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Abstract

A simple and direct interferometric technique for characterization of the source size and the transverse coherence
length of synchrotron hard X-rays is discussed. A high level of spatial coherence of the X-ray beam allows us to detect
the diffraction images (phase contrast patterns) of both the boron fiber of about 100 um diameter and the slit of different
widths. We characterize the level of coherence by comparison of the measured visibility of the interference fringes with
the theoretical values by means of simple analytical formulas derived in this work. The analytical theory of both the
fiber and the slit diffraction images is discussed in details. The results obtained analytically are confirmed by computer
simulations. The proposed technique is well suited for third-generation synchrotron sources and was applied at the
European Synchrotron Radiation Facility. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

With an advent of third-generation synchrotron
radiation sources such as ESRF, SPRing-8 and
APS coherent optics has been extended to the field
of hard X-ray radiation. The high spatial coher-
ence, the really unique feature of these new sour-
ces, results from a very small source size of about
30 um and large source-to-object distance (around
50-100 m). Using such a laser-like beam, coherent
imaging techniques such as phase contrast imag-
ing, holography and interferometry have been pro-
posed [1-7] and are currently under intensive
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development [8-11]. State of the art on-line de-
tectors [12], together with optical elements created
on diffraction and refraction principles [13-18],
open real opportunities to overcome visible light
limits and to go to submicrometer and even to
nanometer resolution. Under these new conditions
the characterization and the manipulation of co-
herence are of great importance.

Generally associating coherence with the abil-
ity to observe interference phenomena, we should
distinguish between temporal coherence linked to
the spectral bandwidth (monochromaticity) of the
beam and spatial (transverse) coherence which is
related to the source size. In the soft X-ray domain
interferometry techniques were used for coher-
ence measurement [19-21]. To define the coherence
in the field of hard X-rays, optical elements such as
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crystals [22] and mirrors [23] were applied. How-
ever, as has been demonstrated [24-27] the mirrors
may introduce additional distortions in the inter-
ference pattern. In particular, as it was pointed
out, X-ray beam heterogeneity in cross-section
owing to surface roughness of beryllium windows
were observed [28]. The problem can be solved
by proper polishing beryllium windows. The co-
herence measurement based on the Talbot effect
was also performed [29] using a phase grating. The
method demands a measurement of periodical
intensity distribution at different distances behind
the object.

In this work we discuss in detail a simple and
direct interferometric technique for a characteri-
zation of spatial coherence of synchrotron X-ray
beams. Preliminary results were reported in Ref.
[30]. The technique consists of measuring the visi-
bility of interference fringes observed on the diff-
raction image of round transparent fiber as well
as on the central or edge diffraction images of the
slit of different sizes. The incident radiation is only
partially coherent, i.e., the transverse coherence
length at the object is not infinite. In other words,
coherent images are partially destroyed by aver-
aging over the source size. To determine the source
size and the transverse coherence length one
may compare the visibility of the fringes with the
“ideal” visibility for a point source. The latter
must be calculated theoretically. Such a method
was used as early as in 1957 in Ref. [31]. We de-
veloped the analytical theory of diffraction images
for both the fiber and the slit. The theory allows
us to derive the simple formulas for the ideal vis-
ibility, for the source size and for the transverse
coherence length. To examine this approach we
have performed the experimental study of the in-
terference patterns produced by boron fiber of 100
pum diameter and slits of different sizes.

The experimental results are presented in Sec-
tion 2. We have obtained the vertical transverse
source size as (33 +4) um from the fiber and
(354 3) um from the slit of 100 pm width. The
results coincide very closely and are in accordance
with the data provided by the ESRF machine
group at the time of the experiment. The general
theory of the interference pattern formation with
the partially spatial coherent X-ray beams is re-

viewed in Section 3. We discuss the approach
based on the mutual coherence function. However,
considering the simple in-line holography setup, it
is more convenient to analyze the diffraction pat-
tern with perfectly coherent beam and then to
average the fringe pattern over the region of source
size projected to the detector.

The analytical theory of the fringe pattern for-
mation in the part outside the fiber shadow is
presented in the Section 4. An usage of both the
geometrical optics approach and the stationary
phase method are analyzed in details. As is known
in this region the fringes are formed due to the
interference of two groups of rays. One of them
reaches the detector directly passing through the
air while another one is deviated by the fiber
edge. To derive a more accurate approximation we
develop the enhanced stationary phase technique.
The analytical theory of the slit diffraction pattern
is presented in Section 5. In general the interfer-
ence fringes are described by Fresnel integrals.
Under some conditions the asymptotic behavior
of the Fresnel integrals can be used that simplifies
the analysis. Both the Fresnel central fringe of the
relatively narrow slit and the edge fringes of the
wide slit are analyzed and the formulas for
the evaluation of the source size and transverse
coherence length are derived.

2. Experimental results

The experiments were performed with the in-
line holography experimental setup at the undu-
lator beamline ID22 of the European Synchrotron
Radiation Facility (ESRF, Grenoble). This beam-
line is well adapted for microimaging experiments
with coherent X-rays due to the small source size,
low divergence and high intensity (up to 10"
photons/mm?) at the sample position. The inter-
ference fringes of well calibrated microobjects,
namely, the fiber and the slit were studied. The
energy of X-rays was selected by a silicon single
crystal (1 1 1) monochromator in the range of 10—
20 keV. We assume that the monochromator is
perfect, and it does not influence spatial coher-
ence of the beam. On the other hand, using the
monochromator based on Bragg diffraction we
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Fig. 1. The scheme of experimental setup for a study of X-ray
diffraction on a fiber.

may consider the radiation as completely mono-
chromatic. Therefore we exclude below the mono-
chromator from an analysis.

