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Specific features of parabolic compound refractive lenses for X-ray focusing and imaging are discussed theo-
retically. Relatively large longitudinal size L of refractive lenses requires a verification of the thin lens approx-
imation widely used in the literature. We show that the thick parabolic lens has the focal length F = F + L/6
measured from the middle of the lens, where F is the focal length in the thin lens approximation. A relatively
small aperture of refractive lenses due to absorption of X-rays limits the resolution and, in addition, leads to
phase effects visualizing the local phase gradient of the radiation wave field produced by transparent objects.
This opens novel technique of imaging for purely phase objects, which is different from the in-line phase contrast
imaging techniques. Optical properties of the refractive lens as a Fourier transformer are considered as well.

INTRODUCTION

Since the first demonstration [1] of the X-ray com-
pound refractivelens—CRL) for focusing asynchrotron
radiation beam delivered by third generation sources,
the X-ray refractive optics is under extensive develop-
ment. In addition to aluminium [2-9], different low-Z
materias: beryllium[2, 5, 7, 9], silicon [10-12], organ-
ic compounds[2, 5, 13-18] were experimental ly tested.
The lens with cylindrical holes drilled in cross geome-
try alows two-plane focusing [2—4, 14]. The interest-
ing solution is the planar refractive lens with the para-
balic profile, which can be either single or compound
[10-12]. The lens with circular or parabolic profile and
rotational symmetry hasalot of advantagesfor two-plane
focusing and imaging [6, 8, 9, 18]. There are successive
attemptsto devel op the refractive optics by means of var-
ious new approaches [19-24]. Significant contributions
inthe CRL theory are madein [1, 3, 8, 25-27].

Unlike visible light optics, X-ray collecting lens has
a concave shape and the material of the lensis always
absorbing. This leads to a significant limitation of the
CRL effective aperture a, even though the physical
transverse size a of the lens can be much larger. The
CRL has a rather large longitudinal size L so that the
thin lens approximation must be verified. Compare to
the visible light lens, the ratio a/L for the CRL is very
small. This property influences the CRL function as an
imaging device. Whentheratio a/L isextremely small,
the phenomenon like the X-ray beam channeling oc-
curs. However, in most practical cases lenses satisfy
the condition L/F < 1 where F isthe CRL focal length
in the thin lens approximation. Thereforeit is sufficient
to consider only the linear corrections in L/F beyond
the thin lens approximation.

In thiswork we present the diffraction theory of the
parabolic CRL operating as an imaging device. We ex-
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plain experimentally observed phase-contrast artifacts
inimaging of transparent objects, which becomes visi-
ble even in the image plane of the CRL, where the lens
formulais fulfilled [28, 29]. These images show up as
edge enhanced images, when the boundaries and inter-
faces of the object generate both bright and dark contrast.
These features cannot be explained within the geometri-
cal optics approximation due to diffraction effects.

In the Section 2 we present the detailed theory of the
one-dimensional parabolic CRL in terms of the propa-
gators, calculate the CRL propagator in first order L/F
approximation, and obtain the total image propagator in
the analytical form. We found that the parabolic CRL
can be treated as athin lens placed in the middle of the
CRL withthefocal length F, = F + L/6. We al so discuss
properties of the quasi-Fourier image at the back focal
plane and the quasi-focused image at the image plane.
The computer simulations allow us to confirm the ana-
lytical formulas derived. In section 3 we consider the
problem of 2D imaging applying the results of the sec-
tion 2. We show that the CRL 2D propagator isaproduct
of one-dimensional propagators. This property alows
one to simplify the problem in many practicable cases.

THE DIFFRACTION THEORY
OF ONE-DIMENSIONAL IMAGING
WITH PARABOLIC CRL

For the sake of simplicity, we consider one-dimen-
siona case of the in-line setup when the object and the
parabolic CRL are homogeneous along the y-axis. Under
these conditions, the recorded image or intensity distri-
bution ishomogeneous along the y-axis, and we can omit
the calculation of the integrals over they coordinate.

The formulation of the image problem via prop-
agators. We assume the optical axis coincideswith the
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Fig. 1. Geometrical parameters of the experimental setup.

z-axis of the coordinate system (Fig. 1). The x-depen-
dence of the complex X-ray wave field including also
the incident wave behind the object is described by the
complex function Ay(x,) which hereafter is called the
object wave field. We will neglect the longitudinal size
of the object compared to the other distances of our set-
up. The CRL has the parabolic profile of individua
components and is located at the distance r, from the
object. The CRL hasalength L so that the distancer,is
measured from the object to the front of the CRL.

