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The influence of nonrotational atomic motion on the scattering of X-rays by nuclei
with sharp resonances is investigated. Two incoherent scattering channels, nuclear resonant
fluorescence and nuclear resonant absorption followed by conversion electron emission and
atomic fluorescence, are studied in detail. Time dependence and cross sections for these
processes are given. In both cases, the cross section is proportional to the self-intermediate
scattering function of the resonant isotope. The influence of other X-ray scattering processes
on incoherent nuclear resonant scattering is discussed. We find that incoherent scattering
channels dominate in off-resonance excitations. Self-intermediate scattering functions for
the ideal gas and the harmonic lattice are calculated.

1. Introduction

The scattering and absorption of X-rays by an atom is usually dominated by
contributions from the electrons. However, if the energy of the incident radiation is
close to a nuclear resonance, the contribution of nuclear resonant scattering (NRS) be-
comes appreciable and may even dominate the electronic part. This became clear with
the experiments of Mössbauer demonstrating recoilless nuclear absorption [1]. The
discovery also prompted theoretical descriptions of coherent elastic NRS and related
phenomena that arise from simultaneous scattering of all the nuclei or a particular
subgroup of nuclei in a sample [2,3]. It was also suggested that NRS has the poten-
tial to probe phonon spectra [4–6], but the estimated cross-sections were too small to
permit phonon spectroscopy with the existing radioactive sources. Amid the success
of Mössbauer spectroscopy came the proposal by Ruby [7] to employ synchrotron ra-
diation sources instead of a radioactive source. After the first experiments by Gerdau
et al. [8], the novel approach was mainly used to explore coherent elastic scattering
channels [9]. These experiments provided limited information about the lattice dynam-
ics. The presence of atomic vibration merely reduces the elastic cross-section by the
Lamb–Mössbauer factor, and the temperature variation of the second-order Doppler
shift of the nuclear levels is observable. It is not possible to derive detailed information
about the excitation spectrum of the lattice vibrations.

The knowledge of the dynamics of atomic motion has been very valuable in
condensed matter physics [10]. Various techniques have been applied in this body of
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research, with inelastic neutron scattering among the most popular. The application
of NRS as a tool for investigations of lattice vibrations was pioneered by Seto et
al. [11], Sturhahn et al. [12], and Chumakov et al. [13]. The novel method was readily
applied to a variety of samples using different nuclear resonant isotopes [14–16]. This
development became possible with the advent of highly brilliant synchrotron radiation
sources more than 30 years after the idea was presented by theorists. Synchrotron
radiation is observed as a series of very short flashes, and it is a characteristic feature
of several nuclear resonances to respond with measurable time delay to such a flashlike
excitation. This time structure permits the use of timing techniques to discriminate even
extremely weak NRS from electronic scattering, and the basis for novel applications
of NRS in condensed matter physics was established.

In comparison to coherent elastic NRS, the nature of incoherent NRS with syn-
chrotron radiation has been investigated less comprehensively in the past. An early
demonstration experiment by Cohen et al. [17] was followed by studies of incoherent
emission of photons by Bergmann et al. [18] and by Baron et al. [19]. The inter-
play between coherent elastic and incoherent NRS observing conversion electrons
was investigated by Sturhahn et al. [20]. Here we present a theoretical study of the
time-dependent response of a thermalized ensemble of resonant nuclei to flashlike syn-
chrotron radiation. We focus on nuclear resonant fluorescence and atomic fluorescence
following conversion electron emission, which are incoherent scattering channels. This
selection is motivated by the demonstrated potential for phonon spectroscopy.

In section 2, we outline some of the basic features of NRS and the relationship of
nuclear resonances and atomic vibration. The different scattering channels are classified
using quantum mechnical terminology. Section 3 concentrates on time dependence and
strength of nuclear resonant fluorescence and atomic fluorescence following conversion
electron emission for an individual atom. The lattice vibrations enter the description
in terms of a self-intermediate scattering function [21], which is related to van Hove’s
self-correlation function [22] by Fourier transformation in space. The interplay between
different X-ray scattering channels involving NRS is addressed in section 4. Even for
macroscopic samples, NRS with energy transfer to atomic vibrations is dominated
by the previously mentioned incoherent NRS channels. In section 5, we discuss the
self-intermediate scattering function of the ideal gas and the harmonic lattice.

2. Basic aspects of NRS

NRS can be studied in the framework of quantum electrodynamics (QED) as a
special case of the typical scattering situation [23]. The general Hamiltonian involves
the free electromagnetic radiation, the free electromagnetic currents, and the electro-
magnetic interaction. Here we are mainly concerned with the interaction of X-ray
photons with matter at ambient conditions. Photon field modes with typical X-ray
energies do not strongly participate in the binding of atoms. This can be inferred
from the high quality, i.e., the ratio of resonance energy to resonance width, of atomic
resonances in the X-ray regime. Therefore it is justified to construct the bound atomic
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states without high-energy modes of the photon field. The simplification for the treat-
ment of the scattering process lies in the introduction of “dressed” charges, i.e., the
charges are interacting via low-energy photons. This includes, e.g., the Coulomb inter-
action. The Hamiltonian is constructed accordingly by contributions from the dressed
charges, ĤS , the high-energy photon field modes, ĤR, and the interaction between
high-energy photon field modes and the dressed charges:

Ĥ = ĤS + ĤR + Ĥint. (1)

Scattering problems are conveniently described in the interaction picture. In this rep-
resentation, the time development of operators Ô and state vectors |Ψ〉 is given by1

d
dt
Ô(t) = i

[
ĤS + ĤR, Ô(t)

]
,

d
dt

∣∣Ψ(t)
〉

= −iĤint(t)
∣∣Ψ(t)

〉
. (2)

As usual, the interaction Hamiltonian is expressed as2

Ĥint(t) =

∫
ĝµ(x, t)Âµ(x, t) d3x (3)

using the current operator ĝµ and the photon field operator Âµ. In our model, these
operators describe the dressed charges and the high-energy field modes of the free
photon field. In the covariant or Feynman gauge, the field operator Âµ satisfies the
homogeneous wave equation (

∇2 − ∂2

∂t2

)
Âµ = 0. (4)

The simplicity of this equation is an advantage of working in the interaction pic-
ture. However, one has to realize that only the expectation values of the photon field
operators can have physical meaning, and these expectation values will obey more
complicated equations. In a scattering experiment, the conditions are typically chosen
such that the interaction vanishes in the distant past and future, i.e., limt→±∞ Ĥint = 0.
The initial and final states |Ψi,f 〉 of the scattering process are then eigenstates of the
non-interacting system and therefore time independent. They are related by a unitary
transformation

|Ψf 〉 = Ŝ|Ψi〉, Ŝ = T exp

{
−i
∫
Ĥint(t) dt

}
, (5)

where T symbolizes time ordering of operators. The modulo squared of the S-matrix
elements |〈Ψf |Ŝ|Ψi〉|2 provides the probability of the scattering channel |Ψi〉 → |Ψf 〉.
1 Here and in the following expressions natural units, i.e., ~ = c = 1, will be used.
2 The four-vector conventions are adopted from [24], e.g., x is the four-vector (t, x). Contractions of four-

vectors are denoted as either kx = k0t−k ·x or by repeated greek-letter indices AµBµ = A0B0−A ·B.
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For all practical purposes, X-ray photon fields encountered in NRS and other
X-ray scattering are weak, and only one photon is involved. The scattering process is
then sufficiently described by the one-photon propagator [25]

Dµν (x, y) = −i
〈0|T ŜÂµ(x)Âν (y)|0〉

〈0|Ŝ|0〉
. (6)

In this expression, |0〉 denotes the “vacuum state” of the electromagnetic field, i.e.,
high-energy photons are absent. The operator Ŝ is given in eq. (5). One can rewrite
eq. (6) in terms of the one-photon propagator of the noninteracting photon field D0

µν

and a matrix M (fi)
µν that describes the properties of the scatterer [23]:

Dµν (x, y) = D0
µν (x− y) +

∫
D0
µµ′
(
x− x′

)
M (fi)
µ′ν′
(
x′, y′

)
D0
ν′ν

(
y′ − y

)
d4x′ d4y′. (7)

In the covariant or Feynman gauge, we write

D0
µν (x) = δµν δ+(x), δ+(x) = −4π lim

ε→+0

∫
e−ikx

k2 + iε
d4k

(2π)4 . (8)

The matrix elements M (fi)
µν are

M (fi)
µν (x, y) = −i

〈Ψf |T Ŝĵµ(x)ĵν (y)|Ψi〉
〈Ψf |Ŝ|Ψi〉

, (9)

where the initial and final system states |Ψi,f 〉 do not contain X-ray photons. The
occurrence of the operator Ŝ, which also contains photon field operators, is needed here
to account for effects like the lifetime of excited states. The calculation of these matrix
elements will of course depend on the particular scattering process under consideration.
In the third section, we investigate incoherent scattering channels under the special
conditions of NRS. Equation (7) exhibits a useful analogy to the vector potential of
a classical electromagnetic field. If the one-photon propagator is convoluted with a
transition current Jµ (a transition matrix element of a current operator), a classical
vector potential is obtained. Imagine a localized transition current at a sufficient
distance from the scatterer. The classical vector potential associated with the photon
emitted by this transition current and incident on the scatterer is then transverse and
described by

A0(x) =
1

4π

∫
δ+(x− y)J(y) d4y. (10)

Clearly the transition current acts as the source of the field, which directly follows
from the fact that δ+ is a Green’s function of the wave equation. The vector potential
satisfies the inhomogeneous wave equation(

∇2 − ∂2

∂t2

)
A0(x) = −J(x). (11)
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The same reasoning when applied to the convolution of eq. (7) with the transition
current gives a transverse vector potential for the X-ray field at a sufficient distance
from the scatterer:

Afi(x) =

∫
δ+(x− y) Mfi

(
y, y′

)
A0(y′) d4y d4y′, (12)

where the scattering matrix Mfi now relates only the transverse components of incident
and scattered vector potentials. Equations (10) and (12) are the classical analogs of
electromagnetic wave fields that contain just one photon. If the transition current in
eq. (10) is localized in a small volume around x = 0, the energy flux at a sufficiently
distant point of observation x associated with each of these fields is obtained from the
projection of the Poynting vector onto the direction of x:

− 1
4π

x
|x| ·R

(
∂A
∂t
×∇× A∗

)
. (13)

For a quasimonochromatic wave of average energy ω0, one approximates ∂A/∂t =
−iω0A, and for large distances |x| the approximation x · (A×∇×A∗) = −iω0|x| |A|2
can be used. From eq. (13) and these approximations, we obtain for the probability
per unit time that the photon may be observed in the solid angle dΩ and direction
x/|x|:

d2Pfi
dΩ dt

=
ω0

4π
|x|2|Afi|2. (14)

We obtained this expression proceeding on the assumptions that the vector potential
is a quasimonochromatic wave observed at a distance |x| much larger than the typical
wavelength and much larger than the typical spatial extension of the source of the
field. The indices i, f refer to initial and final states of the scattering system. There
is also a dependence on the properties of the incident radiation. Averaging over such
properties will become necessary to accommodate practical situations.