The experimental configuration is simple and
straightforward. It is assumed that the micro-
object like a fiber is illuminated by approximately
spherical coherent wave. The detector registers
both a primary radiation and a radiation scattered
by microobject (see Fig. 1). Contrary to laser op-
tics [32], in a high energy X-ray domain a small
object of few ten microns diameter is completely
or partially transparent. Therefore it produces,
mainly, a phase shift of the incident wave. The
fiber was located at the long distance », from the
source. The interference patterns were collected
using a 1 pm thick transparent YAG scintillator
coupled by a light microscope to a CCD camera.
The detector has a pixel size of 0.32 um and the
FWHM of the point-spread function is approxi-
mately 0.8 pum [12]. The detector was placed at the
distance r4 from the object. The interference be-
tween the direct rays and the rays scattered by
microobject results in the intensity oscillations of
varying amplitudes and periodicity (see Fig. 1).

Fig. 2 shows the intensity distribution at the
detector (in-line hologram) for the boron fiber of
50 pum radius having a tungsten core of 7.5 pm
radius measured under the following experimental
conditions: r, =41 m, r4 = 5 m. The monochro-
mator was used to select the energy of X-rays
hw =17 keV. One may see a series of well pro-
nounced fringes on the in-line hologram in the
part outside the fiber shadow. However, the frin-
ges are observed with an uneven background. This
is due to extra perturbations of the initial wave
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Fig. 2. Diffraction image of 100 um diameter boron fiber with
15 um tungsten core recorded at the distance r4 = 5 m with 17
keV X-rays and source-to-fiber distance r; = 41 m.

front of the beam by some optical elements in-
stalled on the X-ray beam path, for example, a be-
ryllium window. The problem of eliminating such
a perturbation may be formulated as a problem of
coherence preservation. The X-ray beam stays co-
herent, but it has undesirable perturbation of the
wave front. However, in experiments we need a
beam with the known properties like a spherical
wave. Therefore the only optical elements may be
used which do not disturb the phase profile of the
coherent wave. It is more strong requirement than
a simple prevention of intensity loss.

We have measured the visibility of different
unperturbed fringes. The variable visibility V' (x) is
introduced similarly to the definition of Michelson
[33]. However, it shows the visibility of fringe lo-
cated at the point x, namely

L) e = 1)
— max min 1
") 1)+ T ()
where /(x),.., and I(x),,, are the maximum and

adjusted minimum values of intensity at the point
x. The visibility of several fringes were used to
calculate the source size as wy = (33 +4) um and
the transverse coherence length as /[, = v/2/r,/
nws = (41 £5) um by means of the analytical
formulas derived theoretically in this work (see
below).

Similar experimental setup was used to study
X-ray diffraction by a slit (see Fig. 3). Such an
experiment is well known in the visible light do-
main. However, up to now it was very difficult for
hard X-rays. As known, if a width a of the slit is
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Fig. 3. The scheme of experimental setup for a study of X-ray
diffraction on a slit.

much larger than a wavelength /, then at short
distances the slit restricts only the beam size
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without a change of intensity. In the narrow region
near the slit edges the fringes of Fresnel diffraction
at the edges are observed with variable a distance
between them and a visibility. With increasing the
distance ry4 the Fresnel diffraction occurs when the
interference fringes inside the slit shadow are ob-
served. At longer distances ry > a”// the Fraun-
hofer diffraction takes place.

The measurements of diffraction images of the
slit were done with the slightly different distances
rs=31 m, ry=10 m and with X-ray energy
ho = 18 keV. Fig. 4 shows the intensity profiles
obtained for slits of different widths. One may see
the transition from Fraunhofer to Fresnel diffrac-
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Fig. 4. Diffraction images of slits of different sizes pointed at the plots recorded at the distance 4 = 10 m with 18 keV X-rays and

source-to-fiber distance », = 31 m.
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tion with increasing the slit size. In the first case
the width of the slit image has a reverse depen-
dence on the slit size. In the second case there is a
correspondence between the slit width and the
image width and the interference fringes appear
inside the region of slit shadow. It is easy to
measure the visibility of the central fringe of the
100 pm slit image as ¥ = 0.11 & 0.01. Then using
the theoretical formulas derived in this work (see
below) we estimate the source size as wy = (35 £ 3)
um and the transverse coherence length as /i, =
(27 £2) pm. The transverse coherence length is
smaller in this case due to the smaller value of the
source-to-slit distance. We note that the effective
source size is in accordance with the data provided
by ESRF machine group at the time of experiment.

3. General theory
3.1. Definition of the problem

As is known, the monochromatic wave of
a point source is entirely coherent. In reality, the
synchrotron radiation source consists of very
many incoherent point sources transversely dis-
tributed according to the Gaussian law. Each
point source radiates an approximately spherical
wave of finite bandwidth. It is usual practice to
distinguish between the temporal coherence and
the spatial coherence [34] which describe the time
and space properties of the scattering process. The
temporal coherence relates directly to the effective
bandwidth of the radiation used in the experiment.
On the other hand, it is connected with the finite
duration of individual X-ray flashes, the so-called
coherence time f.. This value determines the co-
herence length of a wave train /. = ct., where cis a
speed of light. In the high energy X-ray domain it
is more convenient to measure temporal coherence
directly by the bandwidth Aw = 27 /t.. As is shown
[35], one may take into account the temporal co-
herence in a calculation considering the scattering
processes for the monochromatic radiation of
frequency w and then averaging the intensity over
the effective bandwidth Aw, because very many
wave trains with different initial phases go from
the source to the detector during the experiment.

