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The theory for the Bragg dynamical X-ray diffraction and the yield of the secondary radiation
scattered via incoherent channels under conditions of X-ray diffraction (X-ray standing wave tech-
nique) is developed for the crystal systems composed from many layers. The formulae are derived
in a form suitable for a computer simulation of the experimental angular or energy spectra as well
as for a determination of unknown parameters via fitting. The Bragg case (reflection) and the
Laue case (transmission) are considered within the same approach. The universal computer pro-
gram is created and its operation is demonstrated on two examples. It is shown that the model of
the multilayered crystal system may be a useful tool for analyzing a lot of problems where the
one-dimensional crystal-lattice distortions of different kinds influence the rocking curve and the
curve of the secondary radiation yield. In the first example the In0:5Ga0:5P epitaxial film on the
GaAs substrate is considered. The experimental angular spectra of the X-ray reflectivity and the
yield of the In La and P Ka fluorescence in the Bragg case are described by fitting the parameters
of the structure. In the second example the Laue case of X-ray diffraction in a sample having a
monotonously increasing (decreasing) shift of the Bragg angle with increasing depth is analyzed.
The phenomenon of the complete switching of the X-ray beam from the incident direction to the
direction of reflection is calculated and discussed.

1. Introduction

The technique of X-ray standing waves (XSW) consists of measuring the yield of the
secondary radiation scattered incoherently under conditions of the two-beam dynamical
diffraction of X-rays in a near-perfect crystal. The first studies were done about thirty
years ago. Many different channels of incoherent scattering were studied. We would
like to point out the first studies of fluorescence [1, 2] and photoelectron emission [3, 4].
For these channels, the secondary radiation arises as a result of the photoelectric ab-
sorption of X-ray quanta by individual atoms of a crystal. The atoms perceive the X-ray
standing wave as a coherent superposition of the transmitted and the reflected plane
waves. That is why the secondary radiation yield (SRY) changes drastically within the
Bragg diffraction region in the angular spectra (the rocking curves) or the energy spec-
tra. The specific shape of the curves depends on the probability for the secondary radia-
tion emerged by an atom at some depth inside the crystal to reach the crystal surface.

The probability function for fluorescent photons to reach the surface from the defi-
nite depth z is equal to exp ð�myizÞ. The characteristic depth Lyi of the fluorescent
radiation is well known as m�1

yi where myi is a linear absorption coefficient. Typically, the
value Lyi is longer than the extinction length Lex. The latter is determined as a depth
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of decaying the X-ray standing wave inward the crystal at the middle of the Bragg peak
of the rocking curve in the Bragg case. As a result, the angular dependence of the
X-ray penetration depth inward the crystal masks the angular dependence of the inten-
sity of the X-ray standing wave at the atoms which are the sources of SRY. The prob-
ability function for electrons escaped due to photoelectric absorption has a more com-
plicated form. It is studied in detail in [5] by means of the Monte-Carlo computer
simulation. In Ref. [6] this function is proposed to have approximately an exponential
form, at least, for the measurements integral over the electron energy. However, the
value myi has now a more complicated physical meaning. As a rule, it applies Lyi � Lex

in the case of photoelectron emission. Therefore, the experimental curves show just the
intensity of the X-ray standing wave at the atom position. In the case of fluorescence
the same situation arises if a signal from the impurity atoms located near the surface of
a sample is recorded [2].

It was discovered later [7–9] that the XSW technique is very sensitive to the structure
of a subsurface layer disturbed due to some external perturbation, e.g. ion implantation,
epitaxial film growth etc. if the condition Lyi � Lex is fulfilled. The theoretical explana-
tion of this phenomenon is done in [10]. See [11, 12] for more detailed information. For
years the X-ray standing wave technique has become a routine tool for studying impur-
ity or basic atom location in the subsurface layer of the near-perfect crystal (see, e.g.
[13–17] and references therein). Both X-ray tube generators and synchrotron radiation
beamlines are used in experiments. In addition to the nondispersive ðn;�nÞ configura-
tion of the two-crystal scheme the dispersive XSW geometries are used [17, 18]. The
Laue case is also investigated [19].

The results of many experimental studies of the angular dependence of the secondary
radiation yield YðDqÞ are discussed in terms of the XSW intensity at a mean atom
position with respect to the XSW nodes called the coherent position Pc. A deviation of
the real position of an individual atom from the mean position is taken into account
through the parameter called coherent fraction fc. Thus, the experimental curves are
fitted by a simple formula [20]

YðDqÞ ¼ ZðDqÞ f1 þ RðDqÞ þ 2 fcP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RðDqÞ

p
cos ½nðDqÞ �Qc�g ð1Þ

where ZðDqÞ is a normalized effective thickness of SRY, RðDqÞ is a reflectivity, P is a
polarization constant, nðDqÞ is the XSW phase and Qc ¼ 2pPc. Formula (1) is rather
useful in some simple cases of the photoelectron yield with a very short escape depth
Lyi. On the other hand, it cannot be used for the cases when the thickness of a dis-
turbed layer is comparable with Lyi or Lex.

