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Abstract. We present the diffraction theory for the x-ray compound refractive lens (XCRL) operation as an 
imaging device in the paraxial approximation. We obtain the analytical expression for the image propagator in 
the case of parabolic  XCRL  that allows us to explain the peculiarities of imaging and focusing with the 
XCRL observed previously in the experiments. We propose the enhanced thin lens formula for the relatively 
long XCRL with the longitudinal size L taking into account the linear corrections in L/F where F is the focal 
length in the thin lens approximation. A relatively small aperture of XCRL due to absorption of x rays limits 
the resolution and, in addition, leads to phase effects visualizing the local phase gradient of the radiation wave 
field produced by transparent objects. This opens novel technique of imaging for purely phase objects, which 
is different from the in-line phase contrast imaging techniques. 

 
 
 
1. INTRODUCTION 

Since the first demonstration [1] of the x-ray compound refractive lens (XCRL) for focusing a synchrotron 
radiation beam, the x-ray refractive optics is under extensive development. There are successful attempts to 
develop the refractive optics by means of various approaches. The XCRL with a parabolic profile of surfaces 
is more promising [2-5]. Unlike visible optics, collecting XCRL has a concave shape and the material of the 
lens is always absorbing. The latter leads to a significant limitation of the effective aperture aγ which is 
smaller than the physical transverse size a of the XCRL. This property influences the XCRL operation as an 
imaging device. The XCRL has a rather large longitudinal size L, therefore the thin lens approximation must 
be verified. In most practical cases XCRL satisfies the condition L/F << 1, where F is the focal length in the 
thin lens approximation, so that the linear corrections in L/F are sufficient. 
     In this work we present the diffraction theory for the parabolic planar (1D) XCRL in paraxial 
approximation. We solve the parabolic wave equation in terms of propagators. We calculate analytically the 
intermediate convolutions and obtain the image propagator which connects straightforwardly the wave field 
Ao(x) at the plane just after the object and the wave field Ai(x) at the image (detector) plane . Due to a 
relatively small effective aperture of the XCRL the image propagator stays the gauss function of finite width 
instead of the delta-function. This leads to developing phase or edge enhanced imaging effects, which make 
visible transparent objects at the image plane. We found out that these edge-enhanced images are associated 
with the local phase gradient of the wave field Ao(x). Moreover, these images are sensitive to the sign of the 
phase gradient. This opens quite a new technique of microimaging for purely phase objects, which is 
different from the traditional phase contrast microimaging techniques. 
 
2. DERIVATION OF THE IMAGE PROPAGATOR 

We consider the in-line experimental setup. A fragment of the setup is shown schematically in the Fig. 1(a). 
For the sake of simplicity we restrict ourselves to the case of planar XCRL as an array of chips with a 
parabolic profile of surface along the x-axis and consider two-dimensional space (x, z). Substituting the wave 
field strength as  E(x,z) = exp(ikz) A(x,z)  into the Maxwell’s wave equation, where  k = 2π/λ  is a wave 
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number, λ is a wave length and applying the paraxial approximation, we arrive to the parabolic equation for 
A(x,z) inside the XCRL as 
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where we took into account that the length of the individual chip p = L/N = a2/4R + d is very short compared 
to the interaction length Lint = 1/kδ and made an averaging of the equation within the distance p, so that the 
z-dependence of the complex refractive index n(x,z) vanishes. Here δ is a decrement of refractive index, β is 
an index of absorption of the XCRL material, N is a number of the chips in XCRL, F = R/2Nδ is the focal 
length of XCRL in the thin lens approximation. The parameters L, R, a and d are shown in the Fig. 1. 

 
Figure 1. Geometrical parameters of the experimental setup (a) and of individual refractive lens chip (b). 

     Outside the XCRL, i. e. in the free space on the distances ro (between the object plane and XCRL) and ri 
(between the XCRL and the image plane) we have the same equation where δ = β = 0. A general solution of 
such equation A(x,z) = P(x − x0, z) * A0(x0) can be written as a convolution of the boundary wave field A0(x) 
and the propagator P(x,z) = (iλz)−1/2exp(iπx2/λz) where z is counted from the boundary plane. Inside the 
XCRL in the zero approximation in L/F we can neglect the second term in the right-hand side of eq.(1). 
Then we obtain the XCRL propagator as Pl(x − x0, z) = exp[−ikη(x)z]δ(x − x0) where δ(x) is the Dirac delta-
function. Such expression is completely equivalent to the thin lens approximation. To simplify the problem 
let us consider first this case. 
     The propagators allows one to obtain immediately the solution of the problem, namely, a connection 
between the image wave field Ai(xi) and the object wave field Ao(xo) via the image propagator 
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Here and above the (*) sign means the convolution, namely, the integration over the doubly repeated 
arguments. In our case all integrals can be calculated analytically because the arguments of exponentials 
contain x only up to second degree. As a result, we obtain the expression for the image propagator as  
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Here the factor C0 = exp(−ikδcdN) takes into account the phase shift and absorption on the thin part of the 
chips. We note that the XCRL length L is neglected in this approximation compared to the long distances ro 
and ri. 
     To obtain the corrections linear in L/F for the XCRL propagator one needs to solve eq.(1) taking into 
account the second term in the right-hand side. This may be done iteratively. Namely, the solution must be 
searched in the exponential form. Then on the first iteration one may use in the second term of the equation 
for the complex phase the solution obtained on the zero iteration and so on. Such approach was 
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considered for the first time in [6]. The detailed analysis will be published elsewhere [7]. The result can be 
formulated as follows. The expression (3) for the image propagator remains in the approximation linear in 
L/F. However, the factor C0 is multiplied by exp(cL/4F) due to convergence of rays inside the XCRL. The 
distances ro,i must be replaced by ro,i + L/2. This means that the long XCRL can be treated as the thin lens 
placed at the middle of the real lens. In addition to this evident correction, the focal length F of such lens 
must be replaced by F + L/6. Such a correction may be important for the imaging of small oblect, for 
example, for the imaging of synchrotron radiation source. Below we remain the old notation but keep in 
mind the corrections pointed above. 
 
