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The theory of an X-ray Fabry-Perot interferometer (FPI) is developed as a particular case of the
dynamical theory of X-ray Bragg diffraction in layered crystalline systems. Mathematical expres-
sions are derived for the transmissivity and reflectivity of the X-ray FPI built as a system of two
perfect crystal plates parallel to each other. The performance of the X-ray FPI is similar to that
of the optical FPI. Both show fine interference structure in the transmission and reflection depend-
ences. However, for the X-ray FPI this occurs only inside the region of the Bragg back diffrac-
tion peak. The influence of possible imperfections, such as the roughness of the crystal plate
surfaces and the error in the parallelism of the atomic planes are discussed. It is shown that both
factors may significantly deteriorate the performance of the X-ray FPI. Numerical estimations are
given.

1. Introduction

The Fabry-Perot interferometer (FPI) is a standard instrument for high resolution opti-
cal spectroscopy [1, 2]. Its main components are two plane mirrors of high reflectivity
arranged parallel and separated by a gap. The system becomes transparent despite of
the high reflectivity of each mirror when the gap d, between the mirrors is an integer
multiple of half of the radiation wavelength so that the condition for a standing wave
formation in the gap is fulfilled. The free spectral range Ej, the distance between two
successive transmission maxima, of a Fabry-Perot interferometer expressed on an en-
ergy (instead of the common cm™!) scale is a constant independent of the photon en-
ergy and given by E; = hc/2d,. For a gap of 1 cm it amounts to 62 peV. The spectral
width " of the transmissivity peaks is the smaller the higher the reflectivity R of each
mirror is: I’ = E;¢(1 — R)/m +/R. With a reflectivity of R = 0.99 the spectral width of the
transmission lines is in the range of sub-microelectronvolts. This shows the high resolu-
tion power of an optical FPI. Such an instrument would be highly desirable also in the
X-ray region. However, the optical mirrors are inefficient for X-rays.

In 1979 Steyerl and Steinhauser [3] proposed a Fabry-Perot-type interference filter for
X-rays. They replaced the back reflection of the optical mirrors by the Bragg reflection
of plane single crystal plates reflecting at a Bragg angle of precisely 7/2 (back diffrac-
tion) as shown in Fig. 1. A theoretical treatment of the expected performance of the
proposed instrument was given.

First experimental studies [4]—[6] of X-ray back diffraction were performed at a
Bragg angle slightly less than 7/2. As an exception the study [7] may be pointed out.
Bragg diffraction of X-rays at normal incidence was observed only recently in single



598 V. G. KonN et al.

A q, Fig. 1. Sketch of an X-ray Fabry-Perot
interferometer. The mirrors are the
atomic planes which are adjusted nor-
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crystals of silicon [8]—[11] and sapphire (Al,O3) [10, 12]. Back diffraction in silicon as
well as in germanium, diamond, and other crystals belonging to the cubic system suffers
from a fundamental drawback: it is always accompanied, except for the (111) and (220)
reflections [8], by multiple Bragg diffraction [9, 10, 11, 13]. This reduces considerably
the reflectivity for the back reflection channel. Sapphire does not suffer from this prob-
lem. It allows exact Bragg backscattering for X-rays of practically any energy above
10 keV by selection of the appropriate reflection and tuning the crystal temperature. As
a consequence backscattering of Mdssbauer radiation was observed [10, 12]. Typically
Mossbauer radiation has a spectral width of a few neV, i.e., much less than the ex-
pected spectral width of transmissivity peaks of the FPI. For instance, 14.41 keV Mo&ss-
bauer radiation of >’Fe nuclei has a natural linewidth of 4.8 neV. To test the perform-
ance of an X-ray FPI it is thus favourable to use sapphire crystals as Bragg
backscattering mirrors tuned to the energy of a Mossbauer transition. We will use the
example of 14.41 keV Mossbauer radiation for numerical estimations by using the theo-
ry of an X-ray FPI presented in this paper.

The theoretical treatment of a FPI in the framework of the dynamical theory of
X-ray diffraction was performed by Caticha and coauthors in a series of papers
[14]—[18]. However, up to now the analysis is not complete. Especially the influence of
imperfections of the FPI mirrors on the performance of the interferometer were not
studied. Finally, unfortunately the analysis of the perfect FPI presented in [17, 18] con-
tains errors.

Section 2 contains a formulation of the theory of X-ray diffraction for a perfect
crystal plate at a Bragg angle of /2. The theory is presented in a form suitable for
the analysis of more complicated systems. Section 3 presents a general theory of X-ray
diffraction in layered systems. The main result here will be recursion relations which
allow us to calculate the parameters of scattering of the entire system from the param-
eters of the individual crystal plates. The theory of an X-ray Fabry-Perot interferom-
eter is presented in Section 4. In Section 5 imperfections of the X-ray FPI such as
roughness of surfaces of the FPI mirrors and misalignment of the mirrors are ana-
lyzed.

_—

2. X-Ray Back Diffraction

Back diffraction can be treated as a special case in the general theory of Bragg diffrac-
tion [4, 16, 19, 20]. We consider the case of two-beam diffraction when the Bragg condi-
tion is satisfied only for the set of atomic planes that is represented by the reciprocal
lattice vector h. The wave vector of the incident monochromatic plane wave is ko. It
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has the value |ko| = K = w/c where c is the speed of light, and w is the angular fre-
quency. The wave vector of the diffracted wave is k;, = ko +h. We choose the z-axis of
the Cartesian coordinate system along the unit vector n normal to the entrance surface
of the crystal plate of thickness d so that (kgn) > 0. The vector of the electric field of
the X-ray plane wave is represented as the sum of two orthogonal transverse polariza-
tion vectors: ¢ and ®. The choice of these vectors is arbitrary. In the case of exact back
diffraction when k;, = —Kko, it is convenient to choose the same unit polarization vector
e for the incident and back diffracted waves in each polarization state. With such a
choice the so called “polarization factor” becomes unity for both of the polarization
states. Therefore, henceforth we omit the polarization index.

