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A theory of the formation of interference patterns due to X-ray spherical wave two-beam dynami-
cal diffraction in a perfect crystal is presented. An asymmetrical Laue case is analyzed in detail,
when a polychromatic focus is realized with different distances in front of and behind the crystal.
Such a property is essential for high-energy X-rays produced by synchrotron radiation sources of
the third generation because of the long distance between source and object. It is shown that a
monochromatic X-ray spherical wave is focused due to dynamical diffraction when a definite rela-
tion between distances and crystal thickness is held. An X-ray beam of less than 10 um width may
be obtained. A two-dimensional intensity distribution (topograph) may be registered with a
wedge-shaped crystal. It shows interference fringes of different kinds depending on crystal thick-
ness and asymmetry rate. It is also discussed how a slit in front of the crystal influences the inter-
ference pattern. An example of an interference pattern is presented under the condition of highly
asymmetrical diffraction which was obtained by a computer simulation technique. Fringes of a new
kind are observed and their physical nature is discussed.

1. Introduction

Recently, a new technique was developed consisting of hard X-ray phase (refractive) con-
trast imaging (microscopy) of small or slightly absorbing objects. With usage of an X-ray
tube or synchrotron sources up to the second generation, a single crystal collimator and
analyzer are necessary to obtain resolution (see, for example, [1-4]). As for third genera-
tion synchrotron sources, it was shown that the phase contrast image may be obtained
directly at some distance from the object [5-8]. In this case the uneven phase profile of
the wave field is transformed into the intensity profile during propagation from the object
to the detector through empty space. Moreover, a compound refractive lens for hard
X-ray focusing becomes useful with third generation synchrotron sources [9-11].

The new development becomes possible due to a high level of spatial coherence of
an X-ray beam either prepared by a single crystal collimator or delivered by a third
generation synchrotron source. As is known, dynamical X-ray diffraction in single crys-
tals is also realized under the condition of a coherent beam. Recently this fact was used
for an estimation of spatial coherence [12].

On the other hand, we want to recall that a perfect crystal plate may focus an X-ray
spherical wave under the conditions of dynamical diffraction in the Laue case. This
phenomenon was predicted theoretically [13] and observed experimentally [14] more
than twenty years ago. The reason is that the small transverse shift of X-rays during
passage through empty space from source to crystal and from crystal to detector due to
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an angular divergence becomes compensated during passage through a crystal plate of
relatively small thickness much less than the external distances. This is because the
possible angular width of the energy flow in the crystal under the two-beam diffraction
condition is the so-called Borrmann fan that is much larger than the angular width of
the incident wave which satisfies the Bragg condition. The following study [15] with a
wedge shaped crystal led to the observation of an anomalous type of interference
fringes compared to the fringes observed previously by Kato and Lang [16] for a range
of crystal thicknesses less than the thickness of focusing.

The more complicated experimental setup containing a slit and two crystal plates was
also investigated [17] both theoretically and experimentally. The coherent scattering of
X-rays allows one to observe an interference pattern which depends, in general, on all
elements installed in the optical scheme. Therefore in the theoretical analysis of the
interference pattern it is necessary to specify in explicit form the whole experimental
setup from the source to the detector. The source cross-section size and the frequency
bandpass must be considered in view of the possibility to observe the coherent phenom-
ena. In this way, any point of the source cross-section as well as any frequency value
inside the frequency bandwidth can be considered as incoherent. Therefore the inten-
sity of X-rays calculated with a point source of monochromatic radiation must be inte-
grated over the real source cross-section size and the frequency bandwidth at any point
of the interference pattern.

Up to now a detailed theoretical analysis was done for the case of symmetrical dif-
fraction only. The experiment was made with a microfocus X-ray tube while the inter-
ference pattern was registered by a photo-sensitive film. Rather small distances of the
experimental setup of about 1 m led to a small enough width of the interference pat-
tern compared to the source cross-section size. As a result, it was impossible to observe
the fine structure of the diffraction image. A synchrotron radiation source allows one to
use an experimental setup with a long distance in front of the crystal and to obtain a
coherent beam of a high level. In this case it is necessary to use asymmetrical diffrac-
tion to provide the polychromatic focus.

In this work a further development of the dynamical theory of X-ray spherical wave
diffraction in a perfect crystal is presented. In other words, we analyze a possibility of a
diffraction lens for synchrotron X-rays as well as the possible structure of interference
fringes. We consider a simple experimental setup with one crystal plate where the Laue
case of dynamical diffraction takes place in an asymmetrical geometry. We develop the
theory in real space using a technique of propagators like in Ref. [4]. A connection of
this technique with the method of plane wave expansion used in [13-15, 17] is obtained
by Fourier transformation. The role of the slit between the source and the crystal is
also analyzed. It is shown that under the conditions of polychromatic focusing with a
wide bandpass of radiation the slit plays the role of a new incoherent source while the
real source properties do not influence the interference pattern.

