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For a hundred years after the discovery of x-ray
radiation, it was thought that refractive lenses could not
be used for focusing hard x-rays because, at least, of
two reasons. First, the refractive index for electromag-
netic radiation with energy 

 

E

 

 ranging from 10 to 50 keV
differs only slightly from unity. Second, the absorption
coefficient for this radiation is nonzero. When writing
the complex refractive index in the form 

 

n

 

 = 1 – 

 

δ

 

 + 

 

i

 

β

 

,
one has, e.g., for aluminum at 

 

E

 

 = 25 keV 

 

δ

 

 = 8.643 

 

×

 

10

 

–7

 

 and 

 

β

 

 = 1.747 

 

×

 

 10

 

–9

 

.
This problem was solved in 1996 [1] with the use of

compound lenses, i.e., lenses composed of a large num-
ber of relatively thin elements. It proved to be quite for-
tunate that the x-ray phase velocity in a material is
higher than the velocity of light in free space. For this
reason, the focusing lens was taken to be biconcave and
the thickness of a material in the central part of the lens
was smaller than the absorption length. To date, many
publications have been devoted to various methods of
fabricating compound refractive x-ray lenses. Among
them, of primary interest are lenses with circular aper-
ture and parabolic profile. Elements of these prisms are
obtained by pressing out parabolic profile in aluminum
plates (see, e.g., [2]) or plates of organic materials (see,
e.g., [3]). Each element focuses a parallel beam into the
point at distance 

 

F

 

1

 

 = 

 

R

 

/2

 

δ

 

, where 

 

R

 

 is the radius of cur-
vature of the parabolic profile (see figure). In this case,
the focal length of a block with 

 

N

 

 elements is 

 

F

 

 

 

≈

 

 

 

F

 

1

 

/

 

N

 

.
Let, e.g., 

 

F

 

1

 

 = 100 m. The focal length of a block with
100 elements will be 1 m, which is quite appropriate for
the experiments at synchrotron radiation stations.

A lens containing 1000 or more elements can rather
easily be fabricated. The length 

 

L

 

 = 

 

Np

 

 of the com-
pound lens increases with the number 

 

N

 

 of elements,
while the focal length 

 

F

 

 decreases. Clearly, the focal
length in the case 

 

L

 

 

 

�

 

 

 

F

 

 can be estimated from the for-
mula 

 

F

 

 

 

≈

 

 

 

R

 

/2

 

N

 

δ

 

 for a thin lens. However, in this case

the linear corrections in the small parameter 

 

L

 

/

 

F

 

 may be
quite appreciable when imaging microobjects with
extreme resolution. The theoretical analysis of the
operation of a compound lens with length 

 

L

 

 comparable
to the focal length 

 

F

 

 was performed only in the geomet-
rical optics approximation (see, e.g., [4]), which is,
clearly, insufficient for the estimation of focal spot size
and for the analysis of image transfer using this lens.

A complete solution to the problem of radiation
transfer through a long compound lens must have the
form of an integral relationship of the Kirchhoff inte-
gral type. In this case, the problem amounts to deter-
mining the kernel of integral transformation (propaga-
tor) by solving the Maxwell equation with initial condi-
tion in the form of the Dirac delta function. It is shown
in this work that, under certain conditions, this problem
has an exact solution; i.e., the propagator can be calcu-
lated analytically in a form close to the Gaussian func-
tion with complex parameters, for which one can write
the exact recurrence formulas. It is assumed that the
synchrotron radiation (SR) is preliminarily monochro-
matized and has a rather high degree of spatial coher-
ence. These conditions are fulfilled, e.g., in the third-
generation SR sources [5].
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(left) Compound refractive x-ray lens and (right) parame-
ters of its individual elements.
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We choose the optical axis along the 

 

z

 

 axis (figure)
and represent the general solution to the Maxwell equa-
tion as 

 

E

 

(

 

x

 

, 

 

y

 

, 

 

z

 

) = exp(

 

ikz

 

)

 

A

 

t

 

(

 

x

 