For each polarization state the radiation field in the crystal may be written as a
Bloch wave

E(r,t) = exp (ikor — iwt) [Eo(z) + En(z) exp (ihr)] e. (1)

The z dependence of the scalar amplitudes E, and Ej appears due to refraction at the
crystal surface. In the case of a plane single crystal plate we may search the solution for
the scalar amplitude as

Ey(z) = 3_ 4 exp (igz) , En(z) = 3 AR exp (igjz) . (2)
j j

The values ¢ and R are determined by Maxwell’s equation
[~grad® — K?| E(r) = K*x(r) E(r), 3)

where E(r) is the space part of Eq. (1) and y(r) is the electric part of the susceptibility
of the crystal. It is a periodic function in space having the symmetry of the crystal
lattice.

Substitution of Egs. (1) and (2) in Eq. (3) and averaging over the unit cell of the
crystal lattice results in

(ko + &m)® — K?] = K[y + 3R],
(ki +en)” — K2 R = K[y, + %oR] . (4)

Here yg, %, and y; are the Fourier components of the electric part of the susceptibility
corresponding to zero, h and —h reciprocal lattice vectors, respectively. Since the inter-
action of X-rays with matter is weak the values of y,, x, and y; are very small. As a
result |¢| < K and terms with & may be omitted. In this linear approximation Egs. (4)
become

2eyy = Ko + x5 R]
2ey,R = Ky, + (4o — @) R], (5)

where a = (k; — K?)/K? is the parameter of deviation from the Bragg condition. y,

and y, are the cosines of the angles between the normal n and the direction of the

incident or the diffracted beam, respectively. In the case of back diffraction y, = —y,.
The solutions for R and ¢ are

K
RL = _2 ) 1,2 =5 — + E ) 6
2= 2= 2 Do + 81,0 (6)
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where

1
E10= =YY — x> Y=o 54 (7)

It is assumed that the square root in Eq. (7) has a positive imaginary part.

The parameters A; 5, according to their definition in Eq. (2), are proportional to the
excitation amplitude of each of the two possible waves inside the crystal. They are
determined from the boundary conditions. It is assumed that at the top surface the
amplitude Ey(0) of the wave propagating in the direction ko and at the bottom surface
the amplitude E,(d) of the wave propagating in the direction k; are known. Typically
only one incident wave is considered by putting Ey(0) # 0 and Ej;(d) = 0. However, if
the crystal is part of a system of many parallel crystal plates (as discussed in the follow-
ing sections) both amplitudes may be nonzero. By using Eq. (2) the boundary condi-
tions are

/11 +12 = Eo(O) s
MRy €7 + oR, €7 = Ej(d), (8)
where ¢, , = € 2d. One gets

_ Ep(d) — Ep(0) Ry &'
T~ Rye _Rien

A= Ep(0) — 22, A 9)

Equations (1), (2), (6), (7), (9) allow us to calculate the amplitudes of the radiation
field at any point of the crystal. In particular for the amplitudes of the radiation field at
the crystal surfaces Ey(d), Ex(0) using Egs. (2), (9) one gets

Eo(d) = t(d) Eo(0) + F(d) Ep(d),

E(0) = r(d) Eo(0) + 1(d) En(d) . (10)
with
g, (1—X) S gy, (1=X)
t(d):e‘pm, t(d)fe‘pm,
Hd) = R, (1 —¢e?) e ) (11)

G—xer W=k a-xen’
X=Ri/R:, o=0—¢,.

The parameters #(d) and r(d) are the transmission and reflection amplitudes for the
incident radiation with wave vector ko, and #(d) and 7(d) are the transmission and re-
flection amplitudes for the incident radiation with wave vector kj,.

As follows from Eq. (11), in the case of a thick crystal plate with d > d., where

d. =y,/(K Im /y? — x,%;) the reflection amplitude r(d) does not depend on d and is

equal to r(co) = R; with good accuracy. In this case the reflectivity becomes Py = |r|.
Further on we note that in the case of vanishing absorption there is a region of total
reflection with P, =1 given by the condition —|y,| <y < |x,|- The phase ¢, of the re-
flection amplitude r(co) varies in this region from —z to 0.

We are interested in the reflectivity and transmissivity of the crystal (or crystal sys-
tem) as function of energy E and angle 6 between the incident X-ray beam and the
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reflecting atomic planes, as well as function of temperature 7. All parameters of the
diffraction problem y,, x,, @ depend on these variables. But the dependence of y, and
%, 1s very weak. They remain practically unchanged in the region of interest. By con-
trast the tiny variation of a in the region |y| < |y,| changes the reflectivity and the
transmissivity drastically. Hence the reflectivity and the transmissivity may be expressed
as function of the parameter o alone and the dependence on E, 6 and T is introduced
via their influence on a. In other words, only the deviation from the Bragg condition is
of importance.
In the general case a(E, 0, T) is given by [10, 12]

a—4?[%sin0}, (12)
where Eg(T) = hc/2dp(T) is the Bragg energy for back diffraction which is deter-
mined as the energy value for a =0 and 6 = /2. Here h is the Plank constant and dj
is the interplanar spacing for the reflecting planes which depends on the indices of
diffraction A, k,l. Considering small deviations AE = E — Eg, A0 = 6 — /2 and Adpx
from the reference values Eg, 6 = 7/2 and dp in our case of back diffraction keeping
the terms of lowest order we may write