The calculation of the scattering matrix from eq. (9) must consider all electro-
magnetic charges and currents of the scatterer, but we may introduce some reasonable
assumptions to achieve a simplification of the problem. Most of the charges are orga-
nized in larger units, nuclei with core electrons, which are well localized. In addition,
we find a small number of itinerant electrons. Accordingly we write the current op-
erator ĝµ as a sum of the localized electronic currents ŝµ, the intrinsic currents of the
nuclei, ĵµ, and a contribution from the itinerant electrons:

ĝµ(x) = ŝ′µ(x) +
∑
p

(
ŝ(p)
µ

(
up + r̂p

)
+ ĵ(p)

µ

(
up + r̂p

))
. (15)

The operators r̂p describe the motion of the center of mass of each atom, and we
assume these motions to be nonrelativistic. The vectors up assume the meaning of
relative coordinates. The sum runs over all atoms in the scatterer. The initial and
final states of the scattering process are eigenstates of the noninteracting system, and
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it will be useful to discuss the eigenstates of the scattering system in more detail. The
Hamiltonian of the scatterer may be approximated by the expression

ĤS =
∑
p

Ĥ (p)
N + ĤL + ĤE + V̂ , (16)

where the ĤN give the intrinsic properties of ion cores, ĤL contains kinetic and po-
tential energies of the center of mass of the ion cores, and ĤE describes degrees of
freedom of the itinerant electrons. The contribution V̂ represents interactions between
vibrations of the ion cores and the electrons. Time-dependent hyperfine interactions,
i.e., an interaction term between intrinsic nuclear variables and electrons, were ne-
glected. The system’s eigenstates are then constructed from intrinsic eigenstates of the
ion cores |φ〉, eigenstates of the vibrating ion cores coupled to the electrons, |χ〉, and
eigenstates of the photon field:

|Ψ〉 = |γ〉|χ〉
∏
p

∣∣φ(p)〉. (17)

The probabilities for a scattering channel |Ψi〉 → |Ψf 〉 are obtained from the S-matrix
elements in eq. (5). The solution of the original problem stated in eq. (2) is equivalent
to the expansion of the S-matrix elements in powers of the interaction Hamiltonian.
The lowest order relevant to NRS is quadratic [23]. For the classification of the
dominant scattering channels, we investigate the current–current matrix element(

ĝµĝν
)
fi

= 〈χf |
∏
l

〈
φ(l)
f

∣∣(ŝ′µ +
∑
p

(
ŝ(p)
µ + ĵ(p)

µ

))
×
(
ŝ′ν +

∑
p

(
ŝ(p)
ν + ĵ(p)

ν

))
|χi〉

∏
l

∣∣φ(l)
i

〉
. (18)

The contributions with only electronic currents are not relevant at this point. The
terms containing nuclear and electronic currents were interpreted as “screening effects”
and shown to be negligible in most cases [23,26]. Finally, in the purely nuclear
contribution, “mirror terms” that contain current operators of two different nuclei can
be neglected [23], and the dominant contribution to NRS remains∏

ll′

〈χf |
〈
φ(l)
f

∣∣∑
p

ĵ(p)
µ ĵ(p)

ν

∣∣φ(l′)
i

〉
|χi〉

=
∑
p

〈χf |
〈
φ(p)
f

∣∣ĵ(p)
µ ĵ(p)

ν

∣∣φ(p)
i

〉
|χi〉

∏
l 6=p

〈
φ(l)
f

∣∣φ(l)
i

〉
. (19)

With the help of this matrix element, NRS processes can be classified. Figure 1 contains
the classification scheme to which we will adhere. In coherent scattering processes,
the final states of all ion cores are identical to their initial states. Initial and final
states of the vibrations and delocalized electrons define whether the process is elastic
or inelastic. In either case, the scattering amplitudes from the individual ion cores
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Figure 1. Classification scheme for NRS processes. The classification is based on initial and final
quantum states of the scatterer. Incoherent scattering implies energy transfer to the photon field unless

degenerate core states exist.

have to be added. The scattering process is called incoherent if at least one core state
changes. Incoherent scattering therefore implies energy transfer unless degenerate core
states exist, e.g., nonsplit nuclear ground states. In this case, the scattered intensities
from the individual ion cores have to be added. The matrix elements follow from
eq. (19):

coherent:
∑

p〈χf |
〈
φ(p)
i

∣∣ĵ(p)
µ ĵ(p)

ν

∣∣φ(p)
i

〉
|χi〉,

incoherent: 〈χf |
〈
φ(p)
f

∣∣ĵ(p)
µ ĵ(p)

ν

∣∣φ(p)
i

〉
|χi〉.

(20)

In the first line, the sum over all atoms may lead to a coherent enhancement under
particular scattering conditions. We note that the same classification is applicable to
X-ray scattering by core electrons. Although we explained the classification scheme
using the second-order S-matrix element, the arguments are easily extendible for higher
order terms.

3. Incoherent NRS

In the previous section, incoherent NRS processes were defined in basic terms.
There are many possible incoherent scattering channels that can be observed experi-
mentally. The following scenarios were investigated:

(a) Nuclear resonant fluorescence.
The incident photon is absorbed and reemitted by the nuclear current. The resonant
contribution of this process is displayed in figure 2(a). The vertices are constructed
with nuclear currents according to eq. (15), i.e., lattice vibrations are included.
The initial and final states of the nucleus must be different to produce incoherent
scattering. This scattering channel was utilized to obtain the phonon density of
states [27,28]. In macroscopic scatterers, multiple scattering channels involving
coherent elastic processes may complicate the situation [19,29].
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Figure 2. Incoherent NRS processes for the study of lattice vibrations. Nuclear resonant fluorescence (a),
nonresonant nuclear fluorescence (a’), conversion electron emission (b), and atomic fluorescence following
nuclear absorption (c) are depicted. The wavy lines symbolize X-ray photons, and the solid lines represent
nuclear states. In panel (c), the right-hand side solid line stands for the electronic state of an atom, and
the emission of the conversion electron is not explicitly shown. The contribution from diagram (a’) is
negligible. Only the vertices that connect to incoming and outgoing particles have to be calculated with

the inclusion of atomic vibrations.

(b) Conversion electron emission.
After absorption of the incident photon by the nuclear current, a virtual photon
transfers the excitation energy to the electron shell. An electron is emitted, and
the hole remains bound in the ion core. The situation is illustrated in figure 2(b).
Two of the three vertices are constructed including atomic motion. If the energy of
the incident photon is close to the nuclear resonance, the interplay with coherent
elastic NRS becomes important [20,30]. Investigations of lattice vibrations were
also performed [31].

(c) Atomic fluorescence following nuclear absorption.
After a conversion electron has been emitted, the remaining ion core will de-excite
rapidly. A large fraction of these de-excitations result in emission of fluorescence
radiation. The scattering diagram is shown in figure 2(c). This scattering channel
was used in various experiments aimed at the study of lattice vibrations [14–16].

All of the processes listed above are suitable for probing lattice vibrations. In
this paper, we focus on processes (a) and (c) motivated by their feasibility in exper-
iments. The calculation of the emitted photon fields from a single atom permits the
derivation of time- and angle-dependent intensities. Effects due to multiple scattering
in a macroscopic scatterer containing many atoms will be discussed later.

3.1. Nuclear resonant fluorescence

The evaluation of the scattering matrix defined by eq. (9) has been discussed
extensively in the past. The perturbation expansion of the operator Ŝ defined by eq. (5)
in combination with time ordering produces a multitude of individual terms. From a
physical standpoint this is plausible because the eigenstates of the charge distribution
are not simply given by the eigenstates of the noninteracting system. They rather
develop slowly from the distant past when the interaction is “switched on” according
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to eq. (2). One starts with the general expression given by eq. (9) and assumes that
the spectrum of the incident field in eq. (12) is close to a narrow nuclear resonance.
Those terms of the scattering matrix that contribute to the scattered field are then
well described by the “ladder approximation”. A derivation of the scattered vector
potential for this case has been given earlier by Hannon and Trammell [23]. The
scattering matrix takes the form

Mfi

(
x,x′

)
= −i lim

t0→∞
〈χf |〈φf |Ĝ′(t0 − t)̂j(x)Ĝ′

(
t− t′

)̂
j
(
x′
)
Ĝ′
(
t′− t0

)
|φi〉|χi〉, (21)

where the operator Ĝ′ only propagates into the future, i.e., Ĝ′(t − t′) = 0 for t < t′.
The construction of Ĝ′ involves virtual photon exchange between currents within
the atom, and the period of time that elapses between emission and absorption of
a virtual photon is determined by the size of the atom. Therefore, one can ne-
glect atomic vibrations during virtual photon exchange. It is then possible to write
Ĝ′(t) = ÛL(t)Ĝ(t) = Ĝ(t)ÛL(t), where the time development operator of the lattice,
ÛL(t) = exp(−i(ĤL + ĤE + V̂ )t), is obtained from eqs. (2) and (16). Ĝ is discussed
in detail in appendix A and does not operate on the lattice states |χ〉. Nuclear intrin-
sic properties and the effect of atomic vibrations are now conveniently separated by
introducing the space Fourier transform3 Ĵ(k) of the transverse current operator ĵ(x)
in the center of mass system, i.e., Ĵ does not operate on the lattice states. We use the
operator r̂ to describe the motion of the center of mass of the atom and write