A specific example: the case of highly asymmetrical (804) diffraction in silicon is
analyzed in detail. The result of a computer simulation of the two-dimensional interfer-
ence pattern (detector position — crystal thickness) is presented. In this case the focus-
ing phenomenon is not well pronounced. On the other hand, interference fringes of a
new kind are discovered which have not been studied previously. An analytical estima-
tion of the distance between the new fringes is made and the physical nature of the
fringes is discussed.
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2. General Theory
2.1 Formulation in terms of propagators

The scheme of the experimental setup and the geometrical parameters are shown in Fig. 1.
We consider a plane polarized wave with the polarization vector normal to the scattering
plane (the plane of Fig. 1). The diffracted wave has the same polarization state. Therefore
we may consider the scalar waves. The y-axes of the Cartesian coordinate system at all
elements of the experimental setup is also normal to the scattering plane. We start with a
spherical monochromatic wave emerging from the point xg, ys of the source cross-section
and we consider it in the point x,y in space. The wave may be written as
Y(r,t) = p(r,w) exp (—iwt) with y(r,w) = exp (iKr)/r, where K = w/c =2x/4, c is the
speed of light, r = [z2 + (x — x,)* + (y — ys)’] where z is a longitudinal distance. The
longitudinal distances of our experimental setup are much larger than the transverse
distances. Therefore we may use a small angle approximation when the third and
higher degrees of the ratios x/z and y/z are neglected.

We are interested in the wave field at the entrance surface of the crystal. The surface
is perpendicular to the unit vector ng. Let the angle between z-axis and ny be ¢, (see
Fig.2). Then we introduce a notation y, = cos ¢, Sop = sin ¢, and write

Wo(ry) = exp KLy — iKxSi) 1= exp (S oo x4 0 =37]) . (1)

Here x is a coordinate in the entrance sur-
X face of the crystal and L, is the distance
from the source to the crystal. The wave
field (1) may be presented in the form

exp (ikor) E E™ (x y) in the local coordinate
system w1th the origin at the point O (see
Fig. 2). Here kg is a wave vector having a
A Mo modulus K and directed along the optical
P
o

Fig. 2. Geometrical parameters of X-ray diffrac-
tion in the crystal plate

Y
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axis SO (see Fig. 1) with the unit vector sy. It is easy to verify that kor = —KxS; at the
entrance surface. We assume that the optical axis is chosen in such a way that the Bragg
condition with the reciprocal lattice vector h is met accurately for the given frequency o,
namely, (Kso + h)> = K2. We also assume that the amplitude Eq(x,y) is a slowly varying
function compared to the exponential. Then for finding the amplitude of the diffracted
wave at the exit surface of the crystal we may use the Takagi equations [18]. The wave
field inside the crystal is a superposition of the transmitted and diffracted waves

Yo(x,z) = exp (ikor)Eo(x,z) + exp (iknr) Ep(x, z), (2)

where k;, = ko +h and the z-axis is chosen along the unit vector ny (normal to the
surface). The Takagi equations are written for the slowly varying amplitudes Ey(x,z)
and Ej(x,z). We assume for the sake of simplicity, that the vector ng lies in the scatter-
ing plane. It is necessary for extremely asymmetrical cases. The y-dependence stays the
same because the perturbation of the fields occurs only in the scattering plane.

The Takagi equations are written as follows:

2i d d
{Xo X (_SO ax Yo d_z)} Eo(x,2) + xzEn(x,2) = 0,

2i d d
B D)+ |t (S5 g+ gz )| Bz =0, ®)

where S;, = sin ¢, v, = cos ¢, and ¢, is the angle between the diffracted wave k;, and
ny (see Fig. 2). xy, x,» and y; are the complex coefficients of the Fourier expansion of
the susceptibility of the crystal y(r) with the reciprocal lattice vectors zero, h, and —h,
correspondingly. The imaginary part of these values describes the absorption of X-rays
in the crystal matter.

In the case of a single crystal of thickness d. the solution of the Takagi equations
exists in an integral form with the crystal propagators Gy »(x' — x,d.) known analyti-
cally [19] (see also [20]). Thus, the wave field at the exit surface is

P (¥, y) = exp (ikor) E¢™ (v, y) + exp (ikyr) E (¢, ), 4)
where Eé‘f;‘t) (x) = Eo n(x,d.) and
EXV(,y) = [dx Gonl(x' —x,dc) Ey" (x,y). (5)

Below we are interested in the diffracted wave. Therefore we write the expression
for the function G, (x’' — x,d.) only in explicit form which was taken from [20] with a
simple transformation

Gh(x, dc) =iC eXp (lA) J()(B \/X()Xh) e(X()Xh) s (6)

where Jo(z) is the Bessel function of zeroth order, 6(z) is the Heaviside step function
that equals zero for negative arguments and unity for positive arguments,

Yo Kxo V70V n
C =Ky, =— A== X X B =K ./v;7:
Xh 2SB ’ 2SB (‘yh 0 + VO h) ? XhXh SB ?
Xo=d.t, —x, X, =dty+x, hh = tan g, Ity = tan @y,. (7)