<Adhk1 AE
o=—4

hkiN2 kN2
dnii JrEB) +2((A9x —AGT)+ (A9 - AOy ) ) ’ (13)

Here A6, A0, describes the small angular deviations (in two independent directions)
of the primary beam from normal incidence to the reflecting planes, while Aefg“, Aefkl
are the angular deviations of the reflecting planes themselves or, equivalently, the angu-
lar deviation of the reciprocal lattice vector h from —ko. These variables are convenient
when one treats the diffraction problem in an imperfect crystal. One can see that both
deviations may compensate each other. In the case of back diffraction the parameter o
depends linearly on the variation of the X-ray energy AE or the interplanar distance
Adpx;, however, quadratically on the angular deviation parameters.

A variation of the interplanar distance may be caused by changing the crystal tem-
perature. In a small temperature region this variation is given with good accuracy by

Adpi
A

= CAT, (14)

where C is the thermal expansion coefficient. As follows from Eq. (13) the reflectivity
curve on the temperature and energy scales must be the same for different angular
deviations of the incident beam and only the position of the peak will be shifted by

(A0)*
2

1
AT =5 (AG? or AE=Ejg . (15)

3. X-Ray Diffraction in a Layered System of Crystals

We consider plane crystal plates with each plate representing a layer of the multilayer
system. It is assumed that the thickness d of the layers, the kinematical scattering ampli-
tudes y,, x,, as well as the parameter @ may be different in different layers. The reflect-
ing atomic planes of all layers, however, are taken parallel to each other. If there is a
gap between successive layers filled with a non-diffracting medium, this gap will be
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treated as a layer with y,, x;; = 0. The two-beam solution of Maxwell’s equation ob-
tained in the previous section for one single crystal plate is used to calculate the reflec-
tivity and transmissivity of the layered system. We derive recursion relations which con-
nect the reflection rl(f ) and transmission tﬁf ) amplitudes of a multilayer system,
containing k layers, with the reflection rﬁlffl) and the transmission tfr]f - amplitudes of
the first k — 1 layers and the amplitudes ry, #; of the k-th layer.

We start with a system of two layers. Let the top layer have an index 1 and the
parameters dy, ti, r1, t1, 71, the bottom layer have an index 2 and the parameters ds, ,,
r2, ty, 72. The z-axis goes from top to bottom (see Fig.2). According to Eq. (10) the
following balance equations can be written for the top crystal plate:

Eo(dy) = 1 Eo(0) +71En(dr),

En(0) = rEo(0) + 1 Ep(dy) , (16)
and for the bottom crystal plate

Ey(d) = bEo(d1) + 1 Ex(d,),

En(dy) = rEo(dy) + 6 Eq(dy) - (17)

Here d; = di + d, is the total thickness of the system.
We are interested in the reflection rr(ﬁ) and transmission tI(I%) amplitudes of the system,
which we introduce by

Eo(dy) = 13 Eo(0) + PR Ep(dy) ,
E(0) = r@ Eo(0) + 1 En(dy) . (18)

m
The scattering parameters are shown graphically in Fig. 2. By solving the system of

Egs. (16) and (17) one obtains the reflection and transmission amplitudes of the system
as function of the reflection and transmission amplitudes of its parts,

hit 2 hitir
o _ b oyt
W S0 mn) ™ TSRS
) —2) _ = hhF
= =7 +—. 19
m (1—/’271)7 m 1+(1—I’271) ( )
E,(0) E,(0) E.(0) E,(0)
z=0
r - r@
d, t, ¥ :, L S
@) MO —z=d,
r .
d, by O 1E O
z=d,
Ey(d,) E.(d,) Ey(dy) E.(d,)

Fig. 2. Diagram showing the relation between the wave field amplitudes in a two-layer crystalline
system (left) and in the complete system (right)
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This solution of a two layer system allows one to give the solution of the general
case of a system with k layers. We consider the top or the bottom layer of the system
as a new layer added to a system containing (k — 1) layers. Let, for example, the bot-

tom layer be a complex system of (k — 1) layers. Then ri2 in Eq. (19) may be rewritten

replacing rr(? by rr(rlf)7 r, by rfff*l) and 4, ry, t1, 71 by t, 1k, bk, Ti @s
2 (k=1)
Tyt
(k) _ ktk’'m
P06 = g Dk (20)
" (1= ™)

One can see that in the case when the layers are numbered from bottom to top it is
sufficient to consider only one recursion relation for the calculation of the reflectivity.
We start with the zero value of rfI?) and successively use Eq. (20) for k =1,...,n where
n is the total number of layers. The recursion relation (20) for the reflectivity of a
multilayer system is general and is the same in the case of grazing incidence. In a
slightly different form it was proposed for the first time by Parratt [21]. For recent
results on this topic see [22]—[24] and references therein.

The formula (20) can be transformed to a form, more convenient for computer calcu-
lations. By using the result of the preceding section

; _ (e — X)
el — =" 21
e = MWk = (1 i) (21)
one obtains after simple transformations
7 (k—1)
R — RyZ e? Ry —r
(k) - M~ st 7 'm
'm' = i ZﬁRz—r[(ff_l) . (22)

A formula of such a type was used in [25]. In addition to the simplification of the
calculation this formula uses only three parameters of each layer: R, R, and e in-
stead of the four parameters of the initial recursion relation Eq. (20).