It is easy to write the x-dependence of the complex
wave field Ai(x) in front of the CRL in terms of the
paraxial approximation to the Kirchhoff integral [30]:

Ae(X¢) = IdXoP(Xf —Xo1 16) Ao(Xo). (D

Here the coordinate x; is related to the transversal axis
in front of the CRL and P(x, 2) isthe propagator for the
transversal x-dependence of the field through the free
gpace along the optical z-axis:

_ 1 X7
P(x,2) = (i)\—z)mexpan)\—ﬂ 2)

where A is a wavelength of the monochromatic wave.
Hereafter we imply that the limits of integrals are infi-
nite if the opposite is not specified.

The next step is to calculate the x-dependence of the
complex wavefield behind the CRL. Let usrepresent the
solution through the propagator of the CRL in the form:

Ap(%) = Idxf Pi(Xos X535 L)As(X1), 3)

where x, isthe coordinate related for the transversal ax-
isbehind the CRL. The complex wavefield A () at the
image axis, which is placed at the distance ri from the
end of the CRL, can be expressed through the Kirch-
hoff integral once again:

A(x) = IdeP(Xi — Xp 1) Ap(Xp)- “4)
Subgtituting egs. (1) and (3) into eg. (4) and changing the
order of integration, we obtain the relation between the

object wave field A,(x,) and the image wave field A (x)
in terms of the image propagator G(x;, X,) asfollows:

Ai(xi) = IdXOG(Xiv XO)AO(Xo)v (5)

where
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G(Xi; Xo) = IdeP(Xi —Xp, ) X
(6)
xIdepl(Xba Xt; LYP(X = Xo, To)-

In order to calculate the integral, we need to specify the
explicit form of the CRL propagator P, (X, X;; L).

The X-ray compound refractive lens propagator.
So far, the thin lens approximation was assumed in the
theory of CRL-based imaging, i.e., zero-order approxi-
mation in parameter L/F. Violation of this approxima
tion isanalyzed within the frame of the geometrical op-
ticsand plane wave focusing. In the paraxial approxima-
tion the focal length F = R/2Nd, where R is the radius of
curvature of the parabolavertex, N isthe total number of
individual lenses—see Fig. 1, where N = 10), and disthe
decrement of therefractiveindexn=1-0+if=1-n
[1]. The CRL propagator in this case hasaform [3]:

P\ (Xp, X¢; L) = exp[-T1knt(X,)]d (X, —X¢),

2 7
t(X)=N%+cﬁ, th%. @)

Hereafter k = 217A is the wave-number, d(x) is the
Dirac delta-function, t(x) is the variable thickness of
the CRL material along the optical axis, d is the mini-
mum spacing between the air parabolic holes, L is the
CRL length, and a is the CRL geometrical transverse
Size. Assuming that a is larger than the effective aper-
ture a, = (\F/y)¥2, where y = B/, we can neglect the
geometrical limits of the CRL.

Our aim isto obtain the CRL propagator in the first-
order approximation, i.e. to take into account the cor-
rections linear in L/F. We note that the CRL has a peri-
odic structure of N elements. The period of the structure
isL/N. If Nislarge, the change of the wave field inside
the period is relatively small. Therefore we can accept
the continual approximation [3] and average the Max-
well’s wave eguation inside the CRL over the period.
Thenthetotal radiation field insidethe CRL inthe parax-
ial approximation takestheform E(X, 2) = exp(ik2) A(X, 2)
and therefractiveindex n(x) = 1 —n(x). Taking into ac-
count that [n(—x)| < 1 and applying the paraxia ap-
proximation we obtain the parabolic equation for the
sowly varying part of the field A(x, z) asfollows
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dA _ . i d°A _cX
P ——Ikn(X)A+2kdX2, n(x) = Ltﬁwdl\%@)
c=1-iy, y= %

Theequationisonly valid inside the geometrical ap-
erture of the CRL |x| < a/2. Since we assume that the
aperture a exceeds the effective aperture a,, the region
[X| > a/2 represents no interest. The equation must be
solved inside the interval 0 < z < L with the boundary
condition A(x, 0) = A«(x). We areinterested in the func-
tion Ay(x) = A(x, L).