Here Sp = sin 20 and 6p is the Bragg angle.
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At the exit surface of the crystal plate we have k,r = Kd .y, + Kx'S;,. To eliminate
the phase Kx'S), that is quickly varying in space we need to change the direction of the
optical axis behind the crystal plate as is shown in Fig.1. Now the optical axis goes
along the vector of the diffracted wave k;. The image (detector) plane is normal to kj
and has the coordinates x4, yq. The solution of the Maxwell wave equations in empty
space behind the crystal at any distance with the known field Eiom) (x,y) at the exit
surface of the crystal may be written by means of the Fresnel-Kirchhoff integral rela-

tion [21] in a small angle approximation:

¥(xa,ya) = exp (i®1) v, | dx' dy P(xa — X'yy, L1) P(ya — y, L1) E™ (¥, y), (8)

where @; = KL + iKd.y, and
2

P(x,z) = ﬁ exp (in j{—z) 9)

is a partial propagator of the transverse wave field profile for one dimension. The
factor y, is due to the fact that the optical axis makes an angle with the vector
normal to the surface. It is easy to understand the existence of such a factor taking
into account that the propagator P(x,L;) becomes the Dirac delta function d(x) for
small L.

The real image registered by the detector is described by the intensity distribution
averaged over the source cross-section size as well as a detector resolution. The source
coordinates are x,ys and 6, = (v — wy)/wo Where wy is a characteristic frequency used
in the experiment. Therefore

I(Xde) = j dxs dys dé, B(xs,Ysﬁw) |w(xdvydax5’y57 avl)lzv (10)

where B(x,ys,0,,) is the brightness of the source at the point xg,ys for a relative fre-
quency 6,. The possibility to observe coherent phenomena in this approach is related
to the integral over dx;, dys, and df,. If the effective limits of integration are small
compared to the characteristic region of smoothing of the interference fringes, then the
interference fringes will be observed. The characteristic region of smoothing depends
on the experimental setup. Sometimes the dependence of |1,/)|2 on X, ys, or 6, may be
very small or it may be completely absent.

2.2 No y-dependence

The sample disturbs only the x-dependence of the wave field. Therefore one may sup-
pose that the image is sensitive to the x-variable only. It is easy to obtain this result
taking into account the property of the propagator (9) of empty space

jde(xz—x,zZ)P(x—xl,zl):P(xz—xl,zl -I—Zz). (11)
Indeed, the integral over y has just such a structure. Therefore we have
J dy P(ya =y, L1) P(y = ys, Lo) = P(ya — ys, L) , (12)

where Ly = Ly + L;. Since the modulus of the propagator does not depend on yq — ys,
the image becomes homogeneous along the y-axis.

However, one may use a wedge shaped crystalline sample with variable thickness
along the y-axis. In this case the image will depend on d.(y) parametrically. This case is
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convenient because it allows one to obtain the interference pattern for all crystal thick-
nesses simultaneously as a two-dimensional image. Below we shall omit the phase fac-
tors which do not influence the intensity. Also, in order to have the possibility to com-
pare the intensity of the diffracted wave with the intensity of the initial spherical wave
at the same distance, we define a relative amplitude i = L;1. Now the image is deter-
mined by the expression

P(xa, %) = (ALt)l/z vp | dx' dx P(xq —x'yy,, L) Gu(x' —x,d.) P(xyy — x5, Lo) ,
(13)

where the crystal thickness d. may depend on the y-coordinate.

2.3 Polychromatic focusing

Up to now we have considered a monochromatic wave. Let us analyze what happens
when the frequency of the radiation is changed by the value Aw. In this case we need
to use another optical trajectory to satisfy the Bragg condition in the crystal. The new
optical trajectory makes an angle Afg = —tan 656, with the old trajectory outside the
crystal plate and goes normal to the surface inside the crystal. Here, as before,
0, = Aw/w. For a small relative frequency change we may use the same long distances
Ly and L; as well as the same crystal propagator. However, now the centre of the
diffraction region in the crystal will be shifted by the value x, = —Lo A0/, as follows
from Fig.3. Taking into account an additional shift of the image behind the crystal
plate, one obtains the total shift of the image in the image plane as

Xdo = XoY), + L1 ABg = (Lo/f — L1) tan 6g0,, , (14)

where 8 = v,/y,, is an asymmetry factor of the X-ray diffraction.

Thus, for a small relative frequency change the main effect is a shift of the image.
This shift always exists in the crystal. However, when L; = Lo/f, it disappears in the
image plane. Therefore we obtain the same position of the image for all frequencies.
We shall call this effect polychromatic focusing. The range of relative frequencies A6,
that may be focused is defined by the longitudinal size of the crystal plate X, as
A6, = Xcyy/(Lotan6g). Since the Bragg angle depends on the frequency, namely,
sin O = wc/(wd) where c is the speed of light and d is the interplanar spacing of the
reflecting atomic planes, one may choose a necessary frequency interval by simply rotat-
ing the crystal.