, 

 

y

 

, 

 

z

 

), where 

 

k

 

 = 

 

ω

 

/

 

c

 

 is
the wave number in vacuum. The function 

 

A

 

t

 

(

 

x

 

, 

 

y

 

, 

 

z

 

)
describes the transfer, along the 

 

z

 

 axis, of the transverse
dependence of the wave field. Since the radiation is
hard and interacts weakly with a material, one can use,
with a high accuracy, the paraxial approximation, i.e.,
ignore the second derivative of 

 

A

 

t

 

 with respect to the
coordinate 

 

z

 

, as compared to the first derivative. As a
result, one arrives at the parabolic equation for the func-
tion 

 

A

 

t

 

(

 

x

 

, 

 

y

 

, 

 

z

 

)

(1)

where 

 

η

 

 = 1 – 

 

n

 

 = 

 

δ

 

 – 

 

i

 

β

 

 = 

 

δ

 

(1 – 

 

i

 

γ

 

). In the radiation-
transfer problem, the wave field at the entrance surface
of the lens is a given function 

 

A

 

t

 

(

 

x

 

, 

 

y

 

, 0) = 

 

A

 

0

 

(

 

x

 

, 

 

y

 

),
where the coordinate 

 

z

 

 is measured from the outset of
the lens. In the compound lens, the function 

 

s

 

(

 

x

 

, 

 

y

 

, 

 

z

 

) is
unity in the regions inside the material and zero outside
it (figure).

In what follows, I consider only the case where the
thickness 

 

p

 

 of an individual element of a compound
lens is smaller than the characteristic scale of changing
the transverse dependence of the wave field. In other
words, the thin-lens approximation is assumed to be
fulfilled for an individual element. This is always true
for a compound lens with many elements. This restric-
tion can be used for averaging the function 

 

s

 

(

 

x

 

, 

 

y

 

, 

 

z

 

)
over its period and replacing it by a function depending
only on the transverse coordinates:

(2)

This dependence is valid only inside the lens geometri-
cal aperture with diameter 

 

a

 

 = 2[

 

R

 

(

 

p

 

 – 

 

d

 

)]

 

1/2

 

 (figure).
However, the effective operation area (effective aper-
ture) of the lens is determined by the x-ray absorption
in its material and is almost always smaller than the
geometrical aperture. Because of this, one can formally
assume that dependence (2) holds everywhere over the
region of transverse plane (

 

X

 

, 

 

Y

 

) considered.

Let us represent the initial wave field as a Fourier
integral

(3)

and consider the solution (

 

x

 

, 

 

y

 

, 

 

qx, qy, z) with the ini-

tial function in the form of plane wave (x, y, qx, qy, 0) =
exp(iqxx + iqyy). The solution can be represented as the

dAt

dz
-------- ikηs x y z, ,( )At–

i
2k
------

d2At

dx2
----------

d2At

dy2
----------+

 
 
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p
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pR
-------.+ +=

A0 x y,( )
qx qydd
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product  = exp(–ikη[d/p]z) (x, qx, z) (y, qy, z), with

the partial function (x, q, z) satisfying the equation

(4)

This equation coincides formally with the Schrödinger
equation for a particle in a parabolic potential. Never-
theless, the expansion in terms of the stationary states
will not be considered in this work.

Taking into account the character of the initial func-
tion, it is reasonable to seek a solution in the form of a
Gaussian function with complex coefficients

(5)

Inserting Eq. (5) into Eq. (4) and equating the coeffi-
cients of the terms for the same x powers, one arrives at
the system of ordinary differential equations

(6)

This system has an analytic solution for any initial con-
dition. It can be written as

(7)

The validity of this solution can be checked by direct
substitution. Using initial conditions (5) and recurrence

relations (7), one gets for the function (x, q, z)

(8)

Hereinafter, the notation sz = sin(z/zc), cz = cos(z/zc), and
tz = tan(z/zc) is used.
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Let us represent the general solution to the problem
(for an arbitrary initial function) in the form of integral

(9)