One can see that the transmission function
exp(-ikn(x)2) corresponding to eq. (7) is a solution of
the equation (8) if the second term on the right-hand
sideis negligible. On the other hand, the propagator (2)
is the solution of eq. (8) withn(x) =0, i.e., in afree
space. Wetry the approximate solution of the eg. (8) in
theform A(X, 2) = Ay(X, 2) exp[-kf(X, 2)], where:

Ao(X,2) = IdeP(X—Xf, 2) A (X1),
dAy _ i dA )
dZ - 2k dX2 ’
and f(X, 2) is new unknown function.

The equation for f(x, 2 must be solved with the
boundary condition f(x, 0) = 0. The function f(x, 2) is
similar to that considered in Ref. [3]. Asin the Ref. [3]
the approximate solution for f(x, L) = f;(Xy, X,) in the
first-order approximation in L/F can be derived by iter-
ations and the result is as follows:

L*(X=Xo)dn . L . iL%dn
Er R R e s = el 3
2 1, dx 6Lt 4k gy?

Thus we obtain the propagator of a CRL in the form
Pi(Xp, X¢; L) = exp[—ikf (X Xo)] P(X, —X;, L). (11)

Asaresult, for the image propagator (6) we have

f(x,L) =nL- (10)

G(Xi; Xo) = Idxbp(xi —Xp, ) X (12)
x exp[—Tkf (X Xo)] P(Xp =X, o+ L).

Here we applied the well known property of the free-
space propagator (see discussion in [31]) that the con-
volution of two propagators is again the propagator for
the total distance. We note that the solution (12) does
not straightforwardly satisfy the reciprocity principle.
More accurate solution that satisfies the reciprocity prin-
ciple can be obtained but the derivation is more compli-
cated and the difference involves higher orders in small
parameter L/F. We will solve this problem below.

Analytical solution for the image propagator. In
this section we obtain an analytica expression for integral
(12). Taking into account (2), (8) and (10), we can write;
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_ Co k
GO ) = s (0% XD 50 (% X X}, (13)

where
Co, = exp[c(—ikddN + L/4F)],

0 = 0o+ s = U=Vx,+Wx.

Hereafter we take into account that our accuracy does
not exceed first order in L/F. We assume that a correc-
tion from distancesL in the pre-exponential factor isin-
essential and the parameter y is of the same order of
smallnessas L/F or less.

The parametersU = Uy + U, V=V, +V, and W =
=W, + W, contains the terms of zero and first order in
L/F. To satisfy the reciprocity principle, in Uq, V; and
W, we apply the relations between x,, ro, X, r; and F re-
sulting from the conditions V, = 0 and W, = 0 which
correspond to the thin lens formulain zero approxima-
tion. At least, thisis correct for the imaging problem,
because the differenceisonly dueto the terms of higher
order in L/F. Thisway we obtain the expressionsfor U,
V and Win terms of the modified distances:

(14)

rg = rotL/2, 1y =1;+L/2, F = F+L/6,(15)
as follows
XX X X
U:_E+_', V:2|:_P(.2+__'E,
Fot il Lo 1y (16)
c 1 1
W=—=+—+=,
Fiooro T

One can see that al the expressions are symmetrical
with respect to the replacement of the object by theim-
age and vice versa. New distances are measured from
the middle of the CRL. Correspondingly, the real CRL
focal length increases by L/6 compared to the thin lens
approximation. This result was obtained in Ref. [3] but
in theimplicit form.

Theintegral in (13) is calculated applying the table
integral, and we arrive at the analytical expression in
the form:

C
G(Xiaxo) == O]_/zx
(iArg)
(17)
T
X eXpE)T[giXiz —2X% X, * goxi]g,
g
where
rg = r”+ro|—c%, P = l—CE,
I r I (18)
= 1_cM
0, =1 =

The analytical solution allows to study the peculiarities
of the CRL operation and to understand the difference
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between X-ray and light optics. Note that the image
propagator G(x;, X,) coincides with the free-space one
(2): PO —Xo, Iy + 1) if Fp=ccand Cy = 1.

Quasi-Fourier image. Asis known in the theory of
refractivelenses[30], the complex wavefield of the ob-
ject is converted to the Fourier transform of the wave
field at the back focal plane. Thisisvalid approximate-
ly for the CRL aswell. Asfollowsfromthe egs. (5) and
(18), thereal part of the complex coefficient g, vanish-
eswhenr; =F, orr,=F —L/3isfulfilled.