Spatial coherence is related mainly to the source
size. The radiation from different points of the
source is incoherent due to the absence of the phase
correlation between the different flashes since in-
dividual X-ray radiators are the internal electrons
of atoms or the electrons in a storage ring. In the
case of extended source interference fringes from
the point source can be resolved if they are not
spoiled by the source size. For in-line geometry
only the source projection is important, as shown
in Figs. 1 and 3. On the other hand, the fact of
contrast degradation up to complete disappearance
of the fringes may be used for a characterization of
spatial coherence.

Considering the spatial coherence in this work
we shall assume a monochromatic radiation and
restrict ourselves to objects having a homogeneous
structure in one direction like the fiber and the slit.
Such a direction is connected with y-axis. Let us
begin with the point radiator located at the coor-
dinate x; on the source. The Fresnel-Kirchhoff
formula [36] allows us to write a ratio of the
wavefield strength E(xq) of the wave scattered by
object and the wavefield strength Eg(xq) in the
case without the object as follows:

:P’l(xd —xs,rt)/ dxP(xq — x,7q)

X Fy(x)P(x — xs,75) (2)

where x4 is the coordinate at the detector, 7, is a
distance from the source to the object, r4 is a dis-
tance from the object to the detector (see Figs. 1
and 3), r = ry + r4, P(x,7) is the propagator of the
transverse part of the wavefield along x-direction

P(x,r) = \/% exp <inz—i> (3)

Here 1 is a wavelength of the radiation. Only x-
component of the wavefield is disturbed by the
transmission function F,(x) of the object.

In general case the transmission function F,(x)
is a complex value. When the fiber of tens micron
radius R is of interest, we can neglect a deviation
of rays inside the object and use F,(x) as unity for
x? > R* and
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Fo(x) = expliop(x)]

4
:exp(—%(ié—i—ﬁ)sz—xz), ¥ < R?

)

Here 6 and f are defined by the relation
n=1-—0+1f where n is the complex index of
refraction and 6 and f are called the refractive
index decrement and absorption index respectively
[37]. When the object contains several fibers the
sum of the expressions (4) has to be considered.
The fiber used in the experiment has a tungsten
core. In the accurate calculations the core was
taken into account. However, an analytical ap-
proximation it derived for the fiber without a core.
In the case of the slit of width a the transmission
function F,(x) has an evident form

F(x) = {0, |x| > a/2

1, k| <a/2 (3)
Substituting Eq. (3) to Eq. (2) we may transform
the expression to the next form

E(Xd) -

1 o . r ]2
EsCa) \/T_rr Kmﬁ exp (1)—’,r {x _del’_[:| )Fo(x)
(6)
where r, = ryrq/ry is a reduced object-to-detector
distance, x4s = x4 + xsrq/rs. This expression con-
tains only the reduced coordinate xg4s instead of x4
and x, separately. Therefore it is sufficient to cal-
culate the diffraction image (intensity) of the object
for a spherical wave originating from the central
point of the source and then to make an average
value of the intensity over the projection of the
transverse source size to the detector plane be-
cause different points on the source are incoher-
ent. Below, calculating the intensity for the point
source we use xq instead of xg,.
Let the brightness distribution B(x;) inside the
source be a Gaussian with a width w, and
ps = ws/2, namely

The normalized intensity of interference fringes
I(x4) corresponding the experimental value must
be calculated as a convolution of an ideal fringe

pattern Iy(x4) (for a point source) with the source
brightness distribution taking into account the
magnification factor ry4/rs as follows:

I(xa) = [ Z dv, B(x)ly (xd —|—xsr—d> (8)

S

The formulas presented above allows one to cal-
culate numerically accurate diffraction images of
the fiber and the slit. Then the visibility V' (x4) may
be calculated using Eq. (1).

3.2. Mutual coherence function

The approach presented above takes into ac-
count the partial spatial coherence due to the finite
source size by integrating over a source size di-
rectly. There is another approach which deals with
the mutual coherence function [33] (see also Ref.
[38]). The expression for the normalized intensity
can be written from Eq. (6) as follows:

o) = [ avar B

in 2 2 - E
X exp (Trr [ X =2(x —x")xq " ])
)

This expression contains the intensity at the de-
tector point x4 as a result of a correlation between
two different points x and x’ on the object.

Since the detector records the intensity from all
point radiators of the source simultaneously, we
have to use Eq. (8) once again. The result may be
written as

I(xq) = /dxdx’FO(x)Fj(x’)u(x—x’))%
i

X exp (/:: {xz —x?=2(x —x')xd:ﬂ>
(10)

The difference between the expressions of Egs. (9)
and (10) consists of the appearance of the function
u(x) that describes the mutual coherence of two
points at the object having the distance x between
them. It is determined as follows:
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2n x2

1 °° i
== dxs - s T T
) =5z [ e (=505
x2
-or(~3) "

where

_ V2ir,

W

e (12)
is the transverse coherence length. It follows from
Eq. (11) that the correlation between the points x
and x’ is high enough, i.e., u(x) ~ 1, for very small
source size ws or for very large source-to-object
distance 7.

Unfortunately the theory does not give the way
of calculating the parameter /.. directly from the
experimental interference fringes for rather com-
plicated objects. The exception is only two narrow
slits separated by the distance / when the trans-
mission function may be approximated by sum
of two delta functions F,(x) = d(x — 1/2) + 5(x+
1/2). No other way except fitting the formulas (10)
and (11) is seen. However, fitting the experimental
data using the formulas (10) and (11) is more
complicated than a usage of the direct formulas
(6)—(8). Besides, Eq. (8) gives an understanding that
the apparent decrease of the visibility of fringes
has to occur when the distance between the regis-
tered fringes d; is smaller than the projection of the
source size, namely, dr < wyrq/rs.

