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Diffraction of x rays at a Bragg angle of p/2 „back reflection … with consideration
of multiwave effects

V. G. Kohn,* ) I. V. Kohn, and É. A. Manykin

Russian Research Center ‘‘Kurchatov Institute’’, 123182 Moscow, Russia
~Submitted 26 January 1999!
Zh. Éksp. Teor. Fiz.116, 940–952~September 1999!

The energy dependence of the back reflectivity in the dynamical diffraction of x rays at a Bragg
angle ofp/2 ~back diffraction! in perfect crystals of cubic symmetry~silicon! is investigated
theoretically. In this case strict backscattering is realized only under the conditions of multiple
diffraction. The features of the influence of multiple diffraction on back reflection in the
energy range near the nuclear resonance radiation energy of 14.41 keV for57Fe nuclei, specifically
in the six-wave case, including the silicon~1,9,9! reflection~with an energy of 14.57 keV!,
which can be investigated experimentally with high energy resolution~1 meV! using synchrotron
radiation and a monochromator developed for nuclear resonant absorption, are thoroughly
studied. It is shown that the back reflectivity observed under the conditions of multiple diffraction
has several maxima on the plot of its energy dependence with a value at each maximum
smaller than half, in contrast to two-wave diffraction, where there is one maximum with a value
close to unity. ©1999 American Institute of Physics.@S1063-7761~99!01309-8#
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1. INTRODUCTION

The back reflection of x rays during diffraction on pe
fect crystals with a Bragg angle ofp/2 ~back diffraction! is
known to occur only in a very narrow energy range with
relative width less than 1026, but has a relatively weak sen
sitivity to the angular divergence of the beam~no more than
1023 rad). Since the construction of the dispersion surfa
introduced into the theory by Ewald1 is impossible in the cas
under consideration, it initially appeared that a generali
solution of Maxwell’s equations without linearization of th
dispersion correction to the wave vector must be used
analyze back reflection.2,3 In reality, the theory remains lin
earized to a high accuracy, and in terms of the deviat
parameter from the Bragg condition it does not differ in a
way from diffraction at a Bragg angle smaller thanp/2 ~Ref.
4!.

A slight angular deviation of the beam for the directio
corresponding to strict backscattering was used in the exp
mental investigations of back reflection in Refs. 5–7, sin
otherwise it was impossible to pass the incident be
through the opaque detector. This simultaneously permi
elimination of the multiwave effects and allowed the use
the theory of two-wave diffraction to describe the measu
plots of the energy~temperature! and angular dependences
the reflectivity. Additional back reflection was employed
monochromatize the beam, and the convolution of two t
oretical reflection curves was calculated simultaneously
comparison with experiment. Good agreement between
experimental temperature curve and the theoretical calc
tion was obtained in Ref. 7.

Nevertheless, strict backscattering~back diffraction! is
of considerable interest in connection with the possibility
using it to create an x-ray analog of the familiar Fabry–Pe´rot
interferometer~see, for example, Ref. 8 and the referenc
5001063-7761/99/89(9)/8/$15.00
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therein!. In this case very high monochromatization of th
radiation is needed to ensure a long longitudinal~temporal!
coherence length. The necessary degree of monochroma
tion is achieved with a safety margin using a ‘‘Mo¨ssbauer
monochromator,’’ i.e., the nuclear resonant scattering
pulses of synchrotron radiation in conjunction with a tim
window technique, under which a detector with a high te
poral resolution, of the order of a nanosecond, permits is
tion of only the scattered radiation delayed by nuclei. T
latter has an energy width of the order of the width of t
excited state of the nucleiG. Only the57Fe nuclear transition
with an energy E514.413 keV and a widthG54.66
31026 meV has been used hitherto fairly widely. A tran
parent detector and a large crystal–detector distance m
also be employed to measure strict backscattering. The i
dent ~primary! synchrotron radiation pulse is also cut o
using a time window.

Just such a measurement technique was recently
proposed and successfully implemented in Ref. 9. Sapp
(Al2O3) crystals, which did not have a sufficiently perfe
crystal lattice, were used to eliminate the multiwave effe
in Ref. 9. For this reason, despite the high angular collim
tion and the very high monochromaticity of the incide
beam, the experimental curves differed from the results o
calculation based on the dynamical theory for perfect cr
tals.