L,=L/B
Fig. 3. Geometrical illustration of

polychromatic focusing of the dif-
fracted beam
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2.4 Solution by Fourier transformation

The double integral in Eq. (13) may be reduced to a single integral by means of the
Fourier transformation. We use a Fourier expansion of the propagators

Ple.L) = | 52 exp (iax) Ola.L).

Gutrod) = [ 5% exp () ga(a. ). (15)

where
. AL,
0(q.L) = j dx exp (—igx) P(x, L) = exp (~i o *)

gn(gq,d) = [ dx exp (—igx) Gp(x,d) . (16)

Substituting Eq. (15) into Eq. (13) we obtain the expression

: 1 (d , s AL
P(xg,xs) = (iLt)l/z F J ZZ exp (lq [xd —%D gn(qyy, dc) exp (—z i q2> ,

(17)
where L = Lo/ﬁ2 + L.

This expression allows us to directly draw two conclusions. First, a shift of the point
source in the source cross-section by Axg leads to a shift of the image pattern as a
whole by Ax;/f in the image plane. In this case the shift of the image does not depend
on the distances. However, it depends on the asymmetry factor. A proper value of
B > 1 leads to decreasing effective size of the source cross-section. This allows one to
observe the coherent interference fringes. Second, the diffraction image depends on the
effective distance I, = Ly /ﬁ2 + L1 instead of the total distance L; = Ly + L. Below we
shall omit the coordinate x;, considering xs = 0.

It is easy to obtain the Fourier transformation of the crystal propagator gx(q,d.) as a
solution of the Takagi equations with the boundary condition Ey(x,0) = exp (igx). The
solution is well known (see, for example, [22]). We write it as follows:

1/2 Ao — i K —
gh((mvdc)—ﬁ(@) exp (4o — iqxo) sin( VAt d. 77%+1), (18)

Vi ivn:+1 2./
where xo = dcy,,(th — t0) /2 = dcS /2y,
Ao — Ky, B ¢ S (-1 19

o T Ky VB VG 2B

We note that », = 5 + iy, is a complex value due to the fact that the parameters y, %,
and y; are complex values. Below we shall consider crystals having an inversion centre
when y, =y; and take into account that y, = —|y,0l +ixi, %p = —I%ml + ixy. and
Yion < [%04- Then we use a linear approximation over a parameter y;/|x,o| and obtain

_ S8 (@+4q0) _ Xio _B-1)
- \/B K [yl 7 | (Ehn 2\/3 )7 (20)
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where

B-1) in
=K - 21
qO |Xr0| 2 SB ? Eh Xi(] ( )
For the purpose of a computer simulation of the image it is convenient to use a dimen-
sionless variable # as the variable of integration. Thus, from Eq. (17) we may write the

wave amplitude as

i g B[ () exp ) - M () 22)
2SB A\/B \/W T p +(77 +7)l
where
Ta atd, qtd,
D) =5 Wa—xc)n =5 r ), @) =E VP
Hode | (B+1) &n n_ (-1
My(n) = F F : (23)
. 2vorr | 2B Vr+1 VPR +1 2B
Here we introduce the parameters
A/
A= Vth7 dy = 2 [xmlvo <LO+L1,8),
|th‘ S]%\/B ﬂ
2y AL
to = Ky, a:STgO’ Xe=Xo—XL,  XL=5-qo- (24)

The relative intensity is /(xq) = |[9(xq)|>. The formulas (22) and (23) were used in a
computer simulation of the relative intensity (see below). We note that in the symmetri-
cal case of diffraction the formulas coincide with the formulas obtained earlier [15].

The upper sign corresponds to a slightly absorbing field which is just a candidate to
be focused at the distance following from the condition dyp(L1) = d.. In the experiment
with a wedge-shaped crystal the distance is constant while the crystal thickness is vary-
ing. In this case the parameter d; is the thickness of the diffraction lens under the
conditions of symmetrical diffraction. As is known, the real thickness of the crystal
which corresponds to optimal focusing is a little larger than dy. This is especially essen-
tial for asymmetrical diffraction. When absorption is negligible, one may observe inter-
ference fringes as a result of interference between two wave fields with different signs.
Even if absorption is significant, interference is possible between different rays of the
slightly absorbing field.

2.5 Method of computer simulation

The integral (22) may be calculated by means of the well-known fast Fourier transfor-
mation (FFT) procedure. However, there is another way to calculate the integral of a
pure exponential function exp [f(#)] in finite limits where f(7) may be a complex val-
ue:

by

b
[ anexp 17 = > [ anexpiron = - AP = explflan)] o5

n=1 =1 f(bn) = flan)

an
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where ay = a, a,41 = a, + h=b,, and h = (b — a)/N. This method is convenient when
the imaginary part of the argument f(#) is a slowly varying function taking on large
values. Then the interval is divided into a set of small intervals. Inside each small inter-
val the argument is approximated as a linear function. In the case of the Fourier trans-
formation when f(n) = fo(y) + inx, this algorithm may be optimized by preparing an
array of values exp[fo(a,)] which is the same for all values of x while

exp [inan| = exp [inan—1] exp [inh].