4. Analytical theory of the fiber image
4.1. Geometrical optics

The experimental diffraction pattern of the
round fiber (see Fig. 2) shows a series of well re-
solved interference fringes in the part outside the
fiber shadow. This fact reveals, on the one hand,
that the synchrotron radiation beam is spatially
coherent. On the other hand, it opens a possibility
to measure the source size from the visibility of the
fringes. However, this technique becomes quan-
titatively effective if the theory proposing some
simple relation between the parameters of experi-
mental setup, the visibility of the fringes and the

Fiber Detector

Fig. 5. The trajectories of interfering rays. The bottom ray is
deviated due to a refraction on the fiber boundaries according
to Snell’s law.

source size is developed. It is evident that the
fringes outside the fiber shadow arise owing to the
interference between two groups of rays. The rays
of the first group go directly from the source to the
detector. The rays of the second group fall on the
fiber edge, deviate at the air—fiber interfaces due to
refraction, and arrive finally to the same place at
the detector, as it is shown in Fig. 5.

As is known, the interference phenomena are
observed with a coherent radiation characterized
by the well determined wavelength A and the
direction of propagation [33]. The interference
maxima appear as a result of optical path difference
of integer number of wavelengths between the in-
terfering waves. In a simple case of two plane waves
this difference arises when the waves intersect each
other in space at the definite angle Af. The ray path
difference Arj, = AxAO where Ax is the distance
between two points on the fringe pattern. There-
fore the distance between two neighboring strips
(the period of intensity oscillations) equals Ax =
A/A0. If the angle A0 is very small, the fringes can
be directly recorded even for hard X-rays.

In the case of fiber the angle Af between inter-
secting rays is not constant in space. It increases
continuously with increasing the distance from the
edge of the fiber shadow at the image plane. As a
result, the distance between neighboring fringes
decreases. Hence we obtain the ruler with a vari-
able scale which allows us to measure a source size.
To explain physical nature of the phenomenon we
consider here the approximation of geometrical
optics.
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It is assumed in the geometrical optics that the
incident radiation may be represented by the set of
rays each of them corresponds to a small part of
the wave front. Each ray moves in accord with the
local optical conditions and undergoes a reflection
or a refraction at the interfaces between two media
having different optical densities. Each ray may be
characterized by the coordinate in the plane nor-
mal to its direction of propagation. We are con-
sidering the in-line geometry with the z-axis as the
optical axis, y-axis as a fiber axis and x-axis as an
axis of fiber imaging (see Fig. 1). The distance
between the point source and the fiber is 7, the
fiber-to-detector distance is ry. We restrict our-
selves by the case when r; > ry that allows us to
neglect the initial divergence of the rays compared
to the deviations produced by fiber.

We place the origin of the coordinate system at
the center of the fiber (see Fig. 1). Therefore the
section of the fiber surface is described by the
equation x* +z*> = R?> where R is the fiber radius.
All incoming rays are parallel to the z-axis and are
characterized by the coordinate x, (see Fig. 5).
When 0 < x, < R the ray falls on the fiber at the
point z; = —(R* — x2)"/*. It is easy to calculate the
small change in the direction of the ray at the air—
fiber interface using the Snell’s law in a linear ap-
proximation. The angle between z-axis and the ray
changes its value from zero to ¢, = dx,(R2— x2)~"/?
where 0 is a decrement of refractive index. The
value of é is usually less than 10~° for hard X-rays.
Therefore we neglect the change of x-coordinate
inside the fiber. The ray leaves the fiber—air in-
terface at z,, = (R* — x2)'/%. Therefore the angle of
deviation from the z-axis will be increase once
again by the same value and becomes ¢, = 2¢,.

In the air the ray reaches the detector at the
point

a
xd=xr+wzrd=xr<1+m> (13)

T

where a = 20ry. For the estimation we will con-
sider the parameters of the experiment: the energy
of X-rays E =17 keV and the distance ry = 5 m.
In this case d =1.55 x 107% and & = 26rg = 15.5
um. Hence the considerable deviation of the ray

trajectory may occur only for ray that has an ini-
tial coordinate near the fiber edge when the differ-
ence (R — x,) is small. For these rays we calculate
the approximate reverse dependence

X zR(l 2w K7 _R)2> (14)

The intensity of radiation is characterized by
the density of rays. The initial density is constant
dx,. The density of rays scattered by the fiber is not
constant

ar?
dxd = (1 +(R2_x2)3/2>dxr

T

= (1+%)dxr (15)

The total wavefield for x4 > R will be a sum of two
contributions from a direct ray and the ray devi-
ated by the fiber. The phase difference between
these two rays is defined by their optical path
difference. It can be calculated approximately un-
der the same conditions as follows:

2R

(xa —R) (16)

Alp(xd) = % [(Xd — R)z _

Now the expression for the normalized intensity
which describes the fringe pattern looks as

Io(xd) =1 +A~2(Xd) + 2A~(xd) COS[AI//(xd)] (17)

where A(xq) = (dx;/dxq)"*. This expression de-
scribes the fringes having increasing a local density
and decreasing a local contrast with increasing the
distance from the fiber edge (x4 — R). The distance
between neighboring strips can be estimated as

27 Arg
AXd = = 1 2,
dAW/dXd (xd _ R) (1 +];(xd)) /
~ a@’R
Xg) = ——— 18
flw) = == (18)

We note the expression is just the 1/¢, within the
accepted approximation. The function f(x4) de-
scribes the phase difference due to the path of the
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ray inside the fiber having non-zero decrement of
refractive index. An estimation of f in the point
x4 = 2R for the parameters of experiment is (a/
R)* = 0.096. This small value allows us to conclude
that the distance between far fringes is, mainly, the
reciprocal of the distance from the fiber edge.
The function A(x,) characterizes the variable
amplitude of intensity oscillations. For the con-
sidered region of the fiber image it can be ex-
pressed through the same function f(x,) as

- S (xq)
Axd =T = i
) T

It depends on the distance from the fiber edge
approximately as (xq — R)fS/ * for far fringes.