In the general case, as was indicated for the first time in [10, 21], the solution of the
Takagi equations must be used for calculating the local electric field of X-rays inside
the crystal with a disturbed subsurface layer. In addition, one has to take into account
the probability function PyiðzÞ for the secondary radiation in order to reach the surface
of the sample from the depth z. Of course, one has to integrate the SRY over the depth
of the sample. The Takagi equations for the sample with variable structure parameters
of the general profile can be solved only numerically. The way of solving of the pro-
blem is proposed in [21]. However, very often the sample consists of several layers
having approximately constant structure parameters with sharp interfaces between
them. This is valid for one epitaxial film on a substrate [9] or for the isotopically differ-
ent layer on a substrate of normal isotopic composition (see [16, 17] and references
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therein). For these cases, the model of the multilayered crystal system is useful. Such
model allows to use the recurrent relations for different layers numerically, whereas the
Takagi equations for the individual layers having the constant structure parameters are
solved analytically. On the other hand, even the general case may be considered if a sam-
ple is approximated by a crystal system consisting of many layers of different thicknesses.

Such approach was considered in [6] for the Bragg case and in [19] for the Laue case
as a tool for analyzing specific experimental results. Here we present the general formu-
lae for calculating the XSW spectra and X-ray reflectivity in the case of the multilayered
crystal system. The formulae may be used as a basis for a computer program. The code
of our program is written in FORTRAN. Therefore, it may be used in the operating
systems DOS (Windows) and UNIX. We demonstrate possibilities of the approach on
two particular examples. In the first example the Bragg case of X-ray diffraction in the
In0:5Ga0:5P epitaxial film on the GaAs substrate is analyzed more accurately compared
to Ref. [22]. In the second example the Laue case of X-ray diffraction in the sample with
the monotonously increasing (decreasing) parameter of a deviation from the Bragg con-
dition is considered. The phenomenon of the complete switching of the X-ray beam
from the incident direction to the direction of reflection is calculated and discussed.

2. Solution for One Crystal Layer

We consider a sample having a lamina-like shape. We use the Cartesian coordinate
system with the z-axis directed along the internal normal to the entrance surface. We
analyze the two-beam case of X-ray diffraction in which the Bragg condition is met
only for one reciprocal lattice vector h: Therefore, we try the solution of the Maxwell’s
equation in the form

Eðr;wÞ ¼ exp ðik0rÞ ½e0E0ðzÞ þ ehEhðzÞ exp ðihrÞ� ð2Þ

where e0; eh are the unit vectors of polarization, k0 is the wave-vector of the incident
plane wave in the air, jk0j ¼ K where K ¼ w=c ¼ 2p=l, c is the speed of light and l is
the wavelength of the X-rays. The complex functions E0; hðzÞ are slowly varying in the
space compared to the exponential exp ðihrÞ. We assume the incident wave to be a
plane-polarized wave. This is valid for synchrotron radiation. In the case of nonpolar-
ized radiation one has to consider two standard polarization states and then to average
the intensity over the polarizations.

The integration of the Maxwell’s equation over the unit cell allows us to write the set
of equations for E0ðzÞ, and EhðzÞ. As a result, we obtain the Takagi equations in the
form [10]

2g0
dE0

dz
¼ iK c0E0 þ Cc �hh exp ðij�WÞ Ehf g ;

2gh
dEh

dz
¼ iK ½c0 � a� Eh þ Cch exp ð�ij�WÞ E0f g ; ð3Þ

where g0 ¼ k0z=K, and gh ¼ khz=K, are the geometrical parameters, a ¼ ½k2
h � k2

0�=K2 is
the parameter of deviation from the Bragg condition, kh ¼ k0 þ h is the wave vector of
the diffracted wave, C ¼ ðe0ehÞ is the polarization factor, and jðzÞ ¼ huðzÞ is an addi-
tional phase due to a mean displacement of atoms. The values c0, ch, and c �hh are the
Fourier coefficients of the crystal susceptibility with the reciprocal lattice vectors 0, h,
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�h. Finally, factor exp ½�WðzÞ� describes the dephasing of the scattered wave owing to
random displacements of atoms from the mean value at the depth z. The factor was
introduced for the first time in [10, 23] and was called the static Debye-Waller factor on
the analogy of the well-known thermal Debye-Waller factor. The latter is incorporated
into the crystal susceptibility.

The kind of the boundary conditions for Eq. (3) depends on the sign of the geome-
trical parameter gh. In the Laue case, when gh > 0, the diffracted beam escapes from
the crystal plate through the back surface and is absent at the entrance surface. There-
fore, we have E0ð0Þ ¼ 1 and Ehð0Þ ¼ 0: We assume the entrance surface to be de-
scribed by the equation z ¼ 0 and the incident intensity to be normalized to unity. In
the Bragg case, when gh < 0, the diffracted beam escapes from the crystal through the
entrance surface and is absent at the back surface. So we have E0ð0Þ ¼ 1 and
EhðdÞ ¼ 0; where d is the thickness of the crystal plate.

2.1 The local reflection amplitude

We want to consider the Bragg and Laue cases simultaneously. The boundary condi-
tions for the Bragg case do not allow us to obtain the wave fields from the entrance
surface step by step. It is convenient to find a ratio of the functions EhðzÞ and E0ðzÞ
first. We introduce the local reflection amplitude

RðzÞ ¼ EhðzÞ
E0ðzÞ

exp ½ijðzÞ�
Yb1=2

ð4Þ

and consider the nonlinear equation from Eqs. (3)

dRðzÞ
dz

¼ � 2is
Lex

½y� yjðzÞ þ iy0� RðzÞ þ
iC1

Lex
½sþ R2ðzÞ� ; ð5Þ

where the following quantities are introduced:

Lex ¼ lg0

pb1=2X 0
; b ¼ g0

jghj
; X ¼ ðchc �hhÞ

1=2 ¼ X 0 þ iX 00 ¼ X 0ð1 � ipÞ ;

Y ¼ ch
ch

� �1=2

¼ jY j exp ðiFYÞ ; y ¼ � ½ab� sc00ð1 þ sbÞ�
2b1=2X 0

; ð6Þ

y0 ¼ sc000ð1 þ sbÞ
2b1=2X 0

; yjðzÞ ¼ s
Lex

2
djðzÞ

dz
; C1 ¼ Cð1 � ipÞ exp ð�WÞ :

Here c0 ¼ c00 þ ic000. We use a0 and a00 for the real and imaginary parts of the complex
value a. The parameter s is equal to 1 for the Bragg case and �1 for the Laue case.
The boundary conditions for the reflection amplitude are as follows: Rð0Þ ¼ 0 in the
Laue case and RðdÞ ¼ 0 in the Bragg case.