Thus, we conclude once again that the focal length
of the thick CRL is redused by L/3, if it is taken from
the end of the CRL. Correspondingly, the focal length
is L/6 larger, if it is taken from the middle part of the
CRL. Under this condition we have:

Idx X

X exp(— [ aX,— 8XO)AO(Xo)v

CoCi(%)Ct (X))

Ai(xi) - ( )\rf)ﬂz

(19)

wherer, = F +iyrg,
TX; T of ] X
— I 0 —
Ci(x) = expi AF' =20 G0 = eXpEA_FlD’(ZO)
_ 2 _ Ty
Arg’ Ar;

We note that the parameter r,is a complex magnitude.
Itsreal part equals F, whereastheimaginary part is pro-
portional tor,.

The known result of the visible optics follows from
egs. (19), (20) in the case of infinite aperture and y = 0.
However, being absorbing the CRL reproduces the
Fourier image of the modified object function A,,(x,) =

= Ao(xo)exp([—nyxi]/[)\rf]). The more modification is,
the larger the parameter y.

The second CRL feature is that the intensity distri-
bution depends, in the genera case, on the distancer,,
Inthevisible optics of thelarge aperture the Fourier im-
age is independent of the object position in front of the
lens. This property is verified by egs. (19), (20), if y=0.
However, for the CRL y > 0, and the Fourier image is
conditional because the wave-number parameter g be-
comes complex. The imaginary part of q can be de-
creased by placing the object right in front of the CRL
whenr,=0.

Let us discuss the quasi-Fourier image in two simple
examples. Inthefirst example the object radiatesthe plane
wave exp(ik2), i.e., Ay(%,) = A, = const. The calculation of
theintegral (19) is sraightforward, and we obtain:
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_ - CoCi(%) g TXn

A(x) = A, O. f )
(I\/)ll2 Oyrd 21

= [RIAG = U\F'D IACY2.

Itisof interest to comparetheseformulaswﬁh the case of
athin transparent lens of the finite aperture a. The result
can be obtained from eg. (19) withCy,=1,y=0,L =0,
A(X) = AB(a/2 — [x]). We have:

_ B\FD]J Ci(%)Ci(X) .
A(x) = A, —L-T-[x-,——— D\F 'D’

L = alA.

According to eg. (21) theintensity 1,(x;) = |A |> depends
on the coordinate xi as the Gaussian with the FANHM
o, = 0.664(AFy)¥2 independent of r,,.

Let us compare this value with the diffraction limit-
ed resolution o, = 0.886 AF/a of the thin transparent lens
with the limited aperture a taken from eg. (22). One can
determine the effective aperture of the CRL via condi-

tion o, = g, This leads to the result &'’ = 1.334

(AF/y)Y2. Another way isto usethe fact that theintegral
intensity of thefocal spot isequal to the aperturefor the

transparent lens. Then from eg. (21) we obtain af,z) =

=0.707 (\F/y)Y2. This is approximately twice as less
than the preceding determination. Thus there is some
difference between the transparent lens of finite aper-
ture and the absorbing parabolic lens.

It is quite enough to use the intermediate value

= (A\F/y)¥2= 2,51 (RIuN)Y2 for the CRL aperture. Inthe
second expression we replace F by R/2Nd and took into
account the linear absorption coefficient L = 4mtFA. In
some works —see, i.e., [16]) the numerical aperture
N.A. = 2(3/uF)Y? is introduced. We see that N.A.
=177 a/F = 1.18 Ma,. We note that the resol utlon
o, — OwhenR — 0 Thisfact was used in [32] for
aproposﬁl of micro-ball refractive optics. However, in
this case the aperture and the integral intensity are close
to zero even for the parabolic shape.

In the second example the object is a very narrow
dit, i.e, AJX%) = AD(X, — Xs). The calculations is
straightforward again and we obtain:

CoC f(X)
i)™

(22)

A(x) = A,

(23)

Xi [y Lol 0 Ty, 1]
X expD—ln)\ [x F, +2xSEexpD foﬂ

Now the intensity of x rays |, = |A;]? depends on r,. If
rq =0, r; = F, and the intensity does not depend on the
coordinate x, i.e., it behaves like the Fourier image.
However, only the dit positioned inside the aperture
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[xs| < a/2 can be seen. Inthelimiting case of along dis-
tanceyr,, > F,, we can replace r; by the imaginary val-
ue iyry. Now the intensity distribution differs very
much from the Fourier image of the narrow dlit and has
amaximum value at the point x; = —xgF,/r,. The cor-
responding peak is symmetrical and hasthe samewidth
asin the case of the plane wave considered above.
Thus we conclude that, in redlity, the CRL aways
transforms the wave field distribution in front of the fi-
nite aperture of the CRL. Theresolution of the transfor-
mation is limited by the diffraction phenomena due to
the finite aperture. In the last example the object far re-
moved from the CRL produces approximately the
plane wave at the CRL aperture and the image becomes
focused instead of showing the Fourier-transform.