2.6 Integral intensity

It is of interest to evaluate the integral intensity in the case when the detector has a
wide window D. It measures the total intensity inside the window. In this case the inte-
gral relative intensity is

1 xc+D/2 AL
o :7t ’ L
=g | dteo = [anar Fo Fo)
X(;*D/Z
+D)2
i 2 17 / . TA n o
xexp =5z dolr = n?)| | deexp (i Tl -] xy). (26)
-D/)2

where

VB o)
is an amplitude of reflection in the case of plane wave diffraction with the parameter 7
as a dimensionless parameter of the deviation from the Bragg condition.

When the width of the window is large enough to contain the whole peak of 7(xq4),
one may replace the limits of integration over x4 by infinity. In this approximation the
integral over x4 is equal to the Dirac delta function and the integral relative intensity is
described by the equation

L L
ﬂz)’OSB AD

fit = | anteonr. (28)
As follows from Eq. (28), the integral intensity in real space may be calculated as the
integral intensity of plane waves with different values of the parameter of deviation
from the Bragg condition. This fact is a consequence of Parseval’s theorem.

We note that the result does not depend on the source cross-section size and the
frequency bandwidth. However, a real intensity distribution depends on these param-
eters.

3. Analysis Based on the Stationary Phase Method

When d; > A or dy > A, the integrand of Eq. (22) is oscillating rapidly within the
effective interval where its modulus has apparent values. In this case, the stationary
phase method (see, for example, [23]) may be applied for an estimation of the integral
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value. According to this method, for each value of the detector position x4 the small
regions near the stationary phase points 7, give significant contributions to the integral.
Such a point 7, is determined as a solution of the equation

d@i _ JT n _

W = Z a(Xd — xc) — d()n + dc W:| =0 (29)
Then Eq. (22) may be replaced approximately by the expression

. V2 L)"? b -M

w(xd) 7T (i t) Z (:tl) Z €Xp [l i(’?o)] eXp [ i(’?o)] (30)

C2SeVB A FTW @ m)” et

where @/, = d*®,. /dn?. The sum includes all solutions of Eq. (29). In addition, differ-
ent values of 7, cannot be close to each other.

When d, > 0, the analytical solution of Eq. (29) is rather cumbersome. However, one
may see that each value of # may be a point of stationary phase for the definite value
of the detector position

dc
xqg =xc+ Us(n), Us(n) = % do EFW : (31)

The solution may be obtained graphically in the plot (7,x) as the intersection point of
the curve [xc + U(n)] with the line parallel to the n-axis at the height x4. When dj is
very large (dp > d.), there is only one solution of Eq. (29) for both signs. The point of
stationary phase 1 = a(xq — xc)/dp is approximately the same for the two signs which
correspond to the two branches of the dispersion surface in Ewald’s theory [22]. In this
case the intensity distribution reproduces the angular dependence of intensity in the
theory of a plane incident wave. Therefore we may call the parameter # the angular
parameter. In the general case, there is only one solution for the bottom sign in Eq. (29)
for all values dy and d. because the function U_(n) has a positive slope at all points.
The same behavior takes place for the top sign if d. < dp.

When d. > doy, the curve U, (n) has a negative slope in the middle part of the #
region where do (7% + 1)]/ ? < d.. In this region Eq. (29) has three solutions. Outside this
region interference is possible only between waves of different branches of the disper-
sion surface. Inside this region a new kind of interference fringes is possible between
different points of the same branch of the dispersion surface. There are two points
Ny = nﬁl"z) where dU,(n)/dn = 0. At these points @’ (1,) = 0. Therefore the solution
(30) is not valid because it leads to an infinite intensity.

In a real situation the intensity is finite. However, it shows a sharp peak as a function
of x4 because many rays go to the same point of the image. One may verify by means
of an analysis in real space that this situation corresponds to the diffraction focus of the
spherical wave. It is easy to calculate (see also [15]) that

23 12
P =+ ((ﬁ) —1) . (32)
do
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A substitution of (32) into (31) gives us an expression for the focus positions

23\
2 = xe q:% ((j—o) —1) . (33)

When d. = dy, two focus positions coincide and correspond to a zero angular param-

(1,2) . .. o . .
eter 7; '~ = 0. Such a situation is beneficial in the symmetrical case (8 = 1) because it
corresponds to a maximum modulus of the slightly absorbing wave. A combination of
the focus properties with the Borrmann effect gives the best result.