Hitherto, only silicon crystals had a sufficiently perfe
structure. In this case several reflections have energies c
to E514.413 keV. They are the~3,5,11! reflection
with E514.210 keV, the ~0,4,12! reflection with
E514.437 keV, and the ~1,9,9! reflection with
E514.572 keV. In all cases back reflection is realized un
the conditions of multiple diffraction. The reflections ind
cated were recently measured in Ref. 10 at room temp
© 1999 American Institute of Physics
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ture. An x-ray monochromator with a resolution of the ord
of 1 meV was used this time. Monochromators of such
type were widely used in the last few years in the Mo¨ssbauer
facilities of third-generation synchrotron radiation sourc
~ESRF in France, APS in the U.S.A., and SPring-8 in Jap!,
in inelastic nuclear resonant absorption experiments~for the
latest results on this subject, see Refs. 11 and 12 and
references therein! and were developed specifically forE
514.4 keV with the possibility of scanning the energy in
small range.

Moreover, the use of back reflectivity peaks in silicon
reference marks on the energy scale of such a monoc
mator permits measurement of the energy of the nuclear t
sition itself to a higher accuracy in comparison to oth
methods. Just such a problem was solved in Ref. 10. For
purpose, in particular, it is necessary to know how the m
tiwave effects influence the form of the back reflectiv
peak. Thus, an investigation of strict backscattering w
consideration of the multiwave effects has practical value
addition to being of purely physical interest. The~3,5,11!
and ~0,4,12! reflections correspond to 24-wave diffractio
They will be studied at a later date. The present work
devoted to an analysis of back reflection with considerat
of multiwave effects in the case of the silicon~1,9,9! reflec-
tion, which corresponds to 6-wave diffraction. The dynam
cal theory of the diffraction of plane waves in matrix for
and the scheme for the computer calculations are prese
in the next section. The scattering geometry and the res
of the numerical calculations are presented in Sec. 3. Sec
4 offers a qualitative analysis of the influence of multiwa
corrections on two-wave diffraction in ranges of paramet
where they can be regarded as a perturbation. It prov
partial explanations for the numerical results obtained.

2. MATRIX FORM OF THE DYNAMICAL THEORY OF THE
MULTIPLE DIFFRACTION OF PLANE WAVES

The theory is devised for a monochromatic plane wa
with a frequencyv and a wave vectorK0 . Real radiation can
always be represented as a superposition of plane waves
we assume that the different frequencies and directions o
wave vectors are incoherent. Thus, the intensity of the ba
reflected radiation for a monochromatic plane wave mus
calculated, and then the result must be averaged over
finite angular and frequency~energy! ranges correspondin
to the results of the specific experiment. When the conditi
for multiple diffraction in a crystal in the form of a plane
parallel plate with an internal normaln to the entrance sur
face of the crystal are satisfied, an incident wave with
electric field intensity

E0~r ,t !5E0 exp~ iK0•r2 ivt ! ~1!

corresponds to the superposition of truncated Bloch wav

E~r ,t !5(
j

l j(
m

Em j exp~ ikm j•r2 ivt !,

km j5K01hm1« jn, ~2!

which contains only reciprocal-lattice vectorshm of the crys-
tal that satisfy the Bragg condition (K01hm)2'K0
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assigned accuracy of the order of the amplitudexm of the
diffraction scattering from one wave to another. The su
script j labels the possible solution, andl j is the degree of
excitation of the respective solution in the crystal for an
signed incident wave. It is found from the boundary con
tions.

When solutions in the form~2! are plugged into Max-
well’s equation for the amplitude of the electric field, th
following approximations are made to an accuracy of
order ofx0'1026.

1! The electric field is assumed to be transverse:

Em j5(
s

Ems jems, ~3!

wheres5p,s is the polarization index, and the unit vecto
ems specify the polarization direction in beamm in a plane
perpendicular to the unit vectorsm , which is parallel toK0

1hm .
2! Only the first power of the dispersion correction« is

taken into account in the equations. This corresponds to
approximation of generalized geometric optics in the sm
angle case.

3! Averaging of the equation over a unit cell of the cry
tal is performed for the purpose of eliminating the fast va
ables with a variation length of the order of the waveleng
of x rays from the calculations.

4! Only the dipolar interaction of the electromagne
wave with the medium is taken into account~the accuracy of
this approximation is poorer than that of the preceding
proximations, but in all cases, except the anomalous tra
mission effect, it is sufficient!.

The approximations indicated allow us to write equ
tions separately for each of the scalar amplitudesEms j in the
following form ~for further details, see Refs. 1 and 13!:

S gm

K
«1amDEms5 (

m8,s8
gmm8

ss8 Em8s8 , ~4!

whereK5v/c is the wave number,c is the speed of light,

gm5(sm•n), gmm8
ss8 5xm2m8~ems•em8s8!,

am5@~K01hm!22K0
2#/K2, ~5!

andxm2m8 is the Fourier component of the polarizability o
the crystal in the reciprocal-lattice vectorhm2hm8 .