There are two ways of changing the parameter of deviation from the Bragg condi-
tion. The first one is the variation of the angle of incidence Dq of the X-ray beam,
keeping constant the energy of X-ray photons. In this case we have

y ¼ Cyq Dq ; yjðzÞ ¼ Cyq DqBðzÞ ; Cyq ¼ p
Lex

ljghj
sin 2qB ð7Þ
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where qB is the Bragg angle in the perfect crystal while DqBðzÞ is a local shift of the
Bragg angle at the depth z due to distortions of the crystal lattice. The angle of rotation
Dq is counted in the direction opposite to the direction of the reciprocal lattice vector
h. The second way is a change of the energy of X-ray photons, keeping constant the
direction of the beam. In this case

y ¼ Cyw D�h w ; yjðzÞ ¼ Cyw D�h wBðzÞ ; Cyw ¼ Lex

�hcjghj
sin2 qB ð8Þ

where �h ¼ h=2p, h is the Planck constant, �hwB is the Bragg energy of X-ray photons,
whereas D�h wBðzÞ is a local shift of the Bragg energy at the depth z due to distortions.
The origin of the axis of y corresponds to the centre of the diffraction peak for a per-
fect crystal. The Dq dependence is usual for the experiments in the nondispersive two-
crystal scheme with an X-ray tube as a source. The D�h w dependence may be used in
the experiments with synchrotron radiation, including the back diffraction with the
Bragg angle p=2: We note that the parameter y0 can also be expressed through the
dimensionless variables

y0 ¼ s

4g0
m0Lexð1 þ sbÞ ð9Þ

where m0 ¼ 2pc000=l is a linear absorption coefficient.
The approach based on the direct numerical solution of the differential Eq. (5) was

proposed in [21] (see also [11]). We note that such an approach has a disadvantage for
the crystal samples containing thick layers with approximately the same parameters, if
the difference between various layers is large. The point is that Eq. (5) can be solved
numerically applying only a very small step Dz for the total z region even if the param-
eters of the layer remain unvariable inside the layers. It is more convenient to consider
the model of the crystal as a set of layers having constant parameters inside of each
layer. The values of the parameters are changed only at the boundaries between the
layers. Equation (5) for the layer with the constant parameters yj has an analytical
solution. Such a solution is found in [6] for the Bragg case and in [19] for the Laue
case. Here we present the general solution which is valid for both the Bragg case and
the Laue case. We assume that the boundary condition does not contain the vanished
amplitudes, i.e. Rð0Þ in the Laue case and RðdÞ in the Bragg case are finite and known.
Here d is now the layer thickness. The solution can be written as

RðzÞ ¼ FnðzÞ
FdðzÞ

; ð10Þ

where

FnðzÞ ¼ x1 � x2B exp ð�isszÞ ; FdðzÞ ¼ 1 � B exp ð�isszÞ ;

x1; 2 ¼ � s

C1
�a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � sC2

1

q� �
; s ¼ 2

Lex

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � sC2

1

q
; ð11Þ

a ¼ y� yj þ iy0 ; B ¼ ðx1 � RðzbÞÞ
ðx2 � RðzbÞÞ

exp ðiszbÞ :

Hereafter it is assumed that the square root has the positive imaginary part. One can
verify the solution by the direct substitution. It is easy to verify the boundary condi-
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tions as well. Equations (10) and (11) allow to derive the recurrent relation for the
reflection amplitude at the exit surface z ¼ ze from the known value at the entrance
surface z ¼ zb.

RðzeÞ ¼
ðx1 � x2Þ RðzbÞ þ x2½x1 � RðzbÞ� ½exp ðisdÞ � 1�

x1 � x2 þ ½x1 � RðzbÞ� ½exp ðisdÞ � 1� : ð12Þ

Here ze ¼ d and zb ¼ 0 in the Laue case and ze ¼ 0 and zb ¼ d in the Bragg case.
Let us consider the particular cases of kinematical diffraction. As d ! 0, we obtain

the approximate relation

RðzeÞ ¼ RðzbÞ þ d
2ia
Lex

RðzbÞ �
iC1

Lex
½1 þ sR2ðzbÞ�

� �
ð13Þ

We note that Eq. (13) can be obtained directly from Eq. (5) if the right-hand side of
the equation at the boundary is taken and a derivative is replaced by
½RðzeÞ � RðzbÞ�=ð�sdÞ: In the pure kinematical case when jRðzÞj � 1 and jaRðzÞj � 1
we have a simple expression RðzeÞ ¼ RðzbÞ � idC1=Lex. This means that the reflection
amplitude increases linearly with the thickness of the crystal and the value of the
parameter of deviation from the Bragg condition is not important.