If the asymmetrical case is of interest (8 # 1), we need to take into account the fact
that the Borrmann effect is weakly pronounced, and the maximum modulus of the
reflected wave corresponds to the angular parameter which is a solution of the equa-
tion dM..(n)/dy = 0 where M. (17) = M. (y7) + (1/2) log (37> + 1). We write this equation
as

n= ! sﬁzz\/ﬁeh g =ﬂ ! . (34)
e+ 2 + 1) doJd. B-1" " udo (B-1)

The solution may be obtained graphically. It is easy to understand that the solution
always has the same sign. When j > 1, it is always positive. Therefore in this case, only
a focus with a positive # (when x4 < xc) will have a significant intensity for
d. = di > dy. The equation for d; = dory may be obtained by substituting Eq. (32) into
Eq. (34). It looks better for a dimensionless parameter r; and may be written in the
form

-2
r§/3 =1+ (eﬂ + eﬂr§2/3) . (35)

In the general case the equation is rather cumbersome. Let us assume that r; = 1 4 &
and & < 1. Then the following expression for & is approximately valid in a linear
approximation:

1.5
(g,u + gﬁ)z - 28#/(8/4 + Sﬁ) .

o = (36)
When the absorption is strong (g, < 1), the asymmetry parameter $ cannot be large to
obtain a small value of &. In the case of large asymmetry (5 > 1), absorption must be
small to meet the condition ¢, > 3 while ¢4 < 1. In this case & = 1.5/ (sﬁ -2).

4. Usage of a Slit in Front of the Crystal

Let us now consider a more complicated case when the experimental setup includes a
slit between the source and the crystal. The slit restricts only the x-dependence of the
field. Therefore the y-dependence of the intensity stays the same, namely, it is absent.
We need to consider only the x-dependence. In this section we shall use L, as the
distance between the slit and the crystal, and we denote the distance between the
source and the slit as Lg (see Fig.4). As before, we first introduce the different optical
trajectories for different relative frequencies 6, to satisfy the Bragg condition in the
crystalline sample. Since the slit has the same position for all frequencies, the transverse
position of the slit relative to the optical trajectories becomes different for different
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Xq Fig. 4. Sketch of the experimental
setup containing a slit between the
source and the crystal plate

Ls Ll)
frequencies. It is shifted by the distance xq, = Ly Afg = —Lg tan 656,,. Let 2a be the
slit width. Using the Huygens-Fresnel principle, we may consider each point of the slit
as an intermediate source for which Eq. (17) is valid with xy instead of x; and with
L{ = Ly + L, instead of L; = Ly + L;. The real wave field is now described by the inte-
gral

-, Xowt+a N

Y (xa,x5) = | dxo y(xa,x0) Pxo — x5, Ls) - (37)

Xow —a
The formula is written for a definite relative frequency 6, in the local coordinate

system. Let us introduce a new coordinate of the image x) = x4 + X4, independent of
the frequency and take into account that now the distance betwen the source and the
crystal is equal to Ls + Lo. Here x4, = ([Ls + Lo]/B — L1) tan 05 6,, (see Eq. (14)). We
may rewrite Eq. (37) using the absolute coordinates of the image and the slit as

@l(xipxsa ew) = J dX6 {U(x:j - xdwax6 + x()w) P(X6 + X0 — Xs, Ls) . (38)

As follows from Eq. (17), the first and the second argument of the function ¢ are used
in the combination x; — x4, — (X + X00)/B = X — x4,/B — X, Where X, = Xdo + Y00/
= (Lo/B — Ly) tan 0 6,,. Thus, we obtain the result that the condition for polychro-
matic focusing for the function ¥ is Ly = BL1, and this condition is independent of the
distance Lg between the source and the slit. The relative intensity measured in an ex-
periment with finite bandwidth may be written as

1 -
1) = 57 | 46 B6) 17/ (3500 (39)
where 27, is the effective region of integration. Under the condition Ly = fL; we
obtain that ¥ does not depend on 6,, and therefore

a
1) = | e e Py ) 575
—a
1
X 57 J d6,, B(6,,) P(x{ + Xoo — Xs, Ls) P*(x{ + X0 — Xs, Ls) . (40)
w
The integral over 6, in this expression may be considered as a mutual coherence
function for a slit due to a finite bandwidth of the source. Our aim is to show that for a

large enough bandwidth this function is proportional to the Dirac delta function
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O(xy —x;). For example, for synchrotron radiation we may assume that
B(6,) =0(T, — |0,|) where 0(x) is the Heaviside function. The effective region of inte-
gration 27, is defined by the longitudinal size of the crystal plate X, and the distance
L. Taking into account the definition made above, the integral over 6, is calculated as

1 %
T J dé,, - = P(xy — x5, Ls) P*(x§ — xs, Ls) ro,(x;, — x7) , (41)
where
1 sin (7x/r) B A
o) = = ¥ = (42)

The function J,(x) has a sharp peak of width r. If the region of integration over 6,, is
large, so that r is much less than the width of the slit 2a as well as the characteristic
range of other functions, then we may use the limit value of J,(x), namely, the Dirac
delta function.