Quasi-focused image. Let us consider the CRL im-
age formation when the lens formula rﬁl + r;l = F[l

isfulfilled. In this case the real part of r vanishes and
the CRL propagator (17) reads.

1/2 2 2
Gx.x) = 2T exp X + 22 Do) 24

i hO
where
1 0 XZD
Os(X) = exp ,
° o(2m? " H2cd o)
)\rol r0I
o= T o = —X—.
a,(2m) i

We note that &,(x) becomes the Dirac delta-function
o(x) inthelimita —» O.

For the transparent lens of infinite aperture we have
y = 0. Replacing d,(x) by &(x), we obtain from eqg. (5)
the simple relation between the abject function Ay(X,)
and the image function A (X,):

C o 1/2
A(x) = TEE COA(G).
' . (26)
_ X Tof]
Ci(x) = exp n)\Flri,D'

Thus the image wave field is proportional to the object
wavefield. However, the shape of the object profile can
be increased or decreased. The additional phase factor
in the propagator does not influence the intensity in this
case. Thetransparent object remainstransparent but the
phase profile produced by the object is modified.

The real CRL has afinite imaging resolution o be-
causey > 0. Therefore, even the transparent object can
be seen if it produces adrastic perturbation of the phase
profile of theincident wavefield. Theresolutionis pro-
portional to the distance r,. However, in this case we
have no possibility to decreasethedistancer, . Thelens
of the finite aperture makes visible the finite region of
the object. We obtain a quasi-image, even if the wave
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field behind the object isthe plane wave, i.e., Aj(X,) = 1.
The integral (5) in this case has the analytical expres-

sionas A (%) = Q(x), where:

2

Cofor [ ¥2 O mxgd
Qx) = THAT Clx)epE—-
il O
@)
_ 1 iyl
p_ _IyF|

When yr,, > F,, we arrive at the result (21) again. The
point is that r; = F, in this case, according to the lens
formula and because of y < 1. For more practicable
case when yr,; < F,;, we obtain the intensity varying as
(%) = (ro,/r ;) exp(=211x5; /a5 ). The size of the visibil-
ity region, i.e., FWHM of the intensity distribution, is
independent of distances and equal to a,, = 0.664 a,in
terms of the corresponding coordinate at the object x,.
The physical reason of this phenomenon isdueto theim-
age propagator (24), which, in addition to the finite res-
olution, contains the phase factor exp[ip(x,)] with ¢ =
= 1<, /Ar,, modifying the object wave field.

Let us discuss possible cases of the visihility of
transparent objects. We consider first a simple object,
which may be called the "phase step”. It produces the
phase shift exp(il) in the region x5 < X, < . The gen-
eral accurate solution reads:

A(X) = SQX)(L+ exp(i) + SX)[ 1 - exp(W])(28)
where Q(x;) is determined by (27) and

7 = lﬂ'—mm[xs—ﬁ] (29)

1/2
se) = B Fo@, 2= 5B -2

Here
z

Fo(2) = [dtepd5tT, Fo(-2) = -Fo(2) (30)
0

isthe complex Fresnel integral. The function F4(2) = Z
for |Z] < 1and F(2) = (i/2)Y2for |Z| > 5. For typical val-
ues of parametersyr, < F, and |p— 1| << 1 the center of

the image appears at the point xi(c) = —xg(r;/ry) corre-

sponding to the modulo minimum value of Z. Assum-
ing that thisvalueislessthan unity and replacing F(2)
by Z, we obtain:

2
L (xO) = | (x(©) %08 (L|J/2—¢), :_2_)(5’ 3
|(X| ) |b(X| ) C032(¢) tg(q)) ay ( 1)

wherel;,(x;) isthe background intensity. Theformulais
valid only for |¢| < 1. When the point of observation xi

moves from the image center X', the intensity profile
restores gradually the background intensity because
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S(x) = 1 for x far from x{ . The region of significant
visibility of the "phase step” is |x, — X'” | < 50T, /r 4.