Another case of kinematical diffraction may be obtained when the parameter of the
deviation from the Bragg condition is large so that jaj � jC1j. Under this condition in

the Bragg case we have approximately
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � sC2

1

q
� a: Then x1 � 0; x2 � 2a=C1,

jx2j � 1, sd ¼ F ¼ 2ad=Lex, and we obtain from Eq. (12) that RðzeÞ ¼ RðzbÞ exp ðiFÞ.
This means that the layer changes the phase of the reflection amplitude which may
have the large modulus due to reflection at the substrate. The layer does not influence
practically the modulus of the reflection amplitude. Concerning the phase, the latter can
be measured by means of X-ray standing wave technique (see below).

2.2 The local transmission amplitude

Taking into account definition (4), we write the first Takagi equation as follows

dE0

dz
¼ i

pc0

lg0
� C1

Lex
RðzÞ

� �
E0ðzÞ : ð14Þ

If the function RðzÞ is known, the solution may be written directly

E0ðzÞ ¼ exp i
pc0

lg0
z� i

C1

Lex

ðz
0

dz0 Rðz0Þ

8<
:

9=
; E0ð0Þ ¼ TðzÞ E0ð0Þ : ð15Þ

This solution may be used for numerical calculation, however, again with a disadvant-
age owing to the integral. If the layer has a constant parameter yj, the function RðzÞ
has the analytical solution (10), (11). In this case the integral can be calculated in the
analytical form by means of a table integralð

dx
1 �A exp ðaxÞ ¼ x� 1

a
ln ð1 �A exp ðaxÞÞ : ð16Þ
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As a result, we obtain

TðzÞ ¼ exp
i

2
Gz

� �
FdðzÞ
Fdð0Þ

; ð17Þ

where

G ¼ G 0 þ iM ¼ 2
pc0

lg0
� 2

C1

Lex
x1 ; M ¼ m0ð1 � sbÞ

2g0
þ ss00 : ð18Þ

Here s ¼ s0 þ is00, M ¼ G00 and the values x1 and FdðzÞ are defined by Eq. (11). The
recurrent relation for the intensity of the transmitted wave is simple. Each layer of
thickness d contributes the following factor to the intensity

jTðdÞj2 ¼ exp ð�MdÞ jFdðdÞj2

jFdð0Þj2
: ð19Þ

To use this expression, one needs to know the value RðzbÞ for this layer. Therefore, this
recurrent relation may be used only after the recurrent relation (12) is applied.

3. The Secondary Radiation Yield

The X-ray diffractometric technique involves measuring either angular or energy depen-
dence of the reflectivity as a ratio of the intensities of the reflected and incident beams.
If the sample contains the crystal-lattice distortions, the reflectivity curve (the rocking
curve in the case of angular dependence) has some additional peaks together with the
main peak. For the long range distortions of small magnitude, the shape of the main
peak may be changed. On the other hand, for the large distortions in a thin subsurface
layer one may measure only a small change of rocking curve tails. In this case the
standing wave technique is useful and gives an additional structure information just in
the region of the main peak. The standing wave technique consists of measuring the
intensity of the secondary radiation scattered via incoherent channels (photoelectron
emission or fluorescence) under the conditions of X-ray diffraction. Such radiation in-
volves many spherical waves originating from individual atoms of the crystal. If a detec-
tor counts all electrons or photons which reach the surface from the depth of the crys-
tal, the probability of the secondary radiation yield must be averaged over the surface.
The averaged probability function depends only on the z-coordinate, the distance from
an atom-source to the surface.

In the case of photons the probability function PyiðzÞ is an exponential
PyiðzÞ ¼ exp ð�myizÞ where myi is a linear absorption coefficient of the fluorescent radia-
tion and z is counted from the surface to the volume of the sample. Below we assume
that the detector is mounted on the side of the incident beam. When the detector is
mounted on the opposite side, we may consider formally a negative value of myi. In the
case of electrons the situation is more complicated. However, even in this case the
exponential is a rather good approximation to the real function as discussed in [6].

Both the photoelectron emission and the fluorescence are the products of the photo-
electron interaction of X-ray wave with an atom. In the dipole approximation the inten-
sity of the secondary radiation yield (SRY) from the atom is proportional to the inten-
sity of the X-ray field at the atom position [10, 11, 24] and the size of the atom is
negligible. To take into account the size of the atom, thermal vibrations, or atom displa-
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cements from an equilibrium position, we have to introduce some small corrections. In
the case of fluorescence one can use an energy sensitive detector and separate the
signal from the atoms of a definite sort among all the atoms of the crystal. The struc-
ture factor of these atoms may be different from the crystal-lattice structure factor.

Let us consider again the layered crystal. The layers are uniform, i.e. they have the
constant parameters of distortion. However, these parameters may be different for the
various layers. The total yield of secondary radiation ISR is a sum over all layers

ISR ¼
PN
n¼1

Zn�1 I
ðnÞ
SR ; Zn ¼ jE0ðznÞj2 PyiðznÞ ; ð20Þ

where IðnÞSR is a contribution of the layer with the back boundary at zn ðz0 ¼ 0Þ. The
thickness of the n-th layer is dn ¼ zn � zn�1. The contribution IðnÞSR is given by

IðnÞSR ¼ c000a

ðd
0

dz0 Pyiðz0Þ jTðz0Þj2

� 1 þ jEhðz0Þj2

jE0ðz0Þj2
þ 2Re

Ehðz0Þ
E0ðz0Þ

C
c00�hha

c000a

exp ½ijaðz0Þ� exp ½�Wa�
� �#

;

"
ð21Þ

where the index a indicates that the yield is calculated only for the atoms contributing
into the secondary radiation yield (SRY). All parameters must be taken for the n-th
layer. To use the solution (10), we rewrite the expression in terms of the local reflection
amplitude, taking into account definition (4)

IðnÞSR ¼ c000a

ðd
0

dz0 Pyiðz0Þ jTðz0Þj2

� 1 þ jRðz0Þj2 jY j2 bþ 2Re Rðz0Þ Yb1=2C
c00
ha

c000a

exp ½�ijðz0Þ þ ijaðz0Þ� exp ½�Wa�
( )" #

:

ð22Þ

We accept a reasonable assumption that the difference jðzÞ � jaðzÞ ¼ Dja does not
depend on z. If the atom is a source of the SRY and is located at the crystal lattice
node, Dja ¼ 0. However, in the case of an impurity atom this parameter may be differ-
ent from zero.