ĵ(x) =

∫
e−ik·r̂eik·x Ĵ(k)

d3k

(2π)3 . (22)

This expression is now inserted into eq. (21) and matrix elements of nuclear states and
lattice states factorize. We denote M(cms)

fi as the scattering matrix in the center of mass
system and write

Mfi

(
x,x′

)
=

∫
〈χf |δ3(y− r̂(t)

)
δ3(y′ − r̂

(
t′
))
|χi〉

×M(cms)
fi

(
x− y, t; x′ − y′, t′

)
d3y d3y′. (23)

For r̂ = 0, one recovers the scattering matrix in the center of mass system, which we
calculate in appendix A. The result is given by eq. (A.12), which we repeat in a more
simple form:

M(cms)
fi

(
x,x′

)
=−iΘ

(
t− t′

)
e−iω′fite−(iωN+(Γ/2))(t−t′)

× 〈φf | ĵ(x)Ûhf
(
t− t′

)̂
j
(
x′
)
Û †hf

(
t− t′

)
|φi〉. (24)

The energy transfer to the nucleus is ω′fi and Θ is the step function. ωN and Γ are the
transition energy and line width associated with a group of degenerate excited states.

3 We define the Fourier transform of a function in space f (x) by f̃ (k) =
∫
f (x) exp(−ik · x) d3x. The

inverse relationship is then f (x) =
∫
f̃ (k) exp(ik · x) d3k/(2π)3.
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The time development operator Ûhf(t) = exp(−iĤhft) exists due to static hyperfine
interactions given by the Hamiltonian Ĥhf . In this short form, we also assume that the
nuclear current operators only facilitate transitions between any one of the (almost)
degenerate ground states and excited states. A form of the scattering matrix that is
useful for further calculations is now obtained by using space Fourier transforms of
lattice and nuclear contributions:

Mfi

(
x,x′

)
=−iΘ

(
t− t′

)
eiωfite−(iωN+(Γ/2))(t−t′)

×
∫
Lfi
(
k, k′, t− t′

)
Nfi

(
k, k′, t− t′

)
ei(k·x+k′·x′) d3k d3k′

(2π)6 . (25)

Now ωfi is the total energy difference, i.e., including lattice and nucleus, between final
and initial states. The influence of vibrations is entirely contained in

Lfi
(
k, k′, t

)
= 〈χf |e−ik·r̂ÛL(t)e−ik′·r̂Û †L(t)|χi〉. (26)

The spectrum of L consists of all possible vibrational lattice excitations and has a
typical energy spread of less than ±1 eV. The matrix elements of the nuclear currents
are

Nfi

(
k, k′, t

)
= 〈φf | Ĵ(k)Ûhf(t)Ĵ

(
k′
)
Û †hf(t)|φi〉. (27)

Using this expression, we must remember that only sublevels associated with a par-
ticular nuclear transition can be considered. The spectrum of N is determined by the
nuclear level splitting caused by hyperfine interactions. Without hyperfine interactions,
N is independent of time.

If the vector potential of the incident radiation, A0, is given, the scattered vector
potential follows from eqs. (12) and (25). Therefore, we need reasonable assumptions
about the vector potential of the incident radiation. A case of particular interest occurs
for monochromatized synchrotron radiation (SR). The X-rays emitted by the present
SR sources can be understood as an incoherent superposition of one-photon fields.
This does not change by monochromatization, and the individual one-photon fields
henceforth will be called “SR components”. It is then safe to apply our formalism to
each SR component and perform an incoherent average over their individual properties,
i.e., when calculating intensities. For each SR component, the coherence length for
all directions in space is much larger than the size of the nucleus. This is caused by a
large distance between nucleus and SR source, as well as by the monochromatization
process. The incident field may then be represented by a plane quasimonochromatic
wave with wave vector k0, average energy ω0 = |k0|, and a time-dependent amplitude,
i.e., A0(x) = pa(t) exp(ik0 · x − iω0t). The unit vector p gives the time-independent
polarization of the SR component. The function a(t) describes the pulse structure of
the SR component, as well as its energy spectrum including the modification by a
monochromator. We assume that a(t) = 0 outside the time interval [t0, t0 + δt], i.e.,
the SR component arrives at time t0 at the nucleus and has a duration δt. The duration
shall be much smaller than the nuclear lifetime and the inverse of the typical nuclear
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level splitting. The set {k0, p, a(t)} presents a unique description of the SR component.
If eq. (14) is used, one obtains the expression ω0|a|2/(4π) for the probability per unit
time and area to observe the photon from a particular SR component at the location of
the nucleus. The scattered vector potential is calculated from eq. (12) by integrating
the poles of δ+ and using the Fourier-transformed scattering matrix. At sufficiently
large distances from the nucleus at x = 0 one obtains

Afi(x) =−i
e−i(ω0−ωfi)tr

|x|

∫ ∞
0

e−(Γ/2)t′ei(ω0−ωN )t′Lfi
(
−kS , k0, t′

)
×Nfi

(
−kS , k0, t′

)
pa
(
tr − t′

)
dt′, (28)

where the retarded time tr = t− |x| and the wave vector kS = (ω0 − ωfi) x/|x| were
introduced. Clearly eq. (28) describes a spherical wave with time-dependent amplitude
emanating from the nucleus. Taking into account the time properties of a(t) given by
the pulse structure of the SR component, one sees that, in fact, the integration in
eq. (28) is carried out from t′ = tr − t0 to t′ = tr − t0 + δt. In this interval we may
neglect the time dependence of the function N(t) exp(−Γt/2) and write

Afi(x) =−iΘ(tr − t0)
e−i(ω0−ωfi)tr

|x| e−(Γ/2)(tr−t0)Nfi(−kS , k0, tr − t0)p

×
∫
Lfi
(
−kS , k0, t′

)
ei(ω0−ωN )t′a

(
tr − t′

)
dt. (29)

The scattered vector potential following from this expression is inserted into eq. (14) to
provide the probability per time and solid angle to observe the scattered photon. Also
the quantum state of the scatterer changes from |χi〉|φi〉 to |χf 〉|φf 〉. As pointed out
earlier, initial and final states of the nucleus must differ, i.e., |φf 〉 6= |φi〉. In scattering
experiments, the initial and final states of the scatterer are usually not known. We
accommodate this situation by an average over initial states and a restricted sum over
final states:

d2P

dΩ dt
=

〈∑
f

d2Pfi
dΩ dt

〉
=
ω0

4π
|x|2
〈∑

f

|Afi|2
〉
. (30)

The angular brackets symbolize averaging over initial states. After inserting the scat-
tered potential from eq. (29), a clearly arranged expression is obtained:

d2P

dΩ dt
=
π

2
σΓ

1 + α
Θ(t)Γe−ΓtN (kS , k0, t)

× ω0

2(2π)2

∫
L̃(k0,ω + ω0 − ωN )

∣∣ã(ω)
∣∣2 dω

2π
. (31)

For clarity (tr − t0) was replaced with t; σ and α are the nuclear resonant cross-section
and the internal conversion coefficient, respectively. The function ã is the time Fourier
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transform4 of the pulse structure of the SR component. The time-dependent angular
correlation function is defined by

N (kS , k0, t) =
4(1 + α)
σΓ2

〈∑
f 6=i
|Nfi(−kS , k0, t)p|2

〉
. (32)

The factor is chosen to normalize N with respect to integration over all directions of
the emitted photon if the restriction f 6= i is abandoned. This is permissible for the
special case of a single nucleus. Nuclear resonant fluorescence from an ensemble of
nuclei always gives

∫
N dΩ < 1. The calculation is presented in appendix B. L̃ is the

Fourier image of the vibrational self-intermediate scattering function of the nucleus,
which is given by

L(k0, t) =

〈∑
f

Lfi∗
(
−kS , k0, t+ t′

)
Lfi
(
−kS , k0, t′

)〉
=
〈
eik0·r̂(t)e−ik0·r̂(0)〉. (33)

In this case, the sum over final states |χf 〉 is unrestricted, and closure in combination
with the unitarity of the operator exp(ikS · r̂) permits significant simplification. We
note that the vibrational self-intermediate scattering function is independent of the
wave vector kS of the scattered photon and thus independent of the momentum transfer
kS−k0 to the scatterer. The self-intermediate scattering function is normalized to unity
at t = 0, i.e., L(k, 0) = 1 and therefore

∫
L̃(k,ω) dω = 2π. Equation (31) describes

the scattering of an individual SR component. The full description is obtained after
averaging this equation over all SR components, i.e., over all relevant sets {k0, p, a(t)}.
For a SR pulse, the fluctuation in the arrival times t0 and polarizations p can be
neglected. Thus, only the integral in eq. (31) has to be averaged, and we obtain the
result

d2P

dΩ dt
=
π

2
σΓ

1 + α
Θ(t)Γe−ΓtN (kS , k0, t)

∫
L̃(k0,ω − ωN )I(ω)

dω
2π

, (34)

where I(ω) gives the average probability per unit energy and area to find a photon
with energy ω incident on the nucleus. We write explicitly

I(ω) =
ω0

2(2π)2

∣∣ã(ω + ω0)
∣∣2. (35)

The shape of I(ω) can be identified with the resolution function of the monochromator.
Equation (34) quantifies the relationship between nuclear resonant fluorescence

and the spectrum of atomic vibrations. It describes an exponential decay with the life-
time of the excited nuclear state τ = 1/Γ that is modulated by oscillations originating
in the hyperfine splitting of the nuclear states. The integral in eq. (34) essentially