In such an approximation we obtain

a

|| @t ot (43)

—a

1

/
104) =37, L tan 0
The physical meaning of this result is as follows. Under the conditions of polychromatic
focusing for the distance from the slit to the crystal and for a wide bandwidth of radia-
tion, the interference pattern is not influenced by the real source. On the other hand,
the slit itself plays the role of a new incoherent source and the interference fringes
must be averaged over the slit size. We note that the same result may be obtained
when the source cross-section size is large and the distance L is small, as it was shown
in the works [17, 24]. However, for synchrotron radiation the distance L is not small
while the frequency bandwidth is large. As follows from Eq. (40), when we draw the
optical axis through a point xy inside the slit, we obtain a new source position
X, = x5 — Xo- Even if the real source cross-section is small, the effective size becomes
large for a large distance L and frequency bandwidth 27,,. This is the reason why we
obtain the same result for synchrotron radiation.

We may evaluate the gain in this case as compared to the case of a large width of
the slit when the slit is not essential. When Lg > L and |1|* shows a gain of unity with
L. instead of L; (assuming the slit as a source), then Eq. (43) gives a gain of
g=a/(T,Ltan ). For example, using the typical values a =20 um, T,, = 1072, and
L tan O = 40 cm, we obtain g = 0.005. Thus, experiments with a slit lead to a signifi-
cant loss of intensity.

5. Specific Example: Interference Fringes of a New Kind

The experimental setup of synchrotron radiation beamlines of the third generation is
characterized by a relatively small source cross-section size of about 30 um and a long
distance from the source to the object of about 40 m and longer. The distance behind
the object cannot be that long. Therefore we have a situation where Ly > L. To pro-
vide polychromatic focusing in this case, it is necessary to use asymmetrical diffraction
with an asymmetry factor § = Lo/L; > 1. Let the angle between the internal normal to
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the entrance surface ny and the reciprocal lattice vector h =k, — ko be ¥ =x/2 + 9.
The angle 1 must be positive to obtain 8> 1. Then ¢, =60 —y and ¢, =6+
where ¢, are the angles between ko, and ng (see Fig.2). As is determined above,
You = €OS @oy, B =70/v,- The optimal condition arises when y;, <1 while y, ~ 1. For a
given value of the reciprocal lattice vector h and the direction of the unit vector ny there
is a critical value of the wavelength A, for which y, = 0. The parameter y, > 0 only for
A < Ac. For cubic crystals A =2d(1 — 0052'1/)1/2, where d =a(h®+k* + 12)71/2 and
cos ¥ = (d/2x)(hng). Here a is the crystal lattice parameter and h, k,/ are the Miller
indices. When A, — A < 4, the approximate relation y;, ~ (. — 1)/[2d | cos ¥|] is valid.

As an example, we consider a silicon crystal plate (a2 = 5.43 A) with an entrance sur-
face normal to the (111) direction, a sample that is widely used in X-ray diffraction
experiments. Taking into account that mg = —(1,1,1)/v/3, we have the relation
cosW=—(h+k+1)[3(h*+ k> + 1) 2. We assume that the wedge-shaped sample
has a side surface normal to the (110) direction. The scattering plane is normal to the
(112) direction. Then, in order to realize asymmetrical diffraction, the Miller indices
must have the values (311), (402), (512), (713), (804), and so on. We choose the case
(804). This is of interest due to the large Bragg angle and the high energy of X-rays
(low absorption). We consider an asymmetry factor § =25 and distances Ly =40 m
and L; = 1.6 m. This case is realized for X-rays having the wavelength 1 =0.7308 A
and the energy E = 16.968 keV, while the critical wavelength is A. = 0.76792 A. Then
we calculate sin g = 0.6019 and cos ¥ = —0.775. Since 0 = 37° < 1, both the inci-
dent and the diffracted wave lie on one side of the normal to the crystal surface, and
@o = —13.77° (y, = 0.971) and ¢, = 87.77° (y, = 0.039). The parameters needed for a
computer simulation are u, = 0.001556 um™", y,,/xi0 = 0.6637, |x,o| = 3.371 x 107, and
] = 0.6057 x 107°.

The main geometrical directions for this case are shown explicitly in Fig. 5. The result
of a direct computer simulation based on the theory developed above is shown in Fig. 6
as a two-dimensional map of intensity (topograph). The topograph of such a type may
be registered experimentally with a wedge-shaped crystal sample. The values of inten-
sity are related to the values of spherical wave intensity at the same distance from the
source. This case is characterized by the parameters g = 0.277 and ¢, = 9.82. The
thickness of the crystal plate which focuses the X-ray spherical wave for the chosen
parameters is rather small (dyp = 10.6 pm and & = 0.015), while the extinction length
A =23.4 um. Therefore the diffraction focusing occurs for a very thin crystal, and it is
not of practical interest. Also the region of “anomalous Pendellosung fringes” which

was observed and discussed in [15] is absent

here. For this reason, the topograph is “overex-

K atomicplane  posed” to show the field of interference fringes

of smaller intensity compared to the maximum
intensity.