Similar to Eq. (20) one obtains the formula for the transmissivity of a system of k
layers,

(k—1)
t‘(111<) = LM . (23)
(1 —Ferm )

However, it is not convenient for computer calculations. One obtains another set of
equations considering the top layer as a system of (k — 1) layers. Then if the layers are
numbered from top to bottom one gets

(k-1) (k1)

It tt
1®) = kmi(km 7 K =7 % . (24)
(1 — IgI'm ) (1 — II'm )
Now we may start with the values 1 = 1, 7o) =0 and successively use Eq. (24) for
k=1,...,n where n is the total number of layers.

4. Perfect X-Ray Fabry-Perot Interferometer

The X-ray Fabry-Perot interferometer is a device which consists of two parallel crystal
plates of thicknesses d; and d,, separated by a gap of width d, filled with a non-diffract-
ing medium. The crystals are used as mirrors at normal incidence to the atomic planes
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(see Fig. 1). It is assumed that they are made from the same material and kept at the
same temperature 7. The reflecting atomic planes in the second crystal plate are as-
sumed to be perfectly parallel to the planes in the first crystal plate.

It is evident that the X-ray FPI is a particular example of a layered system discussed
in the preceding section. It has three layers. The first and the third are the crystal
plates, and the second is the non-diffracting medium. The position of the third layer is
described by a translation vector U. U =0 corresponds to a configuration where the
first and the third layer are composed to a single crystal. With this choice the gap is
related to U by d, = nU. To calculate the reflection and transmission amplitudes of the
X-ray FPI we use the recursion relations obtained in the preceding section.

The transmission and reflection amplitudes of the first layer (first crystal mirror) are
calculated by Eq. (11)

nh = [(d1) , = f(dl) R r = r(d1) , T = 7(611) , (25)
and similar for the third layer (second crystal mirror)

3 = [(dz) , 13 = f(dz) s

r3 = r(dy) exp (ihu), 73 = 7(d2) exp (—ihu). (26)

The phase factor exp (ihu) takes into account the possible shift of the atomic planes of
the second mirror relative to the planes in the first mirror. It originates from the Four-
ier component of the susceptibility y;; — x; exp (—/hu) of the second mirror. The vector
u = U — Ndysp, where sy) = ko/K and N is chosen in such a way that u describes a
crystal lattice distortion in the second mirror (see below).

The transmissivity through the non-diffracting medium (second layer) with the elec-
tric part of the susceptibility y, can be easily calculated by Eq. (11) taking y, = yx,, and
x, = 0. By using these relations one obtains ¢, = Ky,ds/2yo, @2 = K(a —xg) dg/2v,
and Ry = R, = X =0 and the transmission and reflection amplitudes for the gap read

iKd, iKd,

L, = exp {W Xg:| , f, = exp {23/
0 0

(xg—a)], rn=r=0. (27)

The additional phase factor exp [—iKdya/2y,| = exp [—idy(kn — ko)/vo] in 7, appears
due to different values of the wave vectors kg and k; if the Bragg condition is not
exactly fulfilled.

Combining Egs. (25), (26) and (27) with Eq. (19) we obtain for the reflection and
transmission amplitudes of the system consisting of the second (gap) and the third
(crystal) layer the expressions

12 = r(dy) exp (i), (2 = t(dy) exp (ipy) s (28)
where
Kd Kd
—hu+20 ——% — 2
¢ = hu+2¢, oy & PeT gy R (29)

Using Egs. (28), (29) and the recursion relations (20), (23) one obtains the reflection
and transmission amplitudes of the X-ray FPI
1(dy) i(dy) r(dz) exp (ig) t(dy) t(dz) exp (ig,)

= ) ) e ) ™ T T rd) e ) )
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and the reflectivity and transmissivity
2 2
PP =l P =l (31)

One may verify that for zero gap (d, = 0) in absence of the translation of the second
crystal relative to the first one (u = 0), the reflection and transmission amplitudes satis-
fy the obvious relation

tm=1t(d1 +d2), rm=r(di+dy), (32)

ie. ty and ry, are equal to the reflection and transmission amplitudes of a crystal with
thickness d; + d>. The same result is obtained for a nonzero gap, provided ¢ =2an
(n=0,%1,...) and y, = 0.

The formulas obtained above are similar to those of Ref. [18], however, not completely.
Firstly, the formulas presented in [18] contain some misprints. Secondly, an essential a-de-
pendence in the phase factor ¢ Eq. (29) is lacking. This leads to different properties of the
X-ray FPI. Therefore, the results of computer calculations of the transmissivity obtained
in [18] should be revised. It is of interest also to analyze the reflectivity of the X-ray FPI.

As an example, we present the result of a computer simulation for an X-ray FPI made
of sapphire (Al,O3) with a vacuum gap. The sapphire crystal lattice allows two-beam
back diffraction with a significant reflectivity for X-rays. We have chosen the Bragg reflec-
tion (13 428) which was used in the experiment [10, 12] with Eg = 14.41 keV. Figure 3
shows the energy dependence of the transmissivity for di = d, = 100 um, dy = 0, 0.5,
1 mm and s = u/dpy = 0, 0.5. Figure 4 shows the corresponding data for the reflectivity.