4 We define the Fourier transform of a function in time f (t) by f̃ (ω) =
∫
f (t) exp(iωt) dt. The inverse

relationship is then f (t) =
∫
f̃ (ω) exp(−iωt) dω/(2π).
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convolutes the monochromator resolution function with the spectrum of vibrational
excitations. It directly follows from eq. (34) that L̃ and thus the vibrational self-
intermediate scattering function can in principle be determined from nuclear resonant
fluorescence independent of time of observation and direction of emission of the fluo-
rescence photon. We are therefore provided with a recipe for experiments. The energy
of sufficiently monochromatized pulsed synchrotron radiation is tuned with respect
to the nuclear transition energy. The intensity of the incoherently scattered radiation
from a sample that occurs with time delay is measured. To accommodate this situation,
eq. (34) is integrated over a certain time interval [t1, t2] and several directions of the
emitted radiation. We also introduce the centered and normalized resolution function
of the monochromator R(ω) = I(ω − ω)/I0 with center energy ω =

∫
ωI(ω) dω/I0

and normalization constant I0 =
∫
I(ω) dω. This results in

Pexp(∆ω, t1, t2) = I0
π

2
σΓ

1 + α
W (k0, t1, t2)

∫
L̃(k0,ω + ∆ω)R(ω)

dω
2π

, (36)

where ∆ω = ω − ωN is the energy transfer to the lattice and I0 is the probability per
unit area for photons to be incident on the nucleus. The weight W depends on the
particular integration intervals and the direction of the incident photon. We can derive
W from eqs. (32) and (34):

W (k0, t1, t2) = Γ
∫ t2

t1

dt
∫

ΩS
dΩ e−ΓtN (kS , k0, t). (37)

The calculations in appendix B show that we always have W < 1 unless the integra-
tions are complete and the restriction f 6= i is abandoned, i.e., we consider a single
nucleus. In the latter case, one obtains W = 1, giving the maximum number of pho-
tons that can be emitted by an individual nucleus via the scattering channel discussed
in this section.

3.2. Atomic fluorescence following nuclear absorption

The mechanism for the calculation of the intensity of atomic fluorescence ra-
diation is virtually identical to that in the previous section. The scattering matrix
according to the diagram in figure 2(c) is calculated in appendix C. It appears in
completely analogous form to eq. (25) with the matrix N replaced by

N′fi
(
k, k′, t) = 〈φf |Ŝ(k)B̂Ûhf(t)Ĵ

(
k′
)
Û †hf(t)|φi〉, (38)

where Ŝ(k) is the spatial Fourier transform of the transverse electronic current ŝ(x, t)
at t = 0. Whereas in eq. (25) a transverse nuclear current is the source of the
emitted photon, now the transverse electronic current Ŝ(k)B̂ serves as the source
for the fluorescence photon. Although the formal similarity of eqs. (38) and (25) is
obvious, we have to remember that the properties of the emitted fluorescence photon
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will depend on nuclear as well as electronic properties, i.e., the states |φ〉 characterize
the whole ion core. The operator B̂ is calculated in appendix C and is given by

B̂=

∫
Θ
(
t′
)
e−(∆̂−iωN ) t′ÛN

(
t′
)
ŝµ(y)Û †N

(
t′
)
ĵµ
(
y′
)

× cosωN |y− y′|
|y− y′| d3y d3y′ dt′. (39)

The time development operator ÛN (t) = exp(−iĤN t) is given by the Hamiltonian ĤN

that according to eq. (16) describes the ion core. The term depending on the spatial
distance of the two vertices at y and y′ represents a standing spherical wave with
wavelength 2π/ωN . It arises from the exchange of virtual photons (horizontal wavy
line in figure 2(c)) with energy ωN . The level shift operator ∆̂ produces the energy
width of the excited electronic state (atom with a core hole), which is symbolized in
figure 2(c) by the right double line. The calculation of the scattered photon field, now
representing fluorescence radiation, proceeds analogously to the previous section. The
number of emitted fluorescence photons per time and solid angle is

d2P

dΩ dt
=
π

2
αησΓ
1 + α

Θ(t)Γe−ΓtN ′(kS , k0, t)
∫
L̃(k0,ω − ωN )I(ω)

dω
2π

, (40)

where the time-dependent angular correlation is now derived from eq. (38) and calcu-
lated as

N ′(kS , k0, t) =
4(1 + α)k0

αησΓ2kS

〈∑
f

∣∣N′fi(−kS , k0, t)p
∣∣2〉. (41)

Contrary to our calculation of nuclear resonant fluorescence, we no longer have to
maintain the restriction |φf 〉 6= |φi〉 in the sum over final states, because, in fact, the
scattering matrix elements vanish for |φf 〉 = |φi〉. The factor is chosen to maintain
the normalization

∫
N ′ dΩ = 1. η < 1 is known as the fluorescence yield. As before,

we integrate eq. (40) over a certain time interval and several directions of the emitted
radiation, resulting in

Pexp(∆ω, t1, t2) = I0
π

2
αησΓ
1 + α

W ′(k0, t1, t2)
∫
L̃(k0,ω + ∆ω)R(ω)

dω
2π
. (42)

The weight W ′ is expressed in analogy to eq. (37) as

W ′(k0, t1, t2) = Γ
∫ t2

t1

dt
∫

ΩS
dΩ e−ΓtN ′(kS , k0, t). (43)

If the integration over directions of the emitted radiation is complete, the normalization
condition for N ′ leads to W ′ = (exp(−Γt1) − exp(−Γt2)) < 1, which is independent
of k0. If the time integration is also complete, one obtains W ′ = 1, giving the
maximum number of photons that can be emitted by an individual nucleus via atomic
fluorescence, the scattering channel discussed in this section.
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The final results that were obtained for the two discussed channels of incoherent
nuclear resonant scattering are very similar. Both eqs. (36) and (42) show the same
dependence on the spectrum of atomic vibrations. The two incoherent scattering chan-
nels are equivalent in this respect. In experimental applications, the second method is
often preferred, mostly for practical reasons [14].

4. Macroscopic samples

In the previous section, incoherent scattering contributions from individual nu-
clei within an ensemble were calculated. Measurements usually require a large num-
ber of atoms. A coarse estimate for the number of nuclei required to produce a
reasonable NRS signal is, e.g., obtained from the completely integrated version of
eq. (42) assuming broad-band incident radiation. The number of scattered photons
from n nuclei is then P = nπσηΓI0/(2(1 + α)). Today’s X-ray sources provide
I0 ≈ 1012 Hz/(eV mm2) onto the sample. With the parameters of the 14.4 keV tran-
sition of 57Fe, we find P ≈ 5n · 10−13 Hz, which implies values n > 1015. The
need for macroscopic samples requires a study of other X-ray scattering channels in
condensed matter and, in particular, any interplay with coherent NRS. Following the
classification scheme of figure 1, one can identify six important X-ray scattering chan-
nels, coherent elastic nuclear resonant scattering (CENRS), coherent inelastic nuclear
resonant scattering (CINRS), incoherent nuclear resonant scattering (INRS), coherent
elastic electronic scattering (CEES), coherent inelastic electronic scattering (CIES),
and incoherent electronic scattering (IES).5

In figure 3, several relevant situations are displayed. Each hexagon in the figure
symbolizes a compact tree level schematic in the following sense. One chooses a
cornerpoint as the origin of the tree level diagram. The remaining five cornerpoints
correspond to five branches leading to the next level. The selection of the branch is
indicated by an arrow, thereby defining a new cornerpoint, and the whole procedure
is repeated. Panel (a) shows dominant channels if the incident radiation can excite the
nuclear resonance directly. The interplay of coherent and incoherent channels has been
investigated by Baron et al. [19] and Sturhahn et al. [20]. In investigations of lattice
vibrations, a reduction of the incoherently scattered intensity in the “elastic peak” was
reported by Sturhahn et al. [12]. If the incident radiation is tuned off resonance, INRS
remains as the dominant scattering channel. Less important terms are symbolized by
panel (b). Calculations indicate that CINRS contributions should always be small [32].
This result follows from a combination of two effects. First, in a thermalized ensemble
the lifetime of the vibrational states is short compared to the nuclear lifetime. This
argument was used earlier by Chumakov et al. [13] to explain the smallness of CINRS.
However, this is not sufficient, as the following argument shows [33]. The relevant

5 Scattering channels related to the electronic–nuclear interference terms were neglected.
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Figure 3. Schematic of X-ray scattering processes in macroscopic samples. As shown in the lower right,
the cornerpoints of each hexagon symbolize X-ray scattering channels, coherent elastic nuclear resonant
scattering (CENRS), coherent inelastic nuclear resonant scattering (CINRS), incoherent nuclear resonant
scattering (INRS), coherent elastic electronic scattering (CEES), coherent inelastic electronic scattering
(CIES), and incoherent electronic scattering (IES.) Arrows between cornerpoints stand for a combination
of scattering channels, e.g., in panel (a) the upper left hexagon depicts coherent elastic nuclear resonant
scattering followed by electronic absorption or Compton scattering. The hexagon can be understood as a
compactification of a tree level schematic, where branches are now arrows between cornerpoints. Each
panel shows a class of scattering processes involving NRS: direct excitation of the nuclear resonance in
panel (a), less important terms in off-resonance excitation of the nuclear resonance in panel (b), leading
contamination of INRS by inelastic scattering from electrons in panel (c); examples of negligible higher

order terms are shown in panel (d).

matrix elements for CINRS are proportional to〈∑
f

L(j)
fi

∗(
k, k′, t

)
L(j′)
fi

(
k, k′, t′

)〉
, (44)

where j, j′ indicate nuclei of the ensemble and L is taken from eq. (26). A closer look
shows that the lifetime argument does not apply to all terms in the sum and, with the
assumption that the ensemble is excited off resonance, the following terms remain:∑

fi

wi〈χi|e−ik′·r̂j (−t)|χf 〉〈χf |eik·r̂j |χf 〉〈χf |e−ik·r̂j′ |χf 〉〈χf |eik′·r̂j′ (−t′)|χi〉. (45)

This contribution to CINRS originates from the creation of a phonon during absorption
of the incident photon whereas during re-emission the lattice state remains unchanged.
The term is not negligible but of the order L times the Lamb–Mössbauer factor. The
second effect that eventually causes CINRS to be small originates in the energy of
the emitted photon. Because the lattice state does not change during re-emission, the
energy of the scattered photon exactly matches the nuclear transition energy. This leads
to strong absorption of the narrow-bandwidth scattered radiation by CENRS, and only
a small fraction of the ensemble may actually contribute to a measurable intensity.