(19)

4.2. Stationary phase method

The approximation of geometrical optics is va-
lid for short distances from the known phase front,
for hard radiation, and when the perturbed phase
front is a slowly varying function in space. In other
words, the size of significant region of perturba-
tion of the wave front Ax must be much larger than
the radius of the first Fresnel zone (irq)"/*. How-
ever, in our case this condition is not fulfilled in the
region near the fiber edge because a jump of the
phase shift is significant, and the phase profile has
the infinite second derivative. Therefore the for-
mulas obtained above will give an apparent dif-
ference for far fringes from the fiber shadow as
compared to the results of accurate calculations by
means of Fresnel-Kirchhoff formula (2). In this
section we obtain the enhanced analytical ap-
proximation.

We note that the formulas obtained above by
method of geometrical optics (ray tracing) can be
derived from the accurate integral of Eq. (6) ap-
plying the stationary phase method. First of all, we
write the integral (6) for x; = 0, in the form more
convenient for a computer simulation

E()Cd) _ 1+ 1

Es(xq) N /_R dx(explig(x)] — 1)

2
LT P
X eXp <1/1_Vr [x—xdr—t] ) (20)

Here the phase ¢(x) is defined by Eq. (4). Below
we assume the fiber to be transparent and we ne-
glect 5. The stationary phase method [39] consists
of using the following relation:

" X 1/2
/ drexplip(x)] = > [%1 explich (x¢)]

£ d)// X

(21)

where a summation is performed over all roots of
the equation ¢'(x;) = 0, n is a number of the roots.
Here ¢' = d¢/dx, ¢" = d’¢/dx>.

In our case the integral in Eq. (20) is taken in
the limited region. Therefore we need to assume
that the integral is equal to zero if the point of the
stationary phase x; lies out of the region of inte-
grating. It is easy to calculate that the second term
in Eq. (20) without the factor exp[ip(x)] has only
one stationary point x, = xgrs/r¢. In the region of
our interest where x4 > Rr/r; this term does not
contribute. The first term has also only one sta-
tionary point x; that is a root of the following
equation:

, 2n a
¢(X1) :Tl’r [xl<l+w> —X2‘| =0

(22)

where a = 20r,. At this point the phase value is
equal to

n ) 2a%x,
= — — _—_ 2
P(x1) g [(xz x1) o —xl)} (23)
and the second derivative of the phase is equal to
on R? v\’
! =—|l—-=(1-= 24
#' () l = ( )] (24)

Finally, applying the approximation of Eq. (21)
to the integral of Eq. (20) we obtain the next ex-
pression for the intensity distribution at the de-
tector

Io(xq) = 14 A%(xq) + 24(x4) cos[p(x4)] (25)

where ¢(xq4) is defined by Eq. (23) assuming that x4
is an argument, while the coordinates x; and x,
depend on x4. The function 4(x4) is equal to
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f]/z(xd)
Alxd) = —— 77,
) [1+ £ (x)]
S(xa) = m (26)

We note that the formulas (23)—(26) coincide with
the formulas (16)—(19) if x;, x; and a are replaced
correspondingly by x4, R and a. Such a replace-
ment is valid approximately when r; > rq and
x4 > 2R. The formulas obtained in this section are
more accurate but more complicated. Fortunately,
the replacement of x; by R is well enough for far
fringes counted from the fiber shadow. However, if
the ratio r4/r; is not very small then the usage of
the parameter x, instead of x4 is necessary.

Thus, we find that the result obtained within the
geometrical optics is equivalent to the approxi-
mation (21). However, this approximation is valid
for the integral having rather wide limits of inte-
gration when the point of stationary phase is not
close to the limits. In our case such a condition is
not fulfilled for fringes located at large distance
from the fiber shadow when (x4 —R) > R and
(R —x;) < R. We want to propose the enhanced
approximation of the stationary phase method
based on the following idea. In the standard sta-
tionary phase approach one takes into account the
Taylor expansion of the phase up to the quadratic
term and then replace the limits of integrating by
infinity. We may keep the real limit of the integral.
In this case the formula (21) is transformed to

. i 1/2
[Rdxexp[i¢(x)] ~ [%1 explid(x1)]
X G(x, — x1,x1 — x5, ¢"(x1))

(27)

where x; is a root of Eq. (22), as before, and the
complex function G(a,b,c) is defined by

Gla,b,¢) = [F(ale/m)"?) + F(b(e/m)'?)]  (28)
Here F(x) is a complex normalized Fresnel integral

F(x) = \/LZ /0 “drexp (igzz) (29)

The parameters x;, and x, have a meaning of new
limits of integration. They should be determined

from the condition that the approximate expres-
sion for the phase ¢(x) = ¢(x1) + ¢" (x1)(x— x1)7/2
at these limits gives the same value of the phase as
the real expression gives at the real limits, namely,
H(R) = ¢(x,), ¢(—R) = P(x,). This is necessary to
conserve the total number of oscillations. For
example, (x, —x1)* = 2[p(R) — ¢(x1)]/¢"(x1), and
similar relation may be obtained for x,. As a result
we arrive at the enhanced value of the function
A(xq) as follows:

1/2
Afwe) = B )
[1+ f(xa)]
where g(x4) is a modulus of the complex function

G(x, — x1,x1 — xp, 9" (x1)).