IR B L w01y -

ST
= 3
> ]
5 ]
N 04 3 £ 3
— 3 §0'4 Fig. 3. Transmissivity of an X-ray
= E £ E Fabry-Perot interferometer as
n 0.2 £0.2 ] function of the X-ray energy E
Z ] £ ] with respect to the Bragg energy
< 0 i.o.VUUUY 03 ‘ Eg = 14.4125keV. Normal inci-
M E E dence is assumed to the reflecting
= 61 £0.61 planes (1,3,4,28) of sapphire
3 E (A1, O3) crystal plates of thickness
0.4 3 F0.4 ] di=dp, = IQO um separated by a
ER ] gap of thickness d, =0 (top),
: 0.5 mm (middle) and 1 mm (bot-
0.2 E £0.23 3 tom). The relative shift of crystal
3 o F lattices in the mirrors is s = 0 (left)
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Fig. 4. Reflectivity of an X-ray
Fabry-Perot interferometer with
the same parameters as in Fig. 3
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For zero gap the Bragg curve for backscattering is reproduced. Already a shift of the
crystal lattice of one mirror relative to the other by dj/2 leads to a peak of the trans-
missivity inside the region of high Bragg reflectivity. When the width of the gap in-
creases more and more peaks of transmissivity arise. An additional shift of the crystal
lattice of the second crystal leads to a slight shift of the transmission pattern on the
energy scale. Obviously, the maxima of reflectivity coincide with pits in the transmissiv-
ity and vice versa. The sum of both curves is not unity due to absorption. The proper-
ties of a FPI well known from optics are reproduced. Additional features are due to
the properties of the X-ray mirrors. One sees the well known peaks of transmissivity.
The distance between them is the free spectral range (see Eqgs. (37) and (41)). The
spectral range within which transmission peaks can be observed is given by the energy
width |y,| E of the region of total reflection.

These properties can be derived analytically from Egs. (29) to (31). In the following
analysis we assume that there is a vacuum gap between the mirrors, i.e. y, =0 and
exp (igy) = 1. The effect of the gap reduces to the phase ¢ = hu — Kd,a/2y,.

By using Egs. (13), (29) we have

AE
a=—4 <—+ CAT) +2(A0)*,
Ep

oo (o))
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Here s = hu/2m = u/dy is the relative shift of the crystal lattices of the mirrors and
L, = d,/y, is the path length of the X-ray beam between the mirrors.

With Eq. (30), we may write the expressions for the transmissivity and the reflectivity
in the form

FPI _ H’
b1+ GEsin® [(¢+pg) /2]

PfPI -1— PFPI o 14FPI7 (34)

where AT is the amount of energy absorbed in the FPI,

T G_2VR
1-R’ T1-R°
Here T = |t(d1) t(d2)|, R = [F(d1) r(d2)|, pr = arg [F(d1) r(d2)]. The formulas of Eq. (34)
are similar to the Airy formulas when T =1 — R and AT =0. In optics the Airy
formulas describe multiple-beam interference phenomena with two identical parallel
non-absorbing mirrors of reflectivity R and thus describe also the performance of the
optical FPI [1, 2]. An X-ray FPI built of identical non-absorbing crystals can be de-
scribed with the same formulas as the optical FPI. The formulas of Eq. (34) have a
resonance structure even in the general case of absorbing mirrors with different thick-
nesses.

Let us consider the energy dependence of the transmissivity of the X-ray FPI when
A6 =0 and AT = 0. Within the Bragg diffraction region R is close to unity and the
parameter G has a large value. In this case the transmissivity shows pronounced max-
ima when the condition

¢ =2mn—pr=¢,. (36)
is fulfilled. Using Eq. (33) and neglecting for the moment the energy dependence of the
phase ¢, one obtains the approximation EE()) for the free spectral range
he 0.620 meV mm

EVY =AE, —AE, | =~~~
f 2L, L,

H= (35)

(37)

For values of Ly < 1 mm the spacing between the maxima of transmissivity will be
small compared to the width of the Bragg diffraction region [y,| Eg which is typically
1-10 meV. In this case within the width of a separate peak of the transmissivity the
parameter a varies slowly and for an approximate analysis 7" and R can be considered
to be constant. To analyze the shape of the peak we consider a small deviation of the
phase ¢ from the resonance value ¢,, ¢ = ¢, + A¢p, where |Agp| < 1. We obtain a Lo-
rentzian shape as function of A¢ with a maximum value of H? and a full width at half
maximum (FWHM) of 8¢ =4/G. As in optics one can define the finesse F of the
X-ray FPI as

2m _ nG o VR

8 2  1—-R’

For example, F = 29.8 for R = 0.9.
The phase width 8¢ of a transmission peak can be transformed to an energy width

ro = EQ/F taking into account the linear dependence of ¢ on AE, Eq.(33). If
F =298, L, =1 cm, then EEO) = 62 peV and the energy width of the transmission peak

(38)



608 V. G. KOnN et al.

becomes I' = 2 peV. It is of interest to consider also relative values

EY _dw T _1dw (39)
Eg L’ Eg F Ly’

The weak energy dependence of the phase ¢ was so far neglected in the analysis.
To take it into account we consider the simple case of a crystal lattice with an inversion
centre and large thickness of the mirrors d > y Lg. Here Lg = 2/K|y,| = 2duu/7lyy,| is
the extinction length in the centre of the region of total reflectivity. In this case
¢r = 2¢,, where ¢, = arg [r(d)]. As pointed out in the Section 2 the phase ¢, changes
from —z to 0 within this region. Thus, there is an additional transmission peak and the
real free spectral range E; becomes slightly less than derived in Eq. (37) A more accu-
rate expression for the free spectral range of an X-ray FPI can be derived.