We note that the intensity within the image region
can belower (dark image) or higher (bright image) than
the background. The shape of the image depends on the
signs of Y and xs. The Eq. (31) allows usto determine
the positions of the object with the maximum relative
intensity peak or pit. In the region, where ¢y < %4,
the image has the intensity pit. In the region, where the
opposite condition is fulfilled, the intensity peak must
be observed. Therelative peak/pit height increaseswith
increasing the value of ¢ — /4.

Let us consider now the transparent object which
produces an arbitrary smooth phase profile Q(x,) hav-
ing thefinite derivatives &, (x,) = d"/dx; . Sincefor the
given image coordinate x; the effective region of inte-
grationin (5) is [X, — X, | < 0, we can expand the phase
in Taylor's series at the point x,; and restrict ourselves
only by first three terms,

l‘IJ(XO) = lIJ(Xoi) + El(xoi)(xo_xoi) +
32
# 28,(%0) (%= %) o

Using the expression (32) for the object wave field
A(x,) = exp[id(x,)], we calculate the integra (5) as:

Coryfo 2
Ai(xi):—ig%—”‘éﬁ Ci(x;) %

(33)
0 . NER
N exp[-)—ﬂ[xo' + XZ(XO.)] 5
O po ay |
9=0°
O_
—1F ] |
9=10°
O_
-1r J_\_/_\_
0 =30°
O_
-7 M
~20 ~10 0 10 20

Distance, pm

Fig. 2. The central fragments of the phase shift profiles pro-
duced by asilicon grid at different rotation angle 6, see the
text for details.
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where
— v 2 _Arg
Po = 1- IyFI _lzz(xoi)o- ’ X(Xoi) - an.l(xoi)- (34)

Itiseasy to verify that for &, = &, = 0 we have theresult
(27).

We note that both the second and the first deriva-
tives of the object phase profile influence the image in-
tensity profile. However, the role of the second deriva-
tiveismodest, if |€,(x,;)0%| < 1. Onthe contrary, therole
of thefirst derivativeintheformation of the object image
issignificant. When[x,; + X(x,;)]> > xii , theintensity de-
creases compared to the background (dark image). The

bright image can be observed in some places where the
opposite condition is fulfilled. Of course, when [x,; +

+X(x,)]? = x5 , theimage is determined by the second
derivative alone. In the latter case the intensity differs
slightly from the background value.

The results of this section demonstrate that the CRL
is an excellent device for imaging of transparent ob-
jects. However, it shows the image, which is qualita-
tively different from theimage obtained with thein-line
setup under the near field condition [34]. The latter
techniqueis based on the egs. (1), (2) and that the prop-
agator that P(X, 2) is approximately &(x) for z— 0.

Therefore the difference of P(x, z) from d(x) is de-
termined by the distance z. In the case of the CRL the
distinction of the propagator G(x;, X,) from the &-func-
tion is more complicated, namely, it is determined by
the finite lens aperture due to absorption. An additional
phase factor becomes also essential. The comparison of
two techniques for a simple object is made in the next
section. Here we note that our results alow to under-
stand the significant difference between phase contrast
images of the insect antenna recorded experimentally
with and without the CRL (presented in Fig. 4 of [9]).

Computer simulations. To illustrate the analytical
results presented above, we choose the simpl e object as
the silicon grid with the following parameters. period
p =20 um, height of rectangular teeth h = 10 um, width
of teeth d = 10 um. The grid can be rotated relative the
optical axis by the angle 6. The rotation changes the
phase profile produced by the object. The calculationis
made for the X-ray energy E = 20 keV and for the ex-
perimental setup with the point source at the distance
r,= 50000 m from the object and with the aluminium
CRL having thethin lensfocal length F =1 m. Thevery
long distance from the source is selected to eliminate
some small extra oscillations due to divergence of the
beam. However, the divergence of the incident beam
does not influence the result which remains practically
the samefor r,=50 m. Thedistancesr,=r;=2m. The
refractive index parameters are: o = 1.352 - 105, B =
=421-10°,y=312-103for Aland d=1.21 - 105,
B=4.72 -10°for Si. Under these conditionso = 0.35 um.
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We present the cal cul ation resultsfor three val ues of
the rotation angle 6 = 0, 10° and 30°. The fragments of
the periodical phase profile produced by the grid are
shown in the Fig. 2. In the case 6 = 0 the phase profile
consists of many positive and negative “phase steps’
with ||=1.22. In the case 6 = 10° the drastic steps are
transformed into small regions of constant phase gradi-
ent. In the case 6 = 30 the regions of phase gradient be-
come significant. We calculate both the in-line phase
contrast images [33] and the images produced by the
CRL. Inthefirst casetheformulas (1), (2) are used with
r, =5 cm, where the accurate intensity strongly oscil-
lates. Therefore we convolute the calculated function
with the instrumental function which is assumed to be
Gaussian with FWHM 0.6 pm.

