synchro-
tron Radiat. 6, 1153 (1999).

10. C. G. Schroer, T. F. Gunzler, B. Benner, et al., Nucl.
Instrum. Methods Phys. Res. A 467–468, 966 (2001).

∆xi ∆q
λrsMs

2π
---------------.=

xo
2

C
1 ão–
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