27 0¢p  2mLg
Er=————, where —=
"7 0(p + o) /OE

As for d¢/OE it is energy dependent. The mean value of d¢,/IF can be estimated as
27/lx,| Es. A detailed analytical analysis yields that in the centre of the region of total
reflection the derivative is less than its mean value and equals approximately 4/|y,| Es.
Since the central part of the Bragg reflectivity region is of experimental importance we
use the corresponding value of d¢r/0E for our improved estimation of the free spec-
tral range.

(40)

E" 2y Er

(rie/Ly’  *Taw TTF “
This expression is similar to Eq. (20) of [18]. It is valid only within the central part of
the Bragg reflection maximum. At the edges 0¢g/OF becomes strongly dependent on
absorption, crystal thickness etc. and differs from the expression used. The approxima-
tion of a thick transparent mirror is no longer applicable.

We note that the values of T, R, F vary slightly inside the Bragg reflection region
that leads, for example, to different heights of the peaks as seen in Fig. 3. All these
features are specific to X-ray FPlIs.

It is of interest to analyze the angular dependence of the transmissivity. According to
Eq. (33) the phase ¢ relates quadratically to the angular deviation from normal inci-
dence A@. Therefore, the angular positions of maxima of transmissivity are not equidis-
tant. If the X-ray energy E is chosen so, that the condition (36) is fulfilled for A9 = 0,
then A¢ and A6 are related by Ap = (wLg/dpu) (A6)* and one obtains for the FWHM
of the transmission peak

2dpi 8¢ dni
0=, ——=2,|—. 42
\ "L, \| LeF (42)

For an X-ray FPI with L, =1 cm, dpy = 0.43 A, and F =298, the angular width of the
transmission peak is 86 = 24 urad.

The analysis of the reflectivity of the X-ray FPI is straightforward for non-absorbing
crystals. In this case A" =0 and then RFF' =1 — TFP! given by Eq. (34). If AT #£0
then numerical calculations should be used for the analysis. However, in general, one
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can always say that the peaks of transmissivity are accompanied by deep pits of reflec-
tivity as seen in Fig. 4.

5. Imperfect X-Ray Fabry-Perot Interferometer

In this section we will consider the influence of possible imperfections, such as rough-
ness of the crystal plate surfaces and the error in the parallelism of the atomic planes in
the crystal plates on the performance of the X-ray FPI.

5.1 Surface roughness
5.1.1 Formulation of the approach

The roughness of the surface may be characterized by the height 4 of the deviation of
the surface from the mean value along the surface normal and the width w of the
region within the surface where 4 changes essentially. Due to transmission or reflection
in such a spatially inhomogeneous medium the amplitude and the phase of the incident
X-ray beam (the plane wave) is changed and the wave fields Eo(z) and Ej(z) (see
Eq. (1)) become dependent on the coordinate x along the surface of the crystal in the
plane of scattering. The propagation of such waves Ey(x,z) and Ej(x,z) in the crystal
lattice is described by the two-dimensional Takagi equations [26] with spatially variable
boundary conditions. We shall consider the case of back diffraction as a limit of the
general case of diffraction with the Bragg angle less than 7/2. As known, in a perfect
crystal sample having a slightly uneven surface one may reduce the problem to an even
surface and wave fields Ey(x,0) and Ej(x,0) at the boundary varying along the surface.
The solution of the Takagi equations in this case is an integral over the line which is an
intersection of the surface and the scattering plane (see, for example [27])

Ey(x,0) = J o Gy(x — 2, d) Ey(x',0),

Eolx,d) = Eo(x1,0) + j A’ Gu(x1 — ¥, d) Eo(x',0) (43)

—00

where x; = x —d/y,, d is the crystal plate thickness. The propagators Gs(x,d) (s =r,t)
are known analytically. They are linear combinations of Bessel functions. It is known
that

J dx G, (x,d) = r(d) , 1+J dx G,(x,d) = t(d), (44)
0 0

where r(d) and #(d) are defined by Eq. (11). We assume for the sake of simplicity that
Eh (x, d) =0.

The integral relations (43) describe the propagation of the X-ray beam in the crystal
from the entrance surface to the exit surface when transmission is considered and to
the entrance surface once again in the case of reflection. The propagator determines
the change of the intensity and the shift of the phase of the wave field along different
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trajectories. In the general case, only a finite region inside the cross section of the
incident beam influences the intensity at a given point of observation at the exit sur-
face.

In the case of back diffraction at a Bragg angle of precisely s/2, all trajectories con-
tributing to a given point on the crystal surface reduce to the same trajectory because
the trajectories of forward and back reflected rays coincide in space. This means that
under the approximation discussed above we have at each spatial point of the cross
section of the beam the same equations for transmissivity and reflectivity of the X-ray
FPI as in the case of the perfect device. For example, for each mirror of the X-ray FPI
we may use

Eo(x,d(x)) = t(d(x)) Eo(x,0) +7(d(x)) En(x,d(x)),
En(x,0) = r(d(x)) Eo(x,0) + ¥(d(x)) En(x,d(x)). (45)

Here the scattering parameters r, ¢, 7, { depend implicitly on the x coordinate along the
surface by the dependence of the thickness on x. One may derive that such an ap-
proach corresponds to two-beam geometrical optics for the crystalline mirrors.

In the gap between the mirrors of X-ray FPI geometrical optics is valid when the
length of transverse variation of the field is less than the region of the first Fresnel
zone /Az/m, where A is the wavelength of X-rays and z is the path length along the
beam direction. For an estimation we consider the spatial scale of transverse variation
as being of the order of the length of the essential phase change due to the speed of
light difference between vacuum and crystal matter, namely, 1/7|y,|. Then we get the
longitudinal distance up to which geometrical optics can be applied as z < l/n|x0|2.
Using the values of our example 4 = 0.86 A and [y,| = 7.8 x 10~° yields z < 45 cm. This
estimation, though rather rough, shows that at least inside the entire X-ray FPI with
the gap up to 1 cm geometrical optics will work well with multiple reflections when rays
traverse the gap many times.