Substituting the expression for  in the form of
the inverse Fourier transform and integrating with
respect to qx and qy, one obtains the desired integral
transformation for a compound x-ray lens with the par-
abolic profile

(10)

whose propagator is factorized

(11)

and the partial propagator is determined by the expres-
sion

(12)

Here, λ = 2π/k is the x-ray wavelength.
This expression is the main result of the work. One

can readily verify that this function transforms to the
Dirac delta function δ(x – x') at z = 0. Evidently, integral
(10) must transform to the Kirchhoff integral in the
limit |η|  0. Indeed, after passing to the limit
|zc |  ∞ in Eq. (12), one obtains the following
expression for the transverse part of the spherical wave
in the paraxial approximation:

(13)

The expression for the propagator in a more complex
problem of radiation transfer in air at a distance of ro

before the lens, through a lens of length L, and at a dis-
tance of ri in air after the lens can be written as a con-
volution

(14)

Note that the integrals in Eq. (14) are calculated analyt-
ically to give an analytic expression for the propagator
G. However, the same result can be obtained by the
method developed above, namely, by triply using recur-
rence relations (7), with the limiting transition |η|  0
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being used for air. The method of recurrence relations
(7) is particularly suitable in the development of algo-
rithms for computer simulation of imaging formation
using a lens. Although this computer program was
developed by us, the analysis of particular results is
beyond the scope or this brief communication. More-
over, this method can also be applied to a system of
lenses with different parameters.

Below, main features following from Eq. (12) for
the operation of a compound refractive lens are consid-
ered. Taking into account that γ = β/δ � 1, the complex
parameter zc can be written as zc = (pF1)1/2(1 + iγ/2). At
L � (pF1)1/2, one can retain only the leading terms in
the sine and cosine expansions to obtain the following
expression for the propagator in the thin-lens limit:

(15)

Note that the above-mentioned domain of applicability
of this approximation can be written as L � F. Due to
x-ray absorption, the plane wave, after passing through
the lens, acquires the Gaussian shape, for which the
intensity distribution halfwidth is aγ = 0.664(λF/γ)1/2.
This value can be considered as the lens effective aper-
ture. The expression including the terms on the order of
(L/zc)3 can easily be written to obtain the corrections on
the order of L/F to the focal length in the thin-lens
approximation.

For L = L0 = (pF1)1/2π/2 and taking into account that
sz = 1 and cz = iγπ/4, one obtains, in the linear approxi-
mation in γ, the following expression for the propaga-
tor:

(16)

From this expression, it follows that, when passing
through this lens, the wave is modulated by a Gaussian
function because of the absorption in lens and then
turns to its Fourier transform. In particular, at the lens
output, a plane wave has a Gaussian intensity distribu-
tion with the halfwidth sγ = 0.47(λL0γ)1/2, and the focal
length is L0. The quantity sγ gives the focal spot diame-
ter, whereas the lens effective aperture in this case is
aγ = 0.846(λL0/γ)1/2. If the absorption is ignored, the
propagator will be equal to delta function δ(x + x') for
L  = 2L0; i.e., the wave field is restored in the inverted
form. Clearly, the lens will have the same properties for

P0 x x' L, ,( ) –iπ x2
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L = 3L0, 4L0, and so on. However, the absorption dimin-
ishes the lens working region with increasing L.

In conclusion, let us estimate the parameters of the
system. Consider a compound aluminum lens for pho-
ton energies of 25 keV. Let p = 1 mm and R = 0.2 mm
[2]. One has in this case γ = 2.02 × 10–3, F1= 116 m, and
L0 = 53.4 cm. Therefore, the critical size of the com-
pound lens is achieved when 534 elements are used.
Evidently, L0 is the minimal attainable focal length for
a given radius of curvature of the parabolic surfaces.
The focal spot diameter in this case is sγ = 0.11 µm, and
the effective aperture is aγ = 97 µm. Smaller focal
length can be obtained by a gradual decrease in the
radius of curvature of the surfaces in individual ele-
ments.
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