We calculate the integral in the analytical form. First of all, we use the solution (11)
for RðzÞ and write

IðnÞSR ¼ c000a

jFdð0Þj2
ðd
0

dz exp ð�½M þ myi� zÞ

�½jFdðzÞj2 þ Cr jFnðzÞj2 þ Re CiF
�
dðzÞ

� 	
FnðzÞ� ; ð23Þ

where

Cr ¼ jY j2 b ; Ci ¼ 2CYb1=2fc exp ðijcÞ ;

fc ¼
jc00

ha
j

c000a

exp ð�WaÞ ; jc ¼ Dja � arg ðc00haÞ : ð24Þ
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The values fc and Pc ¼ �jc=2p ¼ dc=dhkl are called the coherent fraction and the rela-
tive coherent position of an atom as a source of the SRY [11, 20]. Hereafter dhkl is a
distance between the reflecting atomic planes and dc is a shift of the atom from the
origin of the unit cell along the reciprocal lattice vector. The integrand of Eq. (23) is a
sum of the exponentials. Therefore, the integral can be calculated straightforwardly. As
a result, we have

IðnÞSR ¼ d
c000a

j1 � B j2
A1Y1 þA2Y2 � Re ðA3Y3Þ½ � ; ð25Þ

where B is determined by Eq. (11) and

Yk ¼ ½1 � exp ð�akÞ�=ak ; k ¼ 1; 2; 3 ;

a1 ¼ ðM þ myiÞ d ; a2 ¼ a1 � 2ss00d ; a3 ¼ a1 þ issd ;

A1 ¼ 1 þ jx1j2 Cr þ Re ðCix1Þ ; ð26Þ

A2 ¼ jB j2 ½1 þ jx2j2 Cr þ Re ðCix2Þ� ;

A3 ¼ Bð2½1 þ x*1x2Cr� þ ðCix1Þ* þ Cix2Þ :

We note that Eq. (25) is valid for both the Bragg case and the Laue case of diffraction.
The difference between two cases is only in the sign of symbol s.

4. The Method of the Computer Simulation

The solution described above is used for elaborating the computer program DSWLC as
the MS Windows application for PC. The Fortran code of the program may be used in
other operating systems. Below we describe the main features of the program. We as-
sume that the crystal contains N layers. The layers can be different by sorts of atoms,
crystal structure and so on. In particular, the extinction length can be different in the
various layers due to the different values of X 0: This leads to the different scaling
coefficients in Eqs. (7), (8). Since this is inconvenient, we introduce the same value of
extinction length Lð0Þ

ex ¼ lg0ðpb1=2X 0
0Þ

�1 in all layers where X 0
0 is a mean value of X 0.

Then we replace the static Debye-Waller factor with the parameter
fsc ¼ exp ð�WÞ ðX 0=X 0

0Þ called the power of scattering by the layer. Such a replacement
does not change the Takagi equations.

One may distinguish 11 parameters which characterize the layer completely, namely:
1. d as the thickness of the layer; 2. DqB as the shift of the Bragg angle or D�h wB as the
shift of the X-ray Bragg energy due to a distortion; 3. fsc as the power of scattering;
4. m0 as a linear absorption coefficient of X-rays; 5. myi as an absorption coefficient of
secondary radiation, 6. p ¼ �X 00=X 0; 7. jY j; 8. arg ðYÞ; 9. fc as a coherent fraction;
10. jc as a phase corresponding to a relative coherent position; 11. c000a as a power of
the SRY.

When the parameter Y has different values in the neighboring layers, the value YR
must be the same at both sides of the boundary between these layers. Therefore,
Rn ¼ Rn�1Yn�1=Yn:

In the Bragg case the local reflection amplitude vanishes at the back side of the
crystal sample, i.e. RðtÞ ¼ 0 where t ¼ zN is a thickness of the sample. The measurable
value is the reflectivity PR defined by PR ¼ jY Rð0Þj2. Therefore, at first we have to use
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the recurrent relation (12) N times from the back side to the face side of the crystal.
Only afterwards we can calculate the secondary radiation yield ISR by means of summa-
tion in Eq. (20), taking into account Eq. (25) and the recurrent relation for coefficients
Zn as

Z0 ¼ 1 ; Znþ1 ¼ Zn jTnðdnÞj2 exp ð�m
ðnÞ
yi dnÞ : ð27Þ

The transmissivity PT can be calculated using the same value as

PT ¼ ZN exp
PN
n¼1

m
ðnÞ
yi dn

� �
: ð28Þ

In the Laue case Rð0Þ ¼ 0 and we should use the recurrent relation from the face
side to the back side. In this case the reflectivity is not determined completely by the
local reflection amplitude due to absorption of the radiation in the crystal. We have
PR ¼ jYRðtÞj2 PT. The case when the secondary radiation escapes the crystal from the
back side can be calculated within the same method using the negative value of myi. The
normalization of the curve to unity background can be made numerically.