When each crystal plate has uneven surfaces one has to use local values of the thick-
nesses di(x), da(x) and d,y(x), local paths of rays inside the interferometer /;(x), k(x)
and L,(x). We may apply such an approximation for the whole X-ray FPI when the
width of the gap is less than 1 cm and obtain the variable transmission and the reflec-
tion amplitudes of the X-ray FPI.

The result of a measurement depends on the transverse coherence length of X-rays
and the type of the detector. In the case of a coherent beam it will be different for
different distances between the X-ray FPI and the position sensitive detector because
the propagation of the wave through empty space is described by the Fresnel-Kirchhoff
integral (Huygens-Fresnel principle). A relatively simple situation arises in the case of
an incoherent beam or a short distance of the FPI to the detector with the detector
having a wide window. In this case one has to average the transmissivity and reflectivity
(i.e. an intensity) over the beam cross section.

Let us consider the transmissivity of an X-ray FPI under the conditions discussed above.
We introduce the mean path lengths in the gap /1 = d1/yy, b = d2/y, and Ly = d,/y, and
the deviations Ay(x) =l (x) — 1, 42(x) = h(x) — L, and Ag(x) = Lg(x) — Ly. Now the
the transmissivity per a unit length of the detector window is given by

PPy, ds, d,) = % J dx PP (1 (x), b(x), Le(x)) , (46)
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where X is the linear size of the surface area illuminated by the beam (the length of
integration path). The dependence on x results from the parameters 4;(x), i =1,2,g.
Since the interferometer has four surfaces there is no correlation between these ran-
dom values. According to the definition of A4 we have Ay =4, = 4, =0. To satisfy
these conditions we can define the mean value for each surface 5 in such a way that
(sk(x) — 5k) = hx(x) =0, where k=1, 2, 3, 4 denotes the surfaces numbered in the
direction of the transmitted beam, then d; = 5, — 54, Eg =33 —5 and dy =54 — 55.
A similar relation applies for the reflectivity

P ) = 5 [ e P05, b0, L) “

5.1.2 Computer simulation

An estimation of the values PFP! and P! may be obtained by computer simulations.
The average transmissivity and reflectivity of the X-ray FPI was taken as

D 5 3 3 1 N n n n
PNy doydy) =5 32 PN 17, 1), (48)

where l;"), lé"), Lfg") are random values which were obtained from random values of the
surfaces s/@ =5+ hf-") as difference between two random surfaces, namely, l§"> =
sgn) — sg”, LSD,’” = s(zn) — sg"), lé") = sg") — si"). Random values h;") were generated in ac-
cordance with the probability distribution function W(kh) chosen. We start with
R =2rnd() — 1, where rnd() is a random value in the interval (0,1). Then we define
sign (h) = sign (R), r = |R| and obtain |Ah(r)| as solution of the equation
||
r = F(h|) =2 J i W(H). (49)
0

For some simple cases of statistical distributions the dependence |h(r)| can be given
in analytical form. For example, for the homogeneous normalized distribution
W (h) = (2hy) " 8(h,, — |h]) we obtain |A(r)| = hy,r, where h,, = v/3 0. Here and below

o = 1/ (h?) is the rms (root mean square) value of &, O(x) is the Heaviside step function
which is unity for x >0 and zero for x < 0. For the linear normalized distribution
W(h) = h,? |h| O(hy, — |h|) we obtain |h(r)| = hy, /r, where h,, = V2 0. For the square
normalized distribution W(h) = 1.5h,h?0(h,, — |h|) we have |h(r)| = h,r'/?, where
hy = /0.6 6. We have performed the calculations for all these distributions as well as
for the Gaussian distribution W (k) = (¢ v27)~" exp (—h%/20?). The latter was treated
numerically.

It was found that different distributions yield approximately the same results for the

same rms value ¢ = 1/(h2). Figure 5 shows the results of calculations with the square
distribution. We have examined a sapphire crystal at £ = 14.41 keV. The X-ray FPI has
di = d, =100 um, dy = 0.5 mm, y, = 1. The surface profiles shown at the right part of
the figure were obtained after rearranging the values obtained with a random correla-
tion length. The method is as follows. One chooses a random number of points m and
puts the nearest m numbers of height 4 in increasing order. Then with another number
of points one puts the heights in decreasing order and so on. This procedure is neces-
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Fig. 5. Computer simulations of the influence of the surface roughness on the properties of a X-
ray Fabry-Perot interferometer manufactured from sapphire crystal plates of dy = d, =100 um
thickness with a vacuum gap of dy = 0.5 mm. The energy of the X-rays is £ = 14.41 keV. The left
part shows the transmissivity (bottom curve) and reflectivity (top curve) of the FPIL. The right part
shows schematically the roughness of all surfaces of the FPI

sary only for a better view of the surface profile. The results of the calculation of trans-
missivity and reflectivity do not depend on the order of the random surface values.

The calculations show that the properties of the FPI are not influenced much by the
roughness of the outer surfaces of the crystal mirrors in wide limits. The upper curves
correspond to the case when all surfaces are even (perfect FPI). In the middle curves
are given corresponding to the case when only inner surfaces are even while the outer
surfaces have a roughness with a rms of o = 3 um. The absolute difference between top
and bottom parts of the surfaces is about 24, = 7.5 um. Nevertheless, the result of the
calculation shows the same peaks of transmissivity and pits of reflectivity. The bottom
curves show the result of the calculation with rough inner surfaces with a rms of
o0 =025 um and 2h,, = 0.6 um. Apparently the peaks and pits begin to blur. Thus, we
conclude that the roughness of the inner surfaces must be less than 0.5 um.