Chumakov et al. [29] observed that nuclear resonant fluorescence followed by
CENRS leads to radiation trapping inside the sample, and the decay time of the emitted
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radiation is enlarged. The resulting additional factor in eq. (36) is independent of
the energy transfer to the lattice vibrations. The terms that are shown in panel (c)
involve CIES, which can complicate the dependence on lattice properties. One can
show, however, that these contributions do not exceed 10−3 of the dominant INRS
channel [34]. Finally, a few of the many possibilities of higher order multiple scattering
terms are indicated in panel (d). Their magnitude is negligible.

The smallness of the contributions in figure 3(c) precludes any effects from vibra-
tions of nonresonant nuclei on the time dependence or yield of INRS. Because CINRS
is weak, we conclude that the self-intermediate scattering function of the nuclear mo-
tion, defined by eq. (33), describes the relationship between NRS and lattice vibrations
in macroscopic samples. It is a unique feature of INRS to provide local vibrational
properties.

5. Lattice dynamics and NRS

Incoherent NRS is connected with the local lattice dynamics via the self-
intermediate scattering function defined in eq. (33). The dynamics of the displacement
operator is determined by the Hamiltonian Ĥ = ĤL + ĤE + V̂ , where the Hamilto-
nians on the right are those from eq. (16). For a lattice in thermal equilibrium, the
self-intermediate scattering function takes the form

Lj(k, t) =
Trace{e−βĤeik·r̂j (t)e−ik·r̂j (0)}

Trace{e−βĤ}
, (46)

where β is the inverse temperature, and the local character of the self-intermediate
scattering function is expressed by the index j. The trace is taken with respect to a
complete set of quantum numbers describing the eigenstates of the Hamiltonian Ĥ .
Using cyclic permutations of the trace operation and parity conservation by the Hamil-
tonian, which is constructed from electromagnetic interactions, an important symmetry
property of L(k, t) and its Fourier transform is derived:

L(k, t) = L(k,−t− iβ), L̃(k,ω) = eβωL̃(k,−ω). (47)

The spectrum of the self-intermediate scattering function L̃ exhibits a detailed bal-
ance. The time derivatives of L are related to the moments of L̃ by virtue of the
Fourier transformation. The lowest order moments can be calculated under quite gen-
eral circumstances and form Lipkin’s sum rules [35,36]. Obviously the moments con-
vey information about the short-term dynamics of the vibrations. Assume one knows a
complete set of eigenstates given by {|χn〉} with energies εn. Equation (46) can then
be expressed as a superposition of simple exponentials:

L(k, t) =
∑
ni

pi
∣∣〈χn|e−ik·r̂|χi〉

∣∣2eiεnit, (48)
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where pi = exp(−βεi)/Z with Z =
∑

i exp(−βεi) is the normalized Boltzmann
factor. Exact “a priori” eigenstates and excitation energies of many-body systems
are not known, and one has to adopt models that can be solved. In many cases,
it will be possible to split the Hamiltonian into several, commuting contributions,
i.e., Ĥ =

∑
j Ĥj and [Ĥj , Ĥj′] = 0. Any of the terms that commutes with r̂ does

not contribute to the dynamics of the atomic position and need not be considered
in the calculation of the self-intermediate scattering function. In our derivation, we
considered vibrations but excluded rotational excitations. Two examples that can be
treated under these circumstances are the ideal gas and the harmonic lattice. Both
cases will be discussed in more detail below.

5.1. The ideal gas

The ideal gas is an ensemble of noninteracting atoms. This case was discussed
earlier; Van Hove [22] calculated the self-correlation function, Singwi and Sjölander [5]
studied the self-intermediate scattering function. The nonrelativistic Hamiltonian of an
ideal monoatomic gas, i.e., without rotational degrees of freedom, is the sum of the
kinetic energies of the individual atoms:

Ĥ =
∑
j

p̂2
j

2mj
. (49)

It is clear that the self-intermediate scattering function can be calculated with one term
in the sum only, and we omit the index j. Using a = −β/(2m) and b = −it/(2m),
we obtain

L(k, t) =
Trace{e(a−b)p̂2

eik·r̂(0)ebp̂
2
e−ik·r̂(0)}

Trace{eap̂2}
. (50)

The usual commutation rules for momentum and position operators permit us to cal-
culate the commutator of the exponentials in the previous expression, e.g.,

ebp̂
2
e−ik·r̂ = e−ik·r̂ eb(p̂−k)2

. (51)

After some manipulation we obtain the result

L(k, t) = exp

(
−iωRt−

ωR

β
t2
)

, (52)

where ωR = k2/(2m) is the recoil energy. The Fourier transform is also easily calcu-
lated:

L̃(k,ω) =

√
πβ

ωR
exp

(
− β

4ωR
(ω − ωR)2

)
. (53)

As expected, we obtain a Gaussian centered around the recoil energy with a width
proportional to the square root of temperature and recoil energy.
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5.2. The harmonic lattice

The dynamic behavior of atoms bound in a solid is, for small vibrational ampli-
tudes, well described by the harmonic lattice model. Background and physical rele-
vance of this model are discussed in several textbooks, e.g., Ashcroft and Mermin [37].
Recently Kohn et al. [38] analyzed nuclear resonant absorption in anisotropic single
crystals using the harmonic lattice model. The harmonic lattice is also frequently used
to model materials with randomly arranged atoms [39,40]. Here we do not require
translational symmetries of the lattice, and our treatment is suitable for crystals as well
as disordered or amorphous materials. The Hamiltonian for the harmonic lattice is

Ĥ =
∑
j

p̂2
j

2mj
+

1
2

∑
jj′

ûjDjj′ ûj′, (54)

where p̂j are the momenta of the atoms, mj are the masses of the atoms, ûj are the
displacements of the atoms with respect to their average positions. The force constant
matrix Djj′ is real, symmetric, and independent of time. If no forces act on the center
of mass of the solid, we have

∑
j Djj′ = 0, which means Djj′ is singular, i.e., at least

one eigenvalue is zero. This poses a slight problem because it leads to the occurrence
of zero-energy excitations. This can be avoided by reformulating the Hamiltonian in
the center of mass system of the solid. We define P̂ =

∑
j p̂j and R̂ =

∑
jmj ûj/M

with M =
∑

jmj � mj as the dynamic variables of the center of mass and remove
a pair of atomic variables from the sums in eq. (54). One also introduces particle
creation and annihilation operators âl, â

†
l (see, e.g., [41]). In cases with translational

symmetries of the lattice, e.g., single crystals, these particles are delocalized and they
are called phonons. From the calculations in appendix D we carry over

Ĥ =
P̂2

2M
+
∑
l

ωl

(
â†l âl +

1
2

)
. (55)

The sum runs over all translational degrees of freedom and ωl > 0 are the particle
energies.6 The self-intermediate scattering function is now calculated as a product of
the contributions of each particle mode and a factor for the center of mass motion:

Lj(k, t) = Lcms(k, t)
∏
l

Ljl(k, t). (56)

The first factor is formally identical to eq. (52), but the recoil energy has to be calculated
with the total mass of the solid.7 The factors from the particle modes are calculated

6 To avoid confusion we will use indices l, l′ to enumerate degrees of freedom or particle modes and
indices j, j′ to enumerate atoms of the ensemble.

7 The condition for “recoilless” NRS or Mössbauer absorption ωR < Γ leads to a minimum allowed mass
for the solid. For the 14.4 keV transition of the Mössbauer isotope 57Fe, one obtains M > 2.4 · 107

atomic mass units.
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in appendix D. They are given by

Ljl(k, t) = exp
{
−|αjl|2

(
1− e−iωlt + nl

∣∣1− e−iωlt
∣∣2)}, αjl =

ik · X∗jl√
2mjωl

, (57)

where the occupation numbers in thermal equilibrium are nl = 1/(exp(βωl)− 1). For
large ensembles or sufficiently low temperatures, the number of excited particles per
atom is a very small number, i.e., |αjl|2nl � 1. After combining the contributions of
the individual particle modes, we obtain for the self-intermediate scattering function
of the harmonic lattice

Lj(k, t) =Lcms(k, t)

× exp

{
−
∫
ωR

ω
gj(s,ω)

(
(1 + nω)

(
1− e−iωt)+ nω

(
1− eiωt)) dω

}
, (58)

where ωR = k2/(2mj) is the recoil energy of the free atom and nω = 1/(exp(βω)−1).
The function gj has the character of a local particle density of states (DOS) that also
depends on the direction s of the photon incident on the resonant isotope. It is defined
by the symmetric quadratic form

gj(s,ω) = s
(∑

l

Xjl X
†
ljδ(ω − ωl)

)
s. (59)

This expression generalizes the results of Kohn et al. [38], which were obtained for
anisotropic single crystals, to an arbitrary system with harmonic interactions. Using
the unitarity of the eigenvector matrices, one can easily show that

∫
gj(s,ω) dω = 1.

In eq. (59), the expression in parentheses is a second rank tensor in ordinary space,
which can always be decomposed into a trace, an antisymmetric part, and a traceless
symmetric part [42]. Under rotations in space, the trace is invariant. The antisym-
metric part does not contribute to the quadratic form, and the traceless symmetric part
transforms like a second rank irreducible tensor. It is then quite useful to write

gj(s,ω) =
1
3
Dj(ω) +Aj(s,ω), Dj(ω) = Trace

{∑
l

Xjl X
†
ljδ(ω − ωl)

}
, (60)

where Dj is the local DOS and the anisotropic vibrational behavior is contained in Aj .
By definition,

∫
Dj(ω) dω = 3 and

∫
Aj(s,ω) dω = 0, as well as

∫
Aj(s,ω) d2s = 0.