So far we have assumed that the incident wave is well collimated and monochroma-
tized. In experiments two different techniques are used. The first technique consists of
measuring the angular dependence with the aid of a crystal collimator in the (n;�nÞ
nondispersive scheme (the Bragg case). In this case, using a rather monochromatic
characteristic radiation of X-ray tube generators, one can neglect the energy depen-
dence. The angular convolution is only necessary with the reflectivity function PðmÞ

R ðyÞ
of the monochromator in the y-scale. If the parameter X 0 of the monochromator coin-
cides with the parameter X 0

0 of a sample and bm is the parameter of asymmetry of the
monochromator, we have the well-known formula (see e.g. [11])

IcðyÞ ¼
1
S

P
j

ð
dy1 P

ðmÞ
R ðj; y1Þ Iðj; yþ y1½bmb�

1=2Þ ;

S ¼
P
j

Ð
dy1 P

ðmÞ
R ðj; y1Þ :

(29)

Here j is an index of polarization and two polarization states (p; s) are assumed to be
equivalent (nonpolarized radiation). The notation Iðj; yÞ is used for any of the functions
PRðj; yÞ, PTðj; yÞ, ISRðj; yÞ.

To save computing time in the calculation of the convolution (29), it is convenient to
calculate the tables of data with a constant step of argument DyP for PðmÞ

R ðyÞ and DyI
for IðyÞ independently and then to recalculate quickly the table of IðyÞ by means of
spline interpolation to the table with the step DyI ¼ DyPðbmbÞ

1=2. Then the integral for
all values y can be calculated by a simple summation.

The second technique is usual in the case of a synchrotron radiation source when the
incident wave is well-polarized and the crystal-monochromator is rotated, the sample
being kept at the same position. Therefore, the energy dependence is measured while
the angular position is the same. In this case the energy profile of the incident wave is
determined mainly by the angular divergence of the synchrotron radiation beam
through the Bragg condition of the monochromator. The angular divergence is defined
by the transverse spatial distribution of the brightness of the synchrotron radiation
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source. It is a normal practice to describe the latter by the Gaussian (see e.g. [25]). As
a result, in the y-scale we have

IcðyÞ ¼ ðsy

ffiffiffi
p

p
Þ�1 Ð dy1 exp ð�y2

1=s
2
yÞ Iðj; yþ y1Þ ; ð30Þ

where sy is a parameter of fitting. Sometimes a convolution with the Gaussian is useful
in the first case in order to take into account a possible mosaicity of the crystal sample.

As a rule, many of 11 parameters describing each layer are known definitely from
the procedure of preparing a sample. There are few parameters which must be deter-
mined by fitting the calculated spectra to the experimental spectra. Such parameters
are as follows: thickness of the layer d, shift of the Bragg angle DqB or energy D�h wB,
and the static Debye-Waller factor exp ð�WÞ, exp ð�WaÞ ¼ exp ð�WÞ being put in
many cases.

The method of fitting used in the program is rather simple. One should minimize the
function

c2 ¼
P
i

IcðqiÞ �KIexðqiÞ½ �2 ; ð31Þ

where IexðqiÞ is the table value of the concerned function measured in the experiment
and IcðqiÞ is the theoretical value calculated for the same function at the same argu-
ment. If the normalization of the experimental data is accurate, Eq. (31) should be used
with K ¼ 1. Sometimes the intensity of the incident beam is not measured and the
experimental data (the X-ray reflectivity or the secondary radiation yield) are known
without an accurate normalization. In these cases the program calculates the normaliza-
tion constant K from the condition of the minimum c2 value as a function of K. The

solution is K ¼
P
i
I 2

exðqiÞ
� ��1 P

i
IcðqiÞ IexðqiÞ:

5. Epitaxial Film of In0:5Ga0:5P on a GaAs Substrate

As a first example of application of the program DSWLC, we consider the system con-
sisting of a relatively thick epitaxial film of In0:5Ga0:5P on a substrate of GaAs. The
results of the experimental study of this system together with the previous theoretical
analysis are reported in Ref. [22]. The experiment was done in the two-crystal nondis-
persive scheme ðn;�nÞ, with the (111) reflection of the Cu Ka radiation. The Ge crystal
having the asymmetry factor bm ¼ 0:04 is employed as a monochromator. The X-ray
reflectivity is measured within the wide range of the angular parameter. The secondary
fluorescent radiation In La and P Ka is measured inside the region of the reflectivity
maximum of the film. The experimental data are normalized accurately and shown in
Figs. 1 and 2 as circles. The data are taken from Ref. [22]. No information about the
diffuse scattering is known. However, one may assume that the diffuse scattering influ-
ences the shape of the curves only on the tails of both the main and additional peaks of
the reflectivity where the diffraction scattering is small.

We calculate almost all parameters of the epitaxial structure necessary for the compu-
ter simulation using the data from the literature. The exceptions are the depth profiles
of the crystal lattice spacing Ddhkl=dhkl ¼ �DqB=tan qB ¼ �4:13DqB and the static De-
bye-Waller factor exp ð�WÞ. We note that the coherent fraction fc is taken as a product
of the thermal Debye-Waller factor and the static Debye-Waller factor. The In atoms
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and the P atoms have the same coherent fraction. According to our approach we must
find the parameters of the multilayered crystal structure. The simplest model contains
two layers. One of them describes the epitaxial film and the other describes the sub-
strate. We have found the necessary parameters from fitting only the reflectivity curve
of the Fig. 1. The values of the parameters d in mm, DqB in mrad, and exp ð�WÞ are
shown in Table 1 together with the value of the fitting parameter c2. The reflectivity
curve calculated for this model is shown in Fig. 1 by the thin line. The calculated curves
of the In La and P Ka fluorescence for the same parameters as the reflectivity are
shown in Fig. 2 (thin line). One may see that the coincidence between the experimental
data and the theoretical curves is rather good. However, difference is apparent. Such a
model was used in Ref. [22] where the same result is obtained for the reflectivity. We
note that the P Ka fluorescence yield is calculated with the value of jc ¼ �p=2
(Pc ¼ 1=4). Therefore, the polarity of the crystal is such that the In atoms lie on the
surface.