We note that the function F(x) has small values
for small arguments, and it equals 1/2 for large
arguments. Therefore the function g(x4) ~ 0.5 for
far fringes counted from the fiber shadow when
(x4 — R) > R and x; is close to R. Only considering
the fringes located near the fiber shadow we may
neglect the correcting function g(x4) and use the
standard stationary phase technique (and ray
tracing) when g(x4) = 1. Of course, in the region
Xq < —Rr/rs the picture is symmetrical.

(30)

4.3. Visibility and a source size measurement

To measure the source size we consider the part
of fringe pattern where the size of the source
projection is less than the distance between the
fringes. Under this condition we may treat a slowly
varying amplitude of intensity beats as constant.
When averaging the cosine function we take only
the first (main) term in the phase (23) and replace
x; by R. As a result, we arrive at the following
expression for the integral of Eq. (8):

]()Cd) =1 +A2(Xd) +2A(xd)C(xd) (31)

where

1 x2
C = dx, -=
w0 =z [ e p§>

2
Y rq
X COS (Zfd {xd —Hcsr—S — Rd] ) (32)

Here Ry = Rr/r; is the fiber radius projected to the
detector, 7y = rqr/rs. The function C(x4) is calcu-
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lated analytically. It is convenient to write the re-
sult as follows:

. 1 . ﬂ(xd - Rd)2
C(Xd) = Re m €Xp <lm>
(33)
where
p="000 (34

The parameter  depends on the source radius p;.
We take into account that f < 1 for the consid-
ered experimental conditions. Namely, when p, =
17 yum, ry =41 m, r4 = 5Sm, A = 0.073 nm we have
p = 0.04. Therefore we may neglect f§ as compared
to unity in all terms except the cosine argument.
As a result, we arrive at the following approximate
expression:

o [ =R’ B
C(xq) = cos ( Wl +ﬁ2) + 2)

xa — Rq)’
xexp(%) (39)

where /. is the transverse coherence length at the
object (see Eq. (12)) and s = r¢/r is a scaling fac-
tor, so that s/, is the transverse coherence length
projected to the detector.

To obtain the analytical expression for a visi-
bility ¥ (x4) we substitute Egs. (31) and (35) in Eq.
(1

»wa=%mmw<—ﬁiﬁi)

25212
24 (Xd)

Vo(xq) = Tz(xd) (36)

Here Vy(xq) is a visibility corresponding to the
point source. The function A(x4) is defined by Eq.
(30) where the following approximation for f(x4)
may be used:

(257"(1)2Rd
(¥a — Ra)’

The visibility V' (x4) can be measured from experi-
mental data for the intensity beat located at any

S(xq) = (37)

point. If all the parameters of the experiment such
as A, 0, R, r, and ry are known then the function
V(xq) contains only one unknown parameter,
namely, the source size w,. In principle each fringe
can be used for the estimation of the source size
when the damping of the visibility follows to the
law (36). We write the formula that shows the
source size in an explicit form

We — 2/11”[ 1/2 V() (xd)
“wm—mﬂ“(vm» (38)

through the measured visibility V" of the fringes
and calculated theoretical visibility ¥; for the point
source.

Let us discuss another possibility. It follows from
Eq. (38) that the source size projection wgry/ 7y
becomes comparable with the distance between the
fringes dr = Asrq(xq — Rd)71 when V(x4) = Vy(xq)
exp(—n?/4) ~ 0.04¥;(xq). For far fringes V(xq) ~
f12(xq4). Thus the visibility of the fringes having the
distance between them comparable to the source
size projection may be estimated as V ~ 0.080(Rq4/
ra)"*(d;/2)*"*. Therefore one may find the fringes
having the distance d; between them and the visi-
bility ¥ which satisfy the condition Vd; /> ~ 0.085
(Rq/ra)"?27* and then estimate the source size as
Ws & dpr/rq. Substituting the parameters of the
experiment we obtain that such fringes have the
visibility ¥ & 0.007. It is rather small value.

Since one should be careful in determining the
distance between fringes of small visibility, it is
more accurate to use the formula (38). Just this
formula was used for the estimation of the ESRF
source size (see above). To verify the estimation
Fig. 6(a) shows the accurate theoretical intensity
distribution at the detector for the parameters of
experiment in the case of point source as a square
modulus of Eq. (20). The calculation was per-
formed for the real sample, namely, the boron
fiber having a tungsten core (see Section 2). One
may see the tungsten core influence the fringes in
the region outside the fiber shadow. However, the
main feature is that the damping of the fringes is
not fast. Fig. 6(b) shows averaged over the source
size 33 pum intensity distribution according to Eq.
(8). Now the calculated intensity profile repro-
duces the experimentally measured one (Fig. 2).
The contrast and the distance between the fringes
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Fig. 6. The computer simulations of the 100 um diameter fiber
image with a point source (a) and a real source of 33 um size

(b).

coincide very closely. However, the experimental
pattern contains some extra perturbations of the
fringes caused by imperfections of the optical ele-
ments in the beam path, in particular vacuum win-
dows, filters and monochromator crystals. There is
also a problem to fit the central part of the fiber
image. The reason may be that the size of the
tungsten core is not known accurately.

5. Analytical theory of the slit image
5.1. Exact formula

Our experimental results show well resolved
fringes on the diffraction pattern of slits of differ-
ent sizes. Similar to the fiber case (see Section 4) in
order to measure the source size from the visibility
of the fringes we need the analytical theory for a
quantitative usage of this technique. It is evident
that in the case of slit the fringes have a diffraction
origin. The fringes of apparent visibility arise in
the Fresnel region of diffraction where the slit size
a is comparable with the radius of the first Fresnel
zone +/Arq, where / is a wavelength and r4 is the

slit-to-detector distance. The distance satisfying
this condition 74 = a?// is known as a Rayleigh
distance.