5.1.3 Analytical estimations

A simple analytical estimation of the admissible roughness of the internal surfaces can
be obtained. As shown in the preceding section the FWHM of the FPI resonance on
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the ¢ scale is 8¢ = 2/F = (1 — R)/2 \7/]_'!T (see Eq. (38)). We consider two values of the
gap width: " = d, — h,, and dy™ = dy + h,,. The phase difference for these two val-
ues is estimated with Eq. (33) as

8w
Ap =—— m AEa
o} Vo h (50)

where AE is the energy shift of the FPI resonance in the region of the Bragg peak
relative to the Bragg energy Eg. This shift of the Bragg peak is due to the different
refraction coefficients in the crystal and in the gap. It can be estimated as
AE = Eglxol|/2 = hc |yl /4dn by using Egs. (7), (13) and taking into account that the
center of the region of total reflection is at y = 0. The phase difference A¢ has to be
less than 8¢ not to blur the FPI resonance. This yields

Zl’l_m N 6L < /’lC(l —R) i Zdh/d(l —R)
Y0 27 VRAE  aly| VR

For the case considered above numerically (ALOs;, at E=14.41keV, y,=1,
ol = 7.8 x 107°, 2djyy = 0.86 A) we have R =0.84 and Eq. (51) yields 8L, < 0.6 um.
This estimation coincides rather well with the computer simulations.

(51)

5.2 Non-parallel mirrors

When the X-ray FPI is built of two separate single crystal plates the main problem is to
keep the reflecting planes in different mirrors parallel. As will be shown the angle @
which describes admissible deviations from perfect alignment is very small despite of
the fact that Bragg back diffraction of a single crystal plate has a large angular width.

The error in parallelism of the atomic planes in the two crystals can be considered as
a crystal lattice defect which leads to a displacement u(x, z) of the atoms from their
ideal positions. Here we assume, as before, that the x-axis is parallel while the z-axis is
normal to the surface of the crystal plate. A rotation of the crystal plate around the y-
axis at the position (xo, z9) by a small angle @ results in the displacement field

uy=—(z2—-20) P, u, = (x —xo) @. (52)
Such a displacement leads to an additional phase shift
X — X
P = ha() = 2050), 00 =7 S o (53

of the reflection amplitude of the second mirror of the X-ray FPL.

The existence of a phase shift varying in space along the surface of the X-ray FPI
leads to a variation of the transmissivity. Similar to the discussion of the surface rough-
ness we may consider each point of the surface as independent because of the validity
of geometrical optics. Therefore, one has to average the transmissivity of the X-ray FPI
over the the entrance window of the detector

- 1
PP (dy,do, dy) = j dx PP (dy, dy, dy, p()) (54)
The admissible angular error of parallelism which does not destroy the peaks of trans-
missivity is determined by the condition A¢ < d¢, where
X 2n (I1-R)
A =2my, — D, O0p=—=2
¢ Yo dhk[ ¢ F \/ﬁ

(55)
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In terms of the angle between the mirrors this means
(1-R) du

Yo VR X -

For R = 0.84, djyy = 0.43 A, X =1 mm one obtains @ < 2 x 107 rad. This is a very

strong condition. It implies also that it is favourable to work with beams of small cross
section.

b < (56)

5.3 Crystal lattice defects

The crystal lattice defects in the mirrors of the interferometer will lead to a decrease of
the reflection amplitude of the X-ray mirrors as well as a partial loss of coherence of
the X-ray wave. The main problem is to keep the reflection amplitude large enough
because the peaks lose their sharpness when the reflectivity of the single crystal mirrors
becomes small. On the other hand, even if the crystal will have a mosaic structure and
different blocks of this structure will have a slightly rotated crystal lattice one may use
back diffraction because it is insensitive to a rotation of the crystal lattice up to values
of about \/W Only the size of the blocks must be larger than the extinction length.
However, the extinction length increases with increasing of the local disorder and there-
fore a large amount of dislocations, point defects and other distortions is unacceptable.

6. Conclusion

We have analyzed theoretically the properties of an X-ray Fabry-Perot interferometer
built from two perfect crystal plates parallel to each other. The arrangement is similar
to the optical Fabry-Perot interferometer. However, the back reflection of the optical
mirrors is replaced by the Bragg reflection of crystals reflecting at an angle of precisely
90°.

Mathematical expressions are derived for the transmissivity and reflectivity of the X-
ray FPI. The performance of the X-ray FPI is similar to that of the optical FPI. Both
show fine interference structure in the transmission and reflection dependences. How-
ever, for the X-ray FPI this occurs only inside the region of the Bragg back diffraction
peak. Unlike the optical FPI the free spectral range turns out to be dependent on the
X-ray energy.

The influence of possible imperfections, such as the roughness of the crystal plate
surfaces and the error in the parallelism of the atomic planes are discussed. It is shown
that both factors may significantly deteriorate the performance of the X-ray FPI. Nu-
merical estimations are given for the case of the FPI built from sapphire (AL, O3) single
crystals and for 14.4 keV X-rays. The admissible roughness of the inner surfaces of the
crystals is about 0.5 um. The admissible angular error in the parallelism of the atomic
planes is in the nanoradian range. This renders the realization of an X-ray FPI with two
independent plates more difficult.
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