As was pointed out in Ref. [22], the two-layer model cannot describe the specific
features of the X-ray reflectivity on the left-hand side of the spectrum where significant
additional peaks are measured. In this work we try to describe these features using
three-layer model. Again the parameters are found from fitting only the X-ray reflectiv-
ity curve. Their values are shown in Table 1. The result of calculating X-ray reflectivity
for this model is shown by the thick line in Fig. 1. One may see that the coincidence of
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Fig. 1. Angular dependence of the X-ray
reflectivity for the epitaxial structure
In0:5Ga0:5P/GaAs. The calculation is made
in the two-layer approximation (thin line)
and 3-layer approximation (thick line).
See the parameters in Table 1. The experi-
mental data are shown by the circles

Ta b l e 1
The parameters of multilayered structure In0:5Ga0:5P=GaAs

d ðmmÞ DqBðmradÞ exp ð�WÞ fit

two-layer approximation

0.63 �480 0.84
300 0 1

0.056

three-layer approximation

0.5 �450 0.92
0.13 �728 0.89

0.037

300 0 1



the calculated curve with the experimental
data becomes much better. Only some small
difference exists on the left slope of the epi-
taxial film peak as well as inside the region
between two peaks. The agreement for the
In La fluorescence yield becomes much bet-
ter as well. As for the P Ka fluorescence
yield, the only right-hand side of the curve
becomes better fitted whereas the left-hand
side remains significantly distinctive. Unfor-
tunately, it is difficult to explain this result.
At least, it means that the fluorescent data
are more sensitive to small differences in the
deformation and disorder profiles.

Of course, the four-layer model, five-layer
model and so on can be analyzed. We be-

lieve that the quality of fitting can be improved in such a way. However, a fine analysis
is not the aim of this work. Here we want to discuss a physical reason of the result
obtained within the three-layer model. We have found that the epitaxial film is not
homogeneous. The region beside the surface has the smaller difference of the lattice
spacing Ddhkl=dhkl ¼ 1:9 	 10�3 whereas the region beside the substrate has the larger
difference Ddhkl=dhkl ¼ 3:0 	 10�3. Such a structure can arise due to strong deformation
of the film near the substrate. Of course, the lattice spacing is determined by the elastic
constants. Very simple qualitative arguments look as follows. Because the substrate has
a smaller unit cell volume, the unit cell of the film near the substrate is transformed
from the cube to the rectangular parallelepiped. The spacing along the interface inside
the layer becomes the same as the spacing inside the substrate. However, the volume of
the film unit cell is greater than the substrate one. Therefore, the spacing in the direc-
tion normal to the interface (along the reciprocal lattice vector) must be larger. It is
this spacing that influences the X-ray diffraction data.

6. Complete Switching the Beam from the Incident Direction
to the Direction of Reflection

In this section we want to demonstrate an application of the program to many layers.
The model of a layered crystal with many layers allows a simulation of macroscopic
deformation of the sample. To demonstrate this possibility, we consider the symmetrical
Laue case of X-ray diffraction in a silicon crystal where the Bragg angle increases
(decreases) linearly with increasing a depth of location of the atomic planes from the
entrance to the exit surfaces. Such deformation corresponds approximately to an exter-
nal distortion like a constant temperature gradient or an excitation of ultrasound vibra-
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Fig. 2. Angular dependence of In La (top picture)
and PKa (bottom picture). The calculation is made
for the same parameters as in Fig. 1



tions by the wave having a half of the per-
iod per sample thickness. We note that
the Laue case of diffraction in the crystal
having a weak gradient of a lattice para-
meter was investigated by Hildebrandt
[26] both experimentally and theoretically
within the two-layer model.

Figure 3a shows the angular depen-
dence of the reflectivity (thick line) and
the transmissivity (thin line) in the sym-
metrical Laue case of (220) diffraction of
Mo Ka radiation in the perfect (undis-
torted) crystal plate of thickness 584 mm.
It is assumed that the incident plane wave

is s-polarized. This allows one to consider more simple and regular picture. As is
known, two Bloch waves are excited in the crystal in the Laue case of diffraction. They
correspond to the two different branches of dispersion surface and have different
speeds of light. Such a difference depends on the parameter of the deviation from the
Bragg condition. As a result, the phase difference between the Bloch waves depends on
the crystal plate thickness t as well as on the crystal angular position Dq. As for the
reflectivity and transmissivity curves, they oscillate with a variable period as a function
of Dq. The period depends on the crystal thickness. It decreases with increasing thick-
ness. The crystal is thick so that m0t=g0 ¼ 0:84 where m0 is a linear absorption coeffi-
cient and g0 ¼ cos qB. The real absorption and the degree of excitation of different
Bloch waves depend on the angular deviation. In addition, the absorption of one Bloch
wave becomes much smaller at the accurate Bragg position (zero point in Fig. 3). This
phenomenon is known as the Borrmann effect [27]. The absorption of the other Bloch
wave becomes twice larger. This is due to absorption so that the transmissivity does not
exceed 60% even in the case when the Bragg condition is not fulfilled.