3. THE DIFFRACTION THEORY OF THE FOCUSED IMAGE 

As is known in the visible optics the focused image occurs when the lens formula 1/ro + 1/ri = 1/F takes 
place. Applying this relation to the expression (3) we obtain 
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where aγ = (λF/γ)1/2 is the effective aperture of the XCRL, xoi = −xi(ro/ri) is the object point corresponding to 
the image point. We note that δσ(x) is the normalized gauss function which becomes the Dirac delta-function 
δ(x) in the limit σ → 0. Of course, σ decreases when the aperture aγ increases. However, for XCRL the 
aperture is limited due to absorption and it can not be large even if the geometrical aperture of the XCRL 
will be large. The aperture decrease occurs simultaneously with the focal distance decrease. 
     To illustrate how the finite aperture of the XCRL influences the images, let us consider the transparent 
object illuminated by plane wave when the object function Ao(xo) = exp[iψ(xo)]. Let the phase profile ψ(xo) 
have the finite derivatives ξn(xo) = dnψ /dxo

n. Since the effective region of integration in (2) has a size σ near 
the point xoi for the given image coordinate xi, we can expand the phase in Taylor's series at the point xoi and 
restrict ourselves only by first three terms, namely, ψ(xo) ≈ ψ(xoi) + ξ1(xoi)(xo − xoi) + (1/2) ξ2(xoi)(xo − xoi)

2. 
In this case the image function is expressed analytically as 
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where 2
2 )(/1)( σξγ xiFrixp oo −−= . 

     First of all, this expression shows that if even the object function is constant, i. e.  ξ1 = ξ2 = 0,  the image 
function is not constant. In the typical case when  γ ro << F  the intensity at the image plane is distributed 
according to the gauss function with the FWHM = 0.66 aγ(ri/ro). This means that the XCRL with a finite 
aperture can not image a large object of size s > aγ in a whole but shows only a fragment of such object with 
the size of order aγ. A similar effect exists in the visual optics. It can be explained in the frame of 
geometrical optics. Indeed, the point of image is the intersection point of many rays. One of them goes from 
the point of object through the lens center and does not depend on the aperture. There is another ray which is 
parallel to the optical axis before the lens. The latter ray must go through the aperture as well to obtain the 
focused image. 
     We note that within the effective image region both the second and the first derivatives of the object 
phase profile influence the image intensity profile.  However,  the role of the second derivative is modest,  if 
| ξ2(xoi)σ 2

 | << 1. On the contrary, the role of the first derivative in the formation of the object image is 
significant. When [xoi + X(xoi)]

 2 > xoi
2, the image intensity decreases compared to the background (dark 

image). The bright image can be observed in some places where the opposite condition is fulfilled. Of 
course, when [xoi + X(xoi)]

 2 = xoi
2, the image is determined by the second derivative alone. In the latter case 

the intensity differs slightly from the background value. 
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     This result demonstrates that the XCRL is an excellent device for imaging of transparent objects. 
However, it shows the image, which is qualitatively different from the image obtained with the in-line setup 
under the near field condition [8]. The latter technique corresponds formally to eqs.(2),(3) with C0 = 1, ro = 
0, F = ∞. In this case the propagator is near to δ (xi − xo) for ri → 0. 
     To illustrate the analytical result, we performed the computer simulation for the silicon grid with the 
period 20 µm, bar height h = 10 µm, bar width 10 µm. We choose the x-ray energy E = 20 keV, the distance 
rs = 50000 m between the point source and the object, the aluminium XCRL, F = 1 m, ro = ri = 2 m. The 
very long distance rs is selected to eliminate some small extra oscillations due to divergence of the beam. 
However, the divergence does not influence the result which remains practically the same for rs = 50 m. The 
refractive index parameters are: δ = 1.352 10−6, β = 4.21 10−9, γ = 3.12 10−3 for Al and δ = 1.21 10−6, β = 4.72 

10−9 for Si. Under these conditions σ = 0.35 µm. The grid can be rotated around the y-axis by the angle θ. 
The rotation replaces the rectangular phase profile by the trapezoidal phase profile with the width of 
transition layer hsinθ . The phase shift on the bar is equal to |ψ | = 1.22. 
 

 

Figure 2. The images of the silicon grid for the rotation angle θ = 0 (a) and 10o (b), see text for details. 

    The results of calculation are shown in Fig. 2. The top figures show the near field phase contrast images 
on the distance 5 cm from the object. The bottom figures show the XCRL images. One can see that the 
computer simulation confirms the features of the XCRL imaging discussed above analytically. Note that the 
XCRL image shows always the region of the phase gradient in the contrary to the near field phase contrast 
image. In addition, the XCRL image is sensitive to the sign of the phase gradient. As for the abrupt phase 
shift, it can be seen as distinct image with the XCRL resolution. These properties mean more single-valued 
and direct solution of the phase retrieval problem. 
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