main axis

Fig. 5. Directions of the X-ray beam, the crystal sur-

crystal surface face, and the reciprocal lattice vector in the case of
(804) diffraction in silicon with an asymmetry param-
eter f =25
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[ pattern obtained by a computer simulation for a
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tion in silicon with an asymmetry parameter
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Nevertheless, one may see the small re-
gion of “anomalous Pendellosung fringes”
which is bounded by the region of quasi-
focusing. The high asymmetry essentially
decreases the focusing thickness of the crys-
tal. Therefore the region of interference
fringes similar to those observed by Kato
and Lang [16] begins at small enough thick-
nesses of the crystal sample. This region is
-t inclined in the asymmetrical case. The in-
ek terference fringes having the shape of hy-

-100 -50 0 perbolas, corresponding to the interference

Detector position (um) of different branches of the dispersion sur-

face, are presented only slightly. Such

fringes were observed by Kato and Lang [16] and in other works (see [22]) in the
symmetrical case only. A complete theory was presented in [25].

On the other hand, interference fringes of quite a new kind are well pronounced in
the topograph. These fringes correspond to the interference of different parts of the
same branch of the dispersion surface. These look like approximately vertical strips of
intensity decreasing from the left to the right and were not observed previously. The
orlgm of these fringes is more complicated. We note that the location of the main peak
is xcl (see Eq. (33)). The distance between the fringes is slightly varying. However, the
distance between fringes far from the main peak is approximately the same.

Let us estimate this value analytically for small |x4] < A and d. > dy, A. As we
pointed out before, the intensity is described approximately by Eq. (30), and only the
upper sign and the positive roots are of interest. Equation (31) has two positive roots.
One of them, #,, is smaller than 77f (see Eq. (32)). For the sake of simplicity we shall
assume that xc < d./a where a is determined by Eq. (24), and therefore #; < 1. For
this root we obtain an approximate expression for the phase as
@y ~ (nd./A) (1 —52/2). Here we took into account that 7, ~ a(xc — x4)/d.. When
|xq| < xc, we have @ ~ const + zr(a’xc/Ad.) xq. The position dependence of the
phase @, is weak under the conditions we assume. The second root 7,, on the contrary,
is much larger than 17f ) and 7, > 1. Therefore the phase is determined approximately
as @, ~ (ndy/2A) n} ~ 7(a®x./Adp) x4. Here we used the relation 7, ~ a(xq + x1.)/do
where x; is determined by Eq. (24). We took into account that axy = d.. When
X1, > do, this phase may change significantly.

Hence we may conclude that the intensity is varying due to the change of the phase
@, only, and the distance p; between fringes is determined from the relation A®, = 2.

5]

Thickness (um)

o
?

o
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As a result, we obtain p; =2Ady/a’x;. For our specific case this estimation gives
pr = 1.7 um, which is in good agreement with the numerical results. We note that for
high asymmetry (5 >> 1) the distance depends on 8 as p; « %, because A o 1/ VB,
do < 1/+/B, and x,, o B (see Eq. (24)). On the other hand, in the first approximation it
is independent of the crystal thickness.

6. Conclusion

We developed a consistent theory of X-ray spherical wave dynamical diffraction in a
perfect crystal taking into account the distances in front of and behind the crystal. The
general case of asymmetrical diffraction is considered for the first time. The perfect
crystal influences the plane wave components of the Fourier expansion of the spherical
wave. As a result, the spherical wave is transformed into a wave of varying intensity
that allows one to speak about the perfect crystal imaging. The image of the perfect
crystal depends on the crystal parameters as well as the distances in air. The image
looks like an interference pattern where the intensity oscillates due to the interference
of different plane wave components having different phases. The initial formulas were
obtained by the technique of propagators. This also allows us to estimate the role of
the slit which may be installed between the X-ray source and the crystal.

We analyzed the role of finite frequency bandwidth and transverse X-ray source
cross-section size. It was shown that in the case of asymmetrical diffraction with a high
level of the asymmetry parameter 3 the different frequencies lead to the same position
of the interference pattern (polychromatic focusing) when the distance from the source
to the crystal is S times larger than the distance from the crystal to the detector. The
finite source cross-section size leads to smoothing of the interference pattern over a
region which is  times smaller than the source size. This is why the asymmetrical case
of diffraction may be of interest for experiments with synchrotron radiation sources of
the third generation, taking into account that the distance from the source to the crystal
is about 40 m and more, while the distance from the crystal to the detector cannot be
larger than 5 m. Usage of a narrow slit allows one to investigate symmetrical diffraction
with synchrotron radiation. Under the conditions of polychromatic focusing the slit
plays the role of a new incoherent X-ray source.

Highly asymmetrical diffraction is characterized by small crystal thickness of diffrac-
tion spherical wave focusing. On the other hand, it leads to interference fringes of a
new kind, which were not observed previously. These fringes are formed by interfer-
ence of plane wave components which correspond to the same branch of the dispersion
surface. The distance between the intensity peaks decreases with increasing 3 as 1/4%,
and it is practically independent of the crystal thickness. This new interference phenom-
enon may be used for an estimation of the effective source size of a synchrotron
source.
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