Theresults of the computer simulation are shown in
Figs. 3-5. The top (a) figures show the phase contrast
image. The bottom (b) figures show the CRL image.
One can see that the computer simulation confirms all
the features of the CRL imaging discussed above ana-
lytically. Note that the CRL image shows alwaysthere-
gion of the phase gradient in the contrary to the near
field phase contrast image. In addition, the CRL image
is sengitive to the sign of the phase gradient. As for the
“phase step”, it can be seen as distinct image with the
CRL resolution. These properties mean more single-val-
ued and direct solution of the phase retrieval problem.

The results of the computer simulation for the Fou-
rier transformation of the same object at the different
angles of rotation are shownin Fig. 6. Inthiscaser; = F.
As it follows from the analytical analysis, we choose
r, = 0 to abtain the better image. The top figure shows
very many diffraction orders of the periodical grid. All
even orders, except zero, are absent due to the structure
factor of the grid. Despite the significant difference in
maximum all peaks are sharply desplayed. The side
peaks are in 10 times less compared to zero-order
peak. The figure at 6 = 10 does not contain high-order
peaks and the even order peaks become visible. The
figure at 6 = 30 shows no difference between the peaks
of even and odd orders. The high-order peaks are re-
duced strongly.

As follows from the theory the Fourier transform
becomes conditional with increasing the distance r,,.
Fig. 7 shows the simulation results of the grid at 6 = 0
and r, = 2 m. The side peaks become damped while the
principal ordersremain practically unchanged.

THE DIFFRACTION THEORY OF 2-D IMAGING
WITH ROUND PARABOLIC XCRL

In this section we show that thewavefield distributions
along the x-axis and y-axis propagate independently of
each other within the paraxia approximation. First of all,
the free-space 2-D propagator is equa to P A(x, y, 2) =
= PD(x, 2PWD(y, 2) where PY(s, 2) is determined by eq.
(2). Hereafter sisany of the coordinate x and y.
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Fig. 3. The normalized intensity distribution (image) for the
silicon grid obtained by near field phase contrast technique
at 5 cm (top curve) and by the CRL imaging without mag-
nification (bottom curve) at 6 = 0.
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Fig. 4. The normalized intensity distribution (image) for the
silicon grid obtained by near field phase contrast technique
at 5 cm (top curve) and by the CRL imaging without mag-
nification (bottom curve) at 6 = 10.
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Fig. 5. The normalized intensity distribution (image) for the
silicon grid obtained by near field phase contrast technique
at 5 cm (top curve) and by the CRL imaging without mag-
nification (bottom curve) at 6 = 30.
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The variable thickness of the round parabolic CRL
along the optical axisisequal to:

2 2 2

_ Xty 2, .2y _D"

toy) = N2 +d], oCry) <7,

L = t%d&

where D is adiameter of the CRL aperture. In the thin
lens approximation the 2-D propagator can be written

as P|(2) (Xor X6 Yoo ¥5) = P|(l) (Xo» %) l:’|(1) (Yo» Y1) Where

(36)

2
(1) . d_. D055 —
P(s, s¢) = expD—lkcéN2 —|kc2|:|]6(sb s:).(37)
Thus, the 2D propagator is a product of the 1D propa-
gators. Omitting derivation we note that the CRL 2D
propagator has the same property in the linear approxi-
mation on L/F as considered above.

This circumstance alows us to calculate the inte-
gralsover x and y variablesindependently. Then, the 2—
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D image propagator is a product of two 1D propagators
G(X, X, iy Yo) = GI(X, %) Gy, Yo) where GA)(s;, )
is determined by egs. (17) and (18) with replacing d by
d/2. The general image problem can be formulated as:

A(X, i) = jdxodyoe“’(xi, Xor Yis Yo) Ao(Xor Yo) - (38)

In the genera case of an arbitrary object the 2D integral
must be calculated and further smplificationisimpossible.