Let us consider a simple optical setup where the
point radiator on the source having a transverse
coordinate x; = 0 creates spherical monochroma-
tized wave inside the slit located at the distance ;.
The slit restricts the wave front in accord to the
relation |x| < a/2. We are interested in the trans-
verse wavefield distribution at the distance ry from
the slit where the detector is placed.

Substituting Eq. (5) to Eq. (6) we obtain the
integral

E(Xd) 1 a/2 . |: rs:|2

— dx N I
Esva) v Joap P\ [T
(39)

which can be expressed as a sum of two complex
normalized Fresnel integrals (see Eq. (29)) as fol-
lows:

E(xq)
Es(xd)

where o = 2x4/a4 is a dimensionless coordinate at
the detector, aq = ar/r; is the slit width projected
to the detector, y = a(2irr)7l/2

The complex Fresnel integral F(x) has a well
known asymptotic series expansion (see, for ex-
ample, Ref. [40])

. 1 inx?/2
lim F(x) = +%

X—00 _E
1 1-3
XN\ 1+ gt+——s+ - (41)
1mx= (inx?)

Different approximate expressions of the Fresnel
integral may be found in the literature (see, for
example, Ref. [40]). For a computer simulations
the formulas of larger accuracy were used which
are proposed, in a NAG library of Fortran pro-
cedures.

= [Fiy(1 +2)) + F(y(1 = 2))] (40)

5.2. Asymptotic intensity at the center of slit image

We want to derive the approximate analytical
expression for the basic parameters of the fringes
using the asymptotic series expansion (41). In the
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central part of the diffraction pattern when |a| < 1
we neglect o as compared to unity in all terms
except arguments of cosine function. As a result,
the normalized intensity distribution looks as fol-
lows:
1 1 )
Iy(xq) = 1+ —— + —— cos (2m)°x)
()" ()

2V2 T, 3w )
JrTyCOS <2/ [1+ o] —4)cos(n/ %)
(42)

where only the first two terms of the expansion
(41) were taken into account.

Let us consider the parameters of the experi-
ment: ;= 31 m, ry = 10 m, energy of X-rays 18
keV and two slit sizes @ = 500 um (case 1) and 100
pum (case 2). Under these conditions the parameter
y equals 15.5 (case 1) and 3.1 (case 2) the values
which may be considered as large and intermedi-
ate. As follows from Eq. (42) the structure of
fringes in the case of large value of y is rather
complicated. The interference term is only essen-
tial, namely, the last term in Eq. (42). The central
fringes are of rather small contrast, and these have
uneven structure.

The basic sinusoidal oscillations having rather
small period p, = aq/y> = 2.8 um are modulated
by uneven extra structure having a variable period
pa(n) = (aa/y)(v/n — vVn — 1) where n counts the
fringes from the center of image. For example,
pa(n) =427, 17.7, 13.6 ym for n =1,2,3. With
increasing the distance from the center of the slit
image the period of long oscillations becomes
comparable with the period of short oscillations
and the fringes do not show some simple structure.
In such a region the last term of Eq. (42) can be
rewritten in more suitable form

tntsd = L2 [eos (w[x(1-2) -3 )
+ cos (WZ [“(1 +%) +ﬂ _%”
(43)

One can see that when |«| is not very small the
period of one set of fringes becomes larger with
increasing |x4| whereas the period of another set of

fringes decreases. For larger value of |x4| we need
to take into account the difference in weights of
these two cosine functions. Namely, in the more
accurate expression the weight of cosine having a
longer period is an increasing function of |x4|. The
other cosine has the decreasing weight.

In the case 2, when y is of order 3, we may still
use approximately Eq. (42). However, the struc-
ture of diffraction fringes is turned out to be quite
different. The sinusoidal oscillations have rather
large period p, = aq/y* = 13.8 pm. Therefore such
oscillations are well suitable for the source size
measurement. Due to the fact that the first period
of the extra structure is rather long, the image of
narrow slit does not show the extra structure. We
may neglect the extra structure at least for the
central intensity peak. Keeping in mind this case
we accept the following expression for the intensity
distribution in the central part of the diffraction
pattern

2v/2 3
Io(xq) =~ 1+ —\/_ cos Eyz _27) cos zﬂVZX_d
) 2" 7% o

Roughly speaking, this approximation is valid
only for the central intensity peak when the slit
image contains few fringes only. However, this
case is well reachable in experiments.

5.3. Visibility and a source size measurement

The integral of Eq. (8) with /5(x4) given by Eq.
(44) is calculated analytically and the result looks
as follows:

y
2
X exp ( - 2[)7) cos (271"/22—2) (45)
tc

where p = a/2. This formula means that the width
of the central intensity oscillation is not changed
by source size, whereas the amplitude depends
apparently on the source size making it to be less
pronounced. Therefore the visibility of the central
fringe may be written as follows taking into ac-
count the explicit expression for the parameter y:
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0?
V= %exp(—ﬁ>,
tc

()

where ag = 2(Argrs/ rt)]/ 2. We note once again that
this formula is valid when @ > a¢. The parameter V'
is measured from the experimental data. If all the
parameters of the experiment such as 4, a, r; and ry4
are known then the expression for V' contains only
one unknown parameter, namely, the source size
Ws.

The formula for the source size w, in explicit
form looks as follows:

— s i {5} (47)

4
y = 2
na

na 4

The specific feature of this technique is that the
visibility of the central fringe for a point source
depends strongly on the parameters of experi-
ment and can disappear under definite conditions.
Therefore for the estimation of the source size one
need to take the data corresponding the maximum
visibility of the central fringe to obtain the maxi-
mum accuracy.