The rotational symmetries of the system determine the general form of the anisotropic
part. For crystalline systems, the traceless symmetric tensor used to construct the
quadratic form Aj is isomorphic to the traceless part of the metric tensor [43]. Let the
angles θ, ϕ give the direction of the incident radiation in the main axes system of the
metric tensor. Then we may write

Aj(s,ω) = A(p)
j (ω)Y20(θ,ϕ) +A(a)

j (ω)R
{
Y22(θ,ϕ)

}
, (61)
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Table 1
Vibrational anisotropies in Bravais lattices. The polar and azimuthal anisotropies are defined
in eq. (61). Even if the crystal symmetry does not require anisotropies to vanish, they can

still be zero for other reasons.

Bravais lattice Polar anisotropy A(p)
j (ω) Azimuthal anisotropy A(a)

j (ω)

aP (triclinic) 6= 0 6= 0
mP, mC (monoclinic)
oP, oC, oI, oF (orthorhombic)

tP, tI (tetragonal) 6= 0 0
hR (trigonal)
hP (hexagonal)

cP, cI, cF (cubic) 0 0

where the polar and azimuthal anisotropy is determined by A(p)
j and A(a)

j , respec-
tively. YLM are spherical harmonic functions. In table 1, constraints on the vibrational
anisotropies are listed for the Bravais lattices. In general, the local DOS and the
anisotropy functions can be determined from data at three properly chosen angle pairs
(θ,ϕ). Systems with one (n > 3)-fold rotation axis show axial symmetry, e.g., crystals
with hexagonal unit cell, thin films, and multilayers. Two different angles θ are then
sufficient to determine local DOS and the anisotropy function. If several (n > 3)-fold
rotation axes exist, Aj vanishes.

We return now to eq. (58) and cast our result into a more familiar form. The nth
term of the series expansion of the exponential represents the n-particle contribution
to the self-intermediate scattering function. We obtain

Lj(k, t) = Lcms(k, t) Fj(k)
∞∑
n=0

(fj(k, t))n

n!
, (62)

where Fj(k) = exp(−fj(k, 0)) denotes the local and anisotropic Lamb–Mössbauer fac-
tor. The generating function for the n-particle contributions and its Fourier transform
are given by

fj(k, t) =

∫
ωR

ω
gj(s,ω)

(
(1 + nω) e−iωt + nωeiωt) dω,

(63)

f̃j(k,ω) = 2π
ωRgj(s|ω|)

ω(1− exp(−βω))
.

In the spectrum of Lj , the n-particle contribution emerges as the n-fold convolution
of the single-particle term f̃j with itself. These expressions are formally identical
with results of Singwi and Sjölander [5] for isotropic crystals and Kohn et al. [38]
for anisotropic crystals. The function gj(s,ω) is well defined by eqs. (59) and (60)
for the discussed model of a thermalized ensemble of harmonically coupled atoms.
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If we assume translational symmetry of the lattice one can show with the results of
appendix D that eq. (59) takes the form

gp(s,ω) =
1
N0

∑
mK

∣∣s · e(K)
pm

∣∣2δ(ω − ω(K)
m

)
. (64)

In this expression the index p enumerates atoms in the symmetry unit, the index m
enumerates phonon modes, and the index K is identified with the “quasimomentum”
of the phonon. A phonon of mode m and quasimomentum K has energy ω(K)

m and
polarization vector e(K)

pm at atom p in the symmetry unit.

6. Conclusion

In this paper, we studied incoherent NRS in the more general context of X-ray
scattering processes in matter. A modern approach of using perturbative solutions of
QED leads to a classification of X-ray scattering problems. In the weak field regime,
one can clearly distinguish incoherent, coherent elastic, and coherent inelastic scattering
processes. The connection between atomic vibrations and X-ray scattering emerges on
a basic level. A study of incoherent scattering channels involving NRS on single atoms
provided time- and angle-dependent scattering intensities. Also the influence of atomic
vibrations materialized in the form of a self-intermediate scattering function, which is
well known to comprise single-atom properties in many-atom systems. The study of
molecules in gases or liquids and other systems with rotational degrees of freedom
requires a more sophisticated approach that would go beyond the scope of this paper.
One would replace, e.g., ĵµ(x)→ R̂µν (t)ĵν (x), where the rotation matrix R̂µν depends
on the dynamical variables of the atomic motion. The lattice function L defined in
eq. (26), as well as the self-intermediate scattering function L defined by eq. (33), will
assume a tensor character, i.e., LNµν → LµνσλNσλ in eq. (25) and LN → Lµν Nµν

in eqs. (31), (40). The factorization of lattice and nuclear properties becomes diffi-
cult and the interpretation more complicated. The treatment of macroscopic samples
containing large numbers of atoms requires consideration of all important X-ray scat-
tering channels, which may cause a serious complication. However, incoherent NRS
dominates the resonant scattering channels even for large samples, unless incident
X-rays directly excite the nuclear resonance. This finding is so far supported by ex-
periments [11,12,14]. At present it seems quite clear that incoherent NRS provides
direct and local access to the self-intermediate scattering function. The extreme selec-
tivity to the nuclear resonant isotope is unique and unheard of in other X-ray scattering
techniques or in neutron scattering methods. Two examples, the ideal gas and the har-
monic lattice, were selected to demonstrate methods of calculating the self-intermediate
scattering function. The results from the harmonic lattice model extend previous treat-
ments of single crystals to disordered and amorphous systems. In isotropic systems,
the self-intermediate scattering function is completely constructed from the local vi-
brational DOS. Anisotropic systems require two additional energy-dependent functions
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for a complete description. The relationship between self-intermediate scattering func-
tion and vibrational DOS plus anisotropy terms is invertible, and the harmonic lattice
provides an attractive model for data evaluation.
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Appendix A

The evaluation of the scattering matrix defined by eq. (9) has been discussed
extensively in the past. The perturbation expansion of the operator Ŝ defined by eq. (5)
in combination with time ordering produces a multitude of individual terms. From a
physical standpoint this is plausible because the eigenstates of the charge distribution
are not simply given by the eigenstates of the non-interacting system. They rather
develop slowly from the distant past when the interaction is “switched on” according
to eq. (2). An excellent description of nuclear resonant scattering is obtained in the
“ladder approximation”. In the center of mass system of the atom, the scattering matrix
takes the form

Mfi

(
x,x′

)
= −i lim

t0→∞
〈φf | Ĝ(t0 − t) ĵ(x)Ĝ

(
t− t′

)̂
j
(
x′
)
Ĝ
(
t′ − t0

)
|φi〉. (A.1)

Ĝ assumes the role of a future directed time development operator of the eigenstates of
the interacting system. The structure of Ĝ is illustrated in figure 4, where the “blobs”
symbolize the interaction that perturbs the non-interacting time development operator.
Ĝ is also the solution of Dyson’s equation

Ĝ
(
t− t′

)
= Ĝ0

(
t− t′

)
+

∫
Ĝ0(t− τ )V̂

(
τ − τ ′

)
Ĝ0
(
τ ′ − t′

)
dτ dτ ′

+

∫
Ĝ0(t− τ )V̂

(
τ − τ ′

)
Ĝ0
(
τ ′ − τ ′′

)
V̂
(
τ ′ − τ ′′

)
× Ĝ0

(
τ ′′ − t′

)
dτ dτ ′ dτ ′′ + · · ·

= Ĝ0
(
t− t′

)
+

∫
Ĝ0(t− τ )V̂

(
τ − τ ′

)
Ĝ
(
τ ′ − t′

)
dτ dτ ′. (A.2)

The perturbation and thus the effects of the electromagnetic self-action are contained in
the operator V̂ . The future directed time development operator of the non-interacting
system is obtained from eqs. (2) and (16):

Ĝ0(t) = Θ(t)e−iĤN t = i lim
ε→+0

∫
e−iωt

ω − ĤN + iε

dω
2π
. (A.3)
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Figure 4. Graphical representation of eq. (A.2) showing the propagator of the interacting nucleus. The
thin lines stand for the propagator of the non-interacting nucleus given by eq. (A.3). The perturbation V̂

acting on the nucleus is illustrated by the blobs.

Introducing the Fourier image ∆̂ of the perturbation operator, eq. (A.2) is solved by

Ĝ(t) = i
∫

e−iωt

ω − ĤN − i∆̂(ω)

dω
2π
. (A.4)

This expression is just eq. (A.3) with the replacement ĤN → ĤN + i∆̂, where ∆̂ is
known as the level shift operator. A diagonal representation of the propagator Ĝ would
require one to find the eigenvalues and eigenstates of the operator ĤN + i∆̂. However,
the perturbations can be assumed small, and ∆̂ is almost diagonal in the eigenstates
of ĤN . The approximate matrix elements are then

〈φn|
(
ĤN + i∆̂

)
|φn′〉 =

(
ωn + εn − i

Γn
2

)
δnn′ , (A.5)

where ωn is the eigenvalue of ĤN corresponding to eigenstate |φn〉, εn = −I〈φn|
× ∆̂|φn〉 gives the shift of the energy level caused by the interaction with the photon
field, and Γn = −2R〈φn|∆̂|φn〉 describes the line broadening of the state |φn〉. With
these abbreviations, eq. (A.4) assumes the form

Ĝ(t) = i
∑
n

|φn〉
∫

e−iωt

ω − ωn − εn(ω) + i 1
2Γn(ω)

dω
2π
〈φn|. (A.6)

Further evaluation is complicated by the fact that level shift, as well as line width,
appears to be a function of energy. This functional dependence on energy, however,
is weak, and we may replace ω with ωn in the arguments. The integration is then
straightforward, and one obtains

Ĝ(t) = Θ(t)
∑
n

|φn〉e−(iωn+iεn+(Γn/2))t〈φn|, (A.7)

where εn and Γn > 0 are evaluated at ω = ωn. Before we complete our derivation of
the scattering matrix, we will briefly discuss the construction of the operator V̂ . Fig-
ure 5 displays a perturbation expansion of V̂ in terms of compact Feynman diagrams.
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Figure 5. Feynman diagrams representing the perturbation expansion of the level shift operator. Panel (a)
gives the radiative contribution, which is the only term with only two vertices. Diagrams (b) and (b’) are
of fourth order. Whereas panel (b), which involves electronic currents symbolized by the closed loop,
contributes the considerable internal conversion part to the nuclear level width, the higher order radiative

term in panel (b’) is negligible.