However, in special cases when the object wave filed
is factorisable Ay(Xy, Vo) = Po(X,)Q4(Yo) the image wave
field becomesfactorisabletoo A, (%, v;) = Pi(x)Qi(v:). The
relation between the object wave field and the image
wavefield can be cal culated independently for each ax-
is. Itisworthwhileto notethat if thelensformulaisful-
filled, the propagator is strongly localized. In this case
it is sufficient to have an approximate local factorisa-
tion of the wave field.4.

CONCLUSIONS

We develop the diffraction theory for theimage for-
mation with X-ray parabolic compound refractive lens-
esin the paraxial approximation. We obtain the analyt-
ical expression for the image propagator, which allows
usto explain all the features of the CRL operation asan
imaging device. We verify the thin lens approximation
for the thick CRL of the size L with the linear correc-
tionsin L/F. We show that the focal length of the thick
CRL measured from the lens center is larger than the
thin lensfocal length F = RI2Nd and isequal F + L/6.

The relatively small effective aperture of the CRL
due to absorption of x rays results in the finite resolu-
tion of the image propagator. This explains the experi-
mentally observed property of the CRL to show anim-
age of the transparent object at the distances, which sat-
isfy thelensformula. We discover that such images are
associated with the local phase gradient of the X-ray
wave field modified by the object. The images are sen-
sitive to the sign of the phase gradient. Thus, the CRL
opens new possibility for imaging the transparent ob-
jects different from the in-line phase contrast imaging.

We show that the Fourier transformation made by the
CRL at the back focal plane becomes conditional due to
thefinite CRL aperture. The CRL always showsthe Fou-
rier transformation of the wave field in front of the lens
and modified by the lens aperture. When the object is
placed at thelong distance from the CRL, the subsequent
propagation of the radiation through the free spaceyields
asignificant modification of the wave field.

The computer simulationsallow usto confirm the an-
alytica formulas. We abtain that the two-dimensiona
image propagator is a product of two one-dimensional
image propagatorsfor x-axisand y-axis. Thiscan smpli-
fy calculations of the images for many objects where
their structureis described by aproduct of two functions,
each of them represents the separate coordinate axis.
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POKYCUPYIOHIME 1 U30bPAXAIUE CBOI;I(}TBA
PEHTTEHOBCKOUN COCTABHOUM PE®PAKIIMOHHOMN JIMH3bI

B. I'. Kon, 1. Caurnpesa, A. Caurnpes

TeopeTnueckn aHANIN3UPYIOTCS CrieNU(pIIEcKre CBONCTBA MapaboINIeCcKUX COCTaBHBIX pe(hpaKIMOHHBIX
JUH3 [7151 POKYCHPOBKH U M300pakeHNsl ¢ MOMOIIbIO PEHTT€HOBCKUX Jyue. M3-3a OTHOCUTEIBLHO 0O0Jb-
0¥ IPOIOJIBLHON JANMHEI L peppakumOHHBIX JMH3 HEOOXOANMO YTOYHUTH NPUOINKEHNE TOHKON JINH3bI,
LIMPOKO HCHOJIb3yeMOE B JUTepaType. Mbl oKa3aiay, YTO TOJICTasl MapaboaudecKas IMH3a UMeeT (o-
KajbpHyto anuHy F| = F + L/6 npu u3mepennn e€ ot cepeauHbl TUH3EI, TAe F — (pokanbHast fimHa B pubiIm-
>KEHUH TOHKOM NuH3bl. OTHOCUTENIBHO MaJlasi anepTypa pepakIlHOHHOM JINH3bI U3-3a MOIJIOLEHHS PEHT-
TeHOBCKHX JIy4el OrpaHMYMBAET pa3pelleHie U JOMOIHUTEIHLHO IPUBOANT K 3(h(heKTy BU3yaTn3anun Jo-
KaJIbHOTO rpajjieHTa (pa3bl BOJIHOBOTO MOJISI U3JIYUYEHUs TOCIIE IPOXOKAECHNUS TPO3PAYHOTo 00 beKTa. ITO
MO3BOJISIET Pa3BUTH HOBBII METOJ BU3YaJIM3aLIH YUCTO (pa30BbIX 00 BEKTOB, OTIMYAOIIHUIICS OT Pa30KOH-
TPaCTHOI'O METOJla Ha MPOCBET. PaccMOTpPEHbI TakKe ONTHYECKUE CBOMCTBA pe(PPAKIUMOHHON JTHH3bI KaK

dypre-TpaHchopMaTopa.
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