Eqgs. (46) and (47) were used for the estimation
the ESRF ID22 undulator source size (see Section
2). Fig. 7(a) shows the theoretical intensity distri-
bution for a point source. The intensity beats have
a fine structure due to the properties of the Fresnel
integrals, namely, Fresnel zones of high orders.
The main peaks show a contrast of rather high
level. Fig. 7(b) shows the interference pattern in
the case of extended source of 35 um size. Now the
visibility of the central fringe in the calculated and
measured interference patterns coincide. However
the edge fringes and the slope of intensity out-
side the slit image are different. This is probably
due to the fact that it was impossible to eliminate
some extra modifications of the beam or uneven
edges of the slit.

5.4. Edge diffraction

Let us discuss here the case of very large slit size
when only the edge diffraction is observable. We
will analyze the left edge diffraction when x4 =~ —ay.
It is convenient to introduce a new coordinate
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Fig. 7. The computer simulations of the 100 um width slit image
with a point source (a) and a real source of 35 um size (b).

ug = x4 + aq/2 that is counted from the projection
of the left edge of the slit to the detector and
|ug| < aq/2. Negative uyq corresponds to a dark
field (shadow of the screen), and positive uy cor-
responds to a light field. Then using Eq. (40) one
may write the normalized intensity for the point

source as
2 12
27
, b-( : ) (48)

Argri

Io(ud) = ‘ %4’ F(bud)

Fig. 8 shows the intensity distribution calculated
for the same parameters as for fiber image, namely,
17 keV X-rays, r; = 41 m, rg = 5 m. The intensity
oscillations near the unit background in the light
field have a rather simple sinusoidal structure of
decreasing the amplitude and the period. The far
fringes having an index » >4 may be described
analytically within the asymptotic approximation
of Fresnel integral (see Eq. (41))

1 V2 T 3
Io(ug) =~ 1 +727z:2b2u(21 +—nbud cos (E [bzuj - ﬂ)
(49)

Once again to obtain the real intensity distri-
bution detected by detector we need to apply Eq.
(8). When buy > 4 the second term is negligible. If
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Fig. 8. The computer simulations of the wide slit edge image
with a point source (a) and a real source of 33 um size (b).

the source size projection is less than 1/b then we
may average only the cosine function. As a result,
the fringes pattern is described by

I(Md) ~ 1 +£C(ud),

hig bug > 4 (50)

where the integral C(uy) is similar to that consid-
ered in Section 4 (see Eq. (32))

Clug) = — /dxex< ’C?)
Uy) = —— S s
Yo PUT0
x cos | = b? + r—d 2_3_n
2 Hd xsrs 4
L ex iiﬂb%{‘21 —i3—n
(1—ip)"? P\2a—ip 14
b} B 3n ui
weo (53 5% ) oo (o)
(51)

Here f is defined by Eq. (34) and we made the
same assumptions as in the fiber section. The visi-
bility is equal to

= Re

u2
V(ua) = Vo(ua) exp (‘ 2s2dl2 )7
tc

%(Md) _ V j-7"drl/rs (52)

Uy

As before, the source size is determined by

Wy = 2 (M) (53)

Uy V(le)

For a practical implementation of this tech-
nique one needs to measure accurately the coor-
dinate u4 on the edge image. One may use for this
purpose the accurate value of the normalized in-
tensity at uy = 0. To obtain this we note that in the
region of small |u4| in the case of the point source
the intensity is described by

X el e

I(u)wl_'_i_’_xj_'_i_i_lSnzx"_'_
W= 22 " 12 40 360 ’

x = buy (54)

The intensity for the real source 7(0) is obtained
applying Eq. (8). It is evident that the odd terms
give zero contributions. The integrals are calcu-
lated analytically and we arrive to the estimation

1 C2 137’[2C6 3
1(0)~Z+7as— 360 a, +--- (55)
where
o w?rd
4= 20rgr’
1 n—1
C, = NG /dtt” exp(—#) = ( 3 )C,,,z (56)

The coefficients C, = 1/2 and Cs = 15/8 are found
from the recurrent relation and Cy = 1. It is easy to
evaluate the parameter a; as 0.07 in the case: 18
keV X-rays, ry =31 m, rg =10 m, wy =35 pm.
Hence the value 1/4 of the normalized intensity
may be used with a good accuracy to find the zero
point on the edge image.

6. Conclusion
The method of direct measuring the source size

and the transverse coherence length is proposed
and tested at the undulator beamline ID22 at the
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ESRF (Grenoble). The simple in-line holographic
setup was used to detect the diffraction patterns
(phase contrast images) of high quality for the well
calibrated microobjects like the boron fiber of
about 100 pm diameter or the slit of about 100 pm
width or the edge of the wide slit. The real fringe
pattern is compared with ideal one simulated the-
oretically for the point source. The analytical
theory of both the fiber diffraction image and the
slit diffraction image is developed and simple for-
mulas were derived for the source size and the
transverse coherence length. These formulas al-
lows us to estimate the source size as (35 £4) um,
which is in accordance with the data provided by
ESRF machine group at the time of experiment.
The analytical results were confirmed by accurate
computer simulations. The proposed technique is
well suited for the third-generation synchrotron
sources. The advantages of this technique are the
simplicity and high accuracy due to the absence of
optical elements that may deteriorate the quality
of the X-ray beam. On the other hand, this tech-
nique allows one to characterize the coherence
preservation by optical elements installed in the
setup. In view of future X-ray free electron laser
development this technique is promising and is of
particular interest.
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