Due to the structure of the Bloch waves the reflectivity has the maximum values
when the transmissivity has the minimum values and vice versa. This fact is easy to
understand from the energy conservation. Both Bloch waves contribute the same value
into the intensity of the reflected beam. Therefore, the reflectivity vanishes at the angu-
lar points of destructive interference. However, the intensity contributions of the differ-
ent Bloch waves are the product of two terms, namely, the reflection component and
the degree of excitation. These components are different for the different Bloch waves
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Fig. 3. Angular dependence of the reflectivity
(thick line) and transmissivity (thin line) in the
symmetrical Laue case of the (220) X-ray dif-
fraction of the Mo Ka radiation in the Si crys-
tal of thickness 584 mm. a) Undistorted crystal,
b) DqB changes linearly with the depth from 10
to �10 mrad, c) from �10 to 10 mrad, d) from
20 to �20 mrad, e) from �20 to 20 mrad



on the tails of the angular dependence. One Bloch wave has the smaller reflection
component but the larger degree of excitation. The other Bloch wave has the larger
reflection component, but it is excited with the smaller degree. Unfortunately, this can-
not be seen directly in the formulae presented above. However, a detailed analysis of
the formulae is simple and can be made by the reader.

Figure 3b shows the angular dependence of the reflectivity and transmissivity for
the same sample but distorted so that the shift of the Bragg angle is determined by
the function DqBðzÞ ¼ ð10 � 20 z=tÞ mrad. In reality, this function DqBðzÞ was simu-
lated by the model of a crystal containing 100 layers of the same structure with DqB

constant within the layer, but changing by �0:2 mrad at each boundary between two
layers. It is easy to see a drastic change of the reflectivity and transmissivity. First of
all, the amplitude of oscillations becomes approximately constant within the angular
range considered. Its value corresponds to the angular points �10 mrad in Fig. 3a. In
the central part of the plot the transmissivity is close to zero and the reflectivity
reaches a maximum possible value involving the X-ray absorption in the crystal.
Hence we have simulated the phenomenon of the complete switching of the X-ray
beam from the incident direction to the direction of reflection. Such an effect was
calculated for the first time in Ref. [28] by means of numerical solution of the Takagi
equations and independently was observed experimentally for the first time in Ref.
[29].

The detailed analytical analysis of this effect can be made within the approximation
of the geometrical optics developed by Penning and Polder (see e.g. [30]). However, it
is not the aim of this article. We discuss the phenomena taking place in the central
angular position of the crystal. At the entrance surface where DqB ¼ 10 mrad the
weakly absorbing Bloch wave is well-excited but has a small reflection component.
However, the shift of the Bragg angle DqB becomes smaller and smaller with increasing
the depth z and then it changes a sign. This leads to increasing the reflection compo-
nent of the Bloch wave. The degree of excitation remains unchanged. The point is that
the interaction with the other Bloch wave is small as the deformation varies slowly. As
a result, at the exit surface this Bloch wave becomes well excited and has the large
reflection component. The excitation of the other Bloch wave is small at the entrance
surface and the reflection component becomes small at the exit surface. That is why the
amplitude of oscillations is small too. The effect of decreasing the transmissivity follows
from the energy conservation. Thus, only one Bloch wave is well-excited for all depth z
inside the crystal and this wave is weakly absorbing.

Let us consider the situation when the Bragg angle changes according to the formula
DqBðzÞ ¼ ð�10 þ 20 z=tÞ mrad. It is easy to understand that the other Bloch wave is
well-excited and strongly absorbing. Therefore, the complete switching of the beam
takes place too, but the reflectivity is smaller than in the first case due to strong absorp-
tion. The amplitude of oscillations is slightly larger than in Fig. 3b because the weakly
excited wave is weakly absorbing. Therefore, its amplitude is larger at the exit surface.
As the gradient of distortion increases, the phenomenon becomes more pronounced.
Such a conclusion is verified in Figs. 3d and e where DqB varies from 20 to �20mrad
and from �20 to 20mrad, correspondingly. We note that the effect of complete switch-
ing the incident beam can be obtained within a rather large angular region which is
much larger than the angular region of the X-ray dynamical diffraction in a perfect
(undistorted) crystal.
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7. Conclusion

The method of the computer simulation of the angular dependence of the reflectivity,
transmissivity and yield of secondary radiation under the condition of the dynamical X-
ray diffraction is presented for the multilayered crystal systems or crystals with a one-
dimensional profile of the crystal-lattice distortion. The method is based on an analyti-
cal solution of the diffraction problem inside the individual layer. A set of the param-
eters describing completely each layer is formulated. The formulae are derived in a
form applicable for both the Bragg case and the Laue case of X-ray diffraction.

The computer program DSWLC is elaborated as a Microsoft Windows application.
The program was applied to the numerical analysis of two problems among many
others. In the first problem the structure parameters of the epitaxial film In0:5Ga0:5P on
the substrate of GaAs are found within the larger accuracy than in the previous publi-
cation. It is shown that the model with a nonuniform lattice spacing along the depth of
the film gives the better coincidence of the theoretical curves with the experimental
data. In the second problem it is shown that the model of the multilayered crystal
allows to simulate the phenomenon of the complete switching of the beam from the
incident direction to the direction of reflection. It is shown that the angular region of
the complete switching becomes much larger for the large distortion compared to the
perfect crystal.
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