The lowest order contribution, which is shown in panel (a), is known as the radiative
term and can be expressed as

V̂ (t) = −i
∫
ĵµ(x)δ+

(
x− x′, t

)
Ĝ0(t)ĵµ

(
x′
)

d3x d3x′, (A.8)

where the photon propagator is taken from eq. (8) and ĵµ(x) are nuclear current oper-
ators at t = 0. From the previous equation we obtain after some manipulations

εn =
1
π

∑
l

∫
jnlµ (x)jlnµ (x′)

|x− x′| −
∫ ∞

0

sin k|x− x′|
k − ωnl

dk d3x d3x′,

Γn =−2
∑
l

Θ(ωnl)
∫
jnlµ (x)

sinωnl|x− x′|
|x− x′| jlnµ

(
x′
)

d3x d3x′, (A.9)

where the jlnµ are matrix elements of the nuclear current operators and ωnl is the energy
difference of states |φn〉 and |φl〉. For the ground state, the line width Γn vanishes
as expected because ωnl 6 0. Equation (A.9) describes the radiative contribution as
illustrated by figure 5(a). In similar fashion, one obtains the internal conversion term,
which is represented by panel (b) of figure 5. εn and Γn can thus be understood as
the total line shift and level broadening, respectively. Keeping this is mind, we insert
eq. (A.7) into eq. (A.1):

Mfi

(
x,x′

)
= −iΘ

(
t− t′

)
e−iω′

fi
t
∑
n

e−(iωni+iεni+Γn/2)(t−t′)jfn(x)jni
(
x′
)
, (A.10)

where ω′fi denotes the energy transfer to the nucleus. Usually the low-energy nuclear
states are well separated in energy and degenerate if hyperfine interactions vanish. To
emphasize this situation we rewrite eq. (A.10) for the ground state |φGi〉 and one group
of excited states |φNn〉, where n, i describe degeneracy:

Mfi

(
x,x′

)
=−iΘ

(
t− t′

)
e−iω′

fi
te−(iωN+Γ/2)(t−t′ )

×
∑
n

〈φGf |̂j(x)|φNn〉〈φNn |̂j
(
x′
)
|φGi〉. (A.11)
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ωN and Γ have the natural meaning of nuclear transition energy and nuclear line
width associated with a particular group of degenerate excited states. Equation (A.11)
easily extends to cases with static hyperfine interactions being present. Let Ĥhf be the
Hamiltonian of the hyperfine interactions and Ûhf(t) = exp(−iĤhft). Then one obtains

Mfi

(
x,x′

)
=−iΘ

(
t− t′

)
e−iω′fite−(iωN+Γ/2)(t−t′)

×
∑
n

〈φGf | ĵ(x)|φNn〉〈φNn|Ûhf
(
t− t′

)̂
j
(
x′
)
Û †hf

(
t− t′

)
|φGi〉, (A.12)

where ωN and Γ retain their previously given meanings because their change brought
about by the hyperfine interactions is negligible.

Appendix B

In this section, the normalization of the time-dependent angular correlation func-
tions for nuclear resonant fluorescence, eq. (32), and internal conversion followed by
atomic fluorescence, eq. (41), will be discussed. We will make the reasonable assump-
tion that the nuclear ground and excited state have spin quantum numbers I , I ′ and the
degeneracy is described by magnetic quantum numbers m, m′. The transition currents
in the expression for the radiative contribution to the line width, eq. (A.9), are then
replaced by their Fourier transforms to give

Γ
1 + α

= −ωN
2π

∑
m

∫ 〈
I ′m′

∣∣Ĵµ(−k)|Im〉〈Im|Ĵµ(k)
∣∣I ′m′〉 dΩk. (B.1)

The integration is over all directions of k and |k| = ωN . Although all the components
of the current four-vector appear in eq. (B.1), we can use the continuity equation to infer
ωN J0(k) = k · J(k) for the quasimonochromatic transition currents. This relationship,
inserted into eq. (B.1), only leaves us with the transverse transition currents

Γ
1 + α

=
ωN
2π

∑
m

∫ 〈
I ′m′

∣∣Ĵ(−k)|Im〉〈Im|Ĵ(k)
∣∣I ′m′〉 dΩk. (B.2)

If we assume that the nuclear current operators only facilitate transitions between the
degenerate states |I〉 and |I ′〉, we obtain the following compact form:∫

〈φn| Ĵ†(−kS)Ĵ(−kS)|φn′〉 dΩ =
2πΓ

kS(1 + α)
δnn′ . (B.3)

Equation (B.2) is also used for the normalization of the multipole expansion of the
nuclear transition currents [23]. We may write for the matrix element of the transverse
nuclear current operator

〈
I ′m′

∣∣Ĵ(k)|Im〉 =

√
2πΓ

k(1 + α)

∑
LMλ

εLλC
(
I L I ′;mM m′

)
Y(λ)

LM
∗
(

k
k

)
. (B.4)
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The Y(λ)
LM is a transverse vector spherical harmonic describing magnetic (λ = 0) or

electric (λ = 1) multipole radiation of order L. The multipole mixing coefficients
εLλ are normalized,

∑
Lλ |εLλ|2 = 1. C(. . .) are Clebsch–Gordan coefficients in the

notation of Rose [42]. The previous equations permit us to write∫ 〈∑
f

∣∣Nfi(−kS , k0, t) p
∣∣2〉 dΩ =

2πΓ
kS(1 + α)

〈
p∗ · Ĵ†(k0)p · Ĵ(k0)

〉
=

πΓ2

2ω2
N (1 + α)2

2I ′ + 1
2I + 1

=
σΓ2

4(1 + α)
. (B.5)

The second line was obtained under the assumptions that k0 ≈ kS ≈ ωN and that the
ensemble of nuclei is unpolarized, i.e., the occupation numbers for the possible nuclear
ground states are equal. σ is the nuclear resonant cross section. Substitution of the
previous equation into the integrated eq. (32) gives∫

N (kS , k0, t) dΩ = 1− 4(1 + α)
σΓ2

1
2I + 1

∑
i

∫ ∣∣Nii(−kS , k0, t)p
∣∣2 dΩ. (B.6)

There is no simple expression for the second term of the right-hand side of the equation.
In general, it will show a complicated behavior in time and as a function of direction
and polarization of the incident radiation. However, the term will always be positive
and less than unity and can be estimated by averging over direction and polarization
of the incident radiation. If we assume that the magnetic quantum numbers are good
quantum numbers to describe the nuclear states, we obtain

1
4π

∫
N (kSk0, t) dΩ dΩ0

= 1− 1
2I ′ + 1

∑
ni

(∑
Lλ

|εLλ|2C2(ILI ′;mimn −mi

))2

. (B.7)

For resonant isotopes with pure dipole transitions L = 1 and nuclear spin quantum
numbers I = 1/2 and I ′ = 3/2, one obtains 29/36 for the averaged angular correlation
function.

We now turn our attention to the angular correlation function describing internal
conversion followed by atomic fluorescence, eq. (41). It will be convenient to write
the quantum states of the scatterer as the product of nuclear states |ψ〉 and electronic
states |β〉, e.g., |φi〉 = |βi〉|ψi〉. We also need a more general formulation of eq. (B.3)
for the case of electronic currents because the intermediate electronic states may be
superpositions of total angular momentum states |S l〉, e.g., |βn〉 =

∑
Sl |S l〉〈S l|βn〉.

First we use a multipole expansion of the current operators and apply the Wigner–
Eckart theorem to each term. The execution of the sum over final electronic states
and averaging over initial electronic states is problematic because the energy of the
fluorescence radiation depends on initial and final states via kS = k0 − ωfi. But we
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can assume that the dependence of ωfi on magnetic quantum numbers is negligible.
Under these circumstances one obtains after some manipulations∫

〈Sl|Ŝ†(−kS)Ŝ(−kS)
∣∣S′ l′〉 dΩ = δll′δSS′aSi, (B.8)

where aSi depends on quantum numbers of the intermediate and initial electronic state.
We may now write∫ 〈∑

f

∣∣N′fi(−kS , k0, t)p
∣∣2〉 dΩ

=
∑
S′l′mi

wi
∣∣〈S l|〈I m|B̂ Û †N (t)p · Ĵ(k0)|ψi〉|βi〉

∣∣2, (B.9)

where wi is the weight of the initial state |ψi〉|βi〉. The same method that we used to
obtain eq. (B.8) is applied to calculate the matrix elements of the operator B̂ as given
by eq. (39). In particular, one obtains∑

mll′

〈S l|
〈
I ′m′

∣∣B̂†|I m〉∣∣S′ l′〉〈S′ l′∣∣〈Im|B̂∣∣I ′m′′〉|S l〉
= δm′m′′BSS′

2πΓ
ωN (1 + α)

, (B.10)

where BSS′ is a sum composed of reduced electronic matrix elements and the multipole
mixing coefficients of the nuclear transition. BSS′ also contains a resonant denominator
selecting initial electronic states |S l〉 and intermediate electronic states |S′ l′〉 for which
the energy difference matches the nuclear transition energy ωN within the line width
of the intermediate electronic state. Finally, we arrive at∫ 〈∑

f

∣∣N′fi(−kS , k0, t)p
∣∣2〉 dΩ =

σΓ2

4(1 + α)

∑
SS′

wS BSS′ aS′ . (B.11)

An interpretation of the sum on the right-hand side of the equation is obtained from
the well-known ratio of the integrated scattering probabilities for a single atom:∫

〈
∑

f |N′fi(−kS , k0, t) p|2〉 dΩ∫
〈
∑

f |Nfi(−kS , k0, t)p|2〉 dΩ
=
∑
SS′

wS BSS′ aS′ =
∑
n

αnηn. (B.12)

αn is the partial internal conversion coefficient of the nuclear transition and∑
n αn = α. The fluorescence yield ηn gives the probability for the emission of a

fluorescence photon following the particular internal conversion process. The index n
usually refers to K, L, etc., conversion.
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Appendix C

It is sufficient to calculate the scattering matrix that corresponds to diagram (c)
in figure 2 in the center of mass system of the nucleus. The main contributions come
from resonant scattering processes involving the nuclear resonance and an electronic
resonance, e.g., the creation of a core hole. Whereas the influence of the electrons has
to be considered for the calculation of the nuclear level width, the electronic resonances
can be treated independently of nuclear properties other than total charge. An excellent
approximation for the scattering matrix is obtained if the nuclear scattering contribution
is taken from eq. (25) and extended by the resonant electronic part:

Mfi

(
x,x′

)
=−i

∫
〈φf |̂s(x)Θ(t− ty) e−∆̂(t−ty )ŝµ(y)δ+

(
y − y′

)
ĵµ
(
y′
)

×Θ
(
ty′ − t′

)
e−(Γ/2)(ty′−t′) ĵ

(
x′
)
|φi〉 dy dy′, (C.1)

where ∆̂ is the electronic level shift operator. One of the time integrations can be
eliminated by using δ+(y) = δ(|t| − |y|)/|y|. Also the time dependence of the nuclear
current that couples to the electronic current can be approximated by a simple phase
factor exp(iωN t). After some manipulations we obtain for the integral

e−(Γ/2)(t−t′)
∫

Θ(τ )e−(∆̂−Γ/2−iωN )τ ŝµ(y, t− τ )ĵµ(y′, t)
|y− y′|

×
{

Θ
(
t− t′ − τ −

∣∣y− y′
∣∣)e(Γ/2+iωN )|y−y′|

+ Θ
(
t− t′ − τ +

∣∣y− y′
∣∣)e−(Γ/2+iωN )|y−y′|} d3y d3y′ dτ. (C.2)

The major contribution to the volume integrals comes from regions of high nuclear
and core electron current density, where the distance |y − y′| is of the order of the
atomic size. For all electronic resonances, we have Γ� ∆n � 1/|y− y′| and several
related terms can be neglected, providing the result

Θ
(
t− t′

)
e−(Γ/2)(t−t′)

∫ t−t′

0
dτe−(∆̂−iωN )τ

×
∫
ŝµ(y, t− τ )

cosωN |y− y′|
|y− y′| ĵµ

(
y′, t
)
d3y d3y′. (C.3)

The upper limit of the time integral can safely be extended to infinity. This approxi-
mation affects only behavior at very early times ∆n(t− t′) ≈ 1, which is not relevant
in this context. Using relations of the type ŝµ(t) = Û †N (t)ŝµ(0)ÛN (t) and substituting
the previous result into the integral in eq. (C.1), we arrive at

Mfi

(
x,x′

)
=−iΘ

(
t− t′

)
e−(Γ/2)(t−t′)eiωfit

× 〈φf |̂s(x)B̂ÛN
(
t− t′

)̂
j
(
x′
)
Û †N
(
t− t′

)
|φi〉, (C.4)
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where B̂ is given by eq. (39). The effect of lattice vibrations can be included by re-
placing ŝ and ĵ according to ŝ(x)→ ŝ(x+ r̂(t)) with the atomic displacement operator r̂.
Using spatial Fourier transforms of ŝ and ĵ directly leads to

Mfi

(
x,x′

)
=−iΘ

(
t− t′

)
eiωfite−(iωN+Γ/2)(t−t′)

×
∫
Lfi
(
k, k′, t− t′

)
N′fi
(
k, k′, t− t′

)
ei(k·x+k′·x′) d3k d3k′

(2π)6 , (C.5)

where ωfi includes the energy transfer to lattice, nucleus, and electron shell. Lfi and
N′fi are defined by eqs. (26) and (38).

Appendix D

We start with the Hamiltonian of the harmonic lattice in the center of mass system
given by

Ĥ =
∑
j

p̂2
j

2mj
+

1
2

∑
jj′

ûjDjj′ ûj′, (D.1)

where the sums run over all but one atom of the ensemble, i.e., the force constant
matrix is nonsingular. In the following treatment, we will use the indices l, l′ to
enumerate degrees of freedom or particle modes and indices j, j′ to enumerate atoms
of the ensemble. The dynamical variables corresponding to the translational degrees of
freedom are displacements and momenta {ûl, p̂l}, which follow the usual commutation
relations, i.e., [ûl, p̂l′] = i δll′ . In the Heisenberg picture, the dynamical equations for
the operators are

p̂j = mj
dûj
dt

, mj
d2ûl
dt2

= −
∑
j′

Djj′ûj′. (D.2)

This set of equations is simplified by introducing a new set of operators {âl, â
†
l }

obtained from {ûl, p̂l} by a linear transformation. Let Xjl be the unitary matrix that
diagonalizes the matrix Djj′/

√
mjmj′ with eigenvalues ω2

l > 0:∑
jj′

X†lj
Djj′√
mjmj′

Xj′l′ = ω2
l δll′ . (D.3)

Then the replacements (ωl > 0)

ûj =
1√
2mj

∑
l

1
√
ωl

(
X∗jlâ

†
l + Xjlâl

)
,

(D.4)

p̂j = i

√
mj

2

∑
l

√
ωl
(
X∗jlâ

†
l − Xjlâl

)



III-2.2 W. Sturhahn, V.G. Kohn / Theoretical aspects 397

result in decoupled dynamical equations and simple nonvanishing commutators of the
form

dâl
dt

= −iωlâl,
dâ†l
dt

= iωlâ
†
l , [âl, â

†
l′] = δll′ . (D.5)

â†l and âl are known as creation and annihilation operators of a particle in mode l,
and they provide a bosonic particle interpretation of the harmonic lattice excitations.
Stable systems have to satisfy ∀l (ω2

l > 0). Solving the eigenvalue problem posed by
eq. (D.3) for a given macroscopic ensemble is a formidable task. One usually intro-
duces translational symmetries to reduce the workload, and very good descriptions of
vibrations in single crystals or polycrystalline materials can be obtained [10]. Disor-
dered or amorphous materials were also modeled using harmonic interactions [39,40].

In the particle representation, the Hamiltonian takes the simple form

Ĥ =
∑
l

Ĥl =
∑
l

ωl

(
â†l âl +

1
2

)
. (D.6)

The particle modes are decoupled, i.e., [Ĥl, Ĥl′] = 0, and therefore the eigenstates
|{nl}〉 of the Hamiltonian are easily constructed as a product of eigenstates for the
individual modes ∣∣{nl}〉 =

∏
l

(â†l )
nl

√
nl!
|0〉. (D.7)

Here nl is the number of particles in mode l, and |0〉 is the ground state. We also find
that the self-intermediate scattering function factorizes, and the individual factors are
given by

Ljl(k, t) =
Trace{e−βĤlT̂l(αjleiωlt) T̂l(−αjl)}

Trace{e−βĤl}
, αjl =

ik ·X∗jl√
2mjωl

. (D.8)

The use of the “translation operator” T̂l(α) = exp{αâ†l − α∗âl} is convenient because
it generates coherent particle states [41], which form an alternative basis to the particle
number states of eq. (D.7). The relationship of a coherent state |αl〉 to the number
states is

|αl〉 = T̂l(α)|0〉, T̂l(α)T̂l(γ) = e(1/2) (αγ∗−γα∗)T̂l(α+ γ). (D.9)

The evaluation of the trace in eq. (D.8) can be conveniently performed using coherent
states, and after some manipulations we obtain eq. (57).

In the presence of translational symmetries, the diagonalization in eq. (D.3) can
be simplified. Let N be a set of translations that leaves the ensemble unchanged, i.e.,
Dj+N ,j′+N ′ = Dj,j′+N ′−N and mj+N = mj . Then we can write

Ωjj′ = Ωpp′,NN ′ =
∑
L

Ωpp′,0LW
(L)
NN ′ , W (L)

NN ′ =
1
2

(δL,N−N ′ + δL,N ′−N ), (D.10)
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where Ωjj′ = Djj′/
√
mjmj′ and the enumeration of atoms was replaced by a separate

enumeration of symmetry units (indices N , N ′, L) and of atoms within a symmetry
unit (indices p, p′). The matrices W (L) commute with each other and can be diago-
nalized by the same unitary transformation. The eigenvalue problem and its solution
are given by∑

NN ′

ψ†KNW
(L)
NN ′ψN ′K′ = cos(γLK)δKK′ , ψNK =

1√
N0

eiγNK , (D.11)

where N0 is the total number of symmetry units and γ = 2π/N0. The eigenvector
matrix ψNK is unitary. Equation (D.10) now takes the form

Ωpp′,NN ′ =
∑
KK′

ψNK d(K)
pp′ δKK′ ψ

†
K′N ′ , d(K)

pp′ =
∑
L

Ωpp′,0L cos(γLK). (D.12)

d(K)
pp′ is called the dynamical matrix. The original problem of having to diagonalize

one matrix of rank equal to the total number of degrees of freedom has now been
reduced to N0 diagonalizations of the dynamical matrix of the type∑

pp′

e(K)†
mp d(K)

pp′ e
(K)
p′m′ = δmm′ λ

(K)
m . (D.13)

This equation in combination with eq. (D.10) provides the following relations:

ω2
l = λ(K)

m , Xjl =
1√
N0

e(K)
pm exp(iγNK). (D.14)

The eigenvectors are periodic, nonlocalized functions on the lattice, and the associated
particles are called phonons. In the usual nomenclature, the index p enumerates atoms
in the symmetry unit, the index m enumerates phonon modes, and the index K is
identified with the “quasimomentum” of the phonon.
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[1] R.L. Mössbauer, Z. Physik 151 (1958) 124.
[2] Y. Kagan, this issue, section III-1.1, and references therein.
[3] J.P. Hannon and G.T. Trammell, this issue, section III-1.2, and references therein.
[4] W.M. Visscher, Ann. Phys. 9 (1960) 194.
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