To describe the calculation scheme in matrix form it
convenient to combine the two indicesm ands into one, for
which we retain the notationm. The index m thus runs
through the values 0p, 0s, 1p, 1s,...,(n21)p,(n21)s in
the n-wave case. Going over to the new amplitudes,Bm j

5gm
1/2Em j , we can rewrite the system of equations~4! in the

form characteristic of many dynamical systems~electrons,
phonons, etc.!, i.e., as the eigenvalue problem

«Bm5(
m8

Gmm8Bm8 ~6!

for the kinematic scattering matrix
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Gmm85Hmm82Amdmm85K~gmgm8!
21/2

3~gmm82amdmm8!, ~7!

where dmm8 is a Kronecker delta, which is equal to ze
whenmÞm8 and to unity whenm5m8.

The matrixGmm8 has a rank of 2n. Accordingly, there
are 2n different characteristic solutions of the problem~6!,
which are distinguished by the indexj . Unlike other dynami-
cal systems, the matrixGmm8 is non-Hermitian, since the
matrix gmm8 is non-Hermitian in the general case with co
sideration of the absorption of x rays. However, the parts
gmm8 which describe scattering and absorption separately
Hermitian. Nevertheless, the matrixGmm8 is still non-
Hermitian even for a nonabsorbing crystal, if among the
rametersgm there are some which have negative values. T
always occurs in the case of back diffraction. Therefore,
eigenvalues« of the problem, i.e., the dispersion correctio
to the wave vectors, are complex even for a nonabsorb
crystal. In addition, some of them have a negative imagin
part, which corresponds to growth of the Bloch waves
they move into the crystal. This, in turn, causes some d
culty in solving the boundary-value problem by numeric
methods on a computer.

The general solution of the boundary-value problem i
form which is stable toward increasing Bloch waves w
given in Refs. 14 and 15. Below we shall briefly formula
the solution method used. For this purpose, we order
elements in the matrix of eigenvectorsBm j so that the index
m corresponds to decreasing values of the parametergm and
the index j corresponds to decreasing values of the ima
nary part of the eigenvalue« j9 . If the number of Laue beam
corresponding to the passage of radiation through the cry
plate for whichgm.0 is equal tonL , then the number of
values ofm corresponding to these waves and the numbe
solutions with a positive imaginary part of the eigenval
(« j9.0) are equal to the same number 2nL . We denote the
set of such values of the indicesm and j by the single index
L, and we denote the set of remaining values by the sin
index B. This allows us to divide the complete matrix o
eigenvectorsBm j obtained as a result of the numerical so
tion of ~6! into the four submatricesBLL , BLB , BBL , and
BBB , of which the diagonal matricesBLL and BBB are
strictly square, and the off-diagonal matrices are rectang
in the general case. The set of amplitudes for the reflectio
Laue-type plane waves (gm.0) into Bragg-type plane
waves (gm,0) is described by the blockMBL of the com-
plete dynamical scattering matrix.

In this paper we analyze the back reflectivity in the a
proximation of a thick absorbing crystal, in which the i
creasing Bloch waves can be completely neglected. In
case the block of the dynamical scattering matrix of inter
to us is described by the simple expression

MBL5BBL~BLL!21. ~8!

If the incident plane wave has the index 0 and is polarized
thes state~these conditions correspond to synchrotron rad
tion! and if the back-reflected wave has the indexk5n21
and its polarization state is not analyzed, then the experim
tally measured reflectivity is described by the expression
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Rk0
(s)5(

s8
uMks8,0su2. ~9!

The parameters of the problem are the components of
vectorq5K01hk/2, which describe small deviations of th
wave vector of the incident wave from the direction corr
sponding to strict backscatteringK0

(0)52hk/2. It is conve-
nient to represent the vectorq in the form

q5K~u1e0p1u2e0s1uvs0!, ~10!

where the parametersu1 andu2 describe the angular devia
tions of the incident beam anduv5(v2vc)/vc describes
the spectral back reflection line sought. The critical fr
quency isvc5cuhku/2, the critical wavelength islc52dk ,
wheredk is the interplanar distance for the back-reflecti
atomic planes, and the crystal photon energy~in keV! is Ec

512.4/lc , wherelc is measured in angstroms. With consi
eration of ~10!, the parameters of the deviation from th
Bragg condition in the linear approximation with respect toq
equal

am52~hm•q!/K252K21@~hm•e0p!u1

1~hm•e0s!u21~hm•s0!uv#. ~11!

In experiments the incident beam always has a fin
angular divergence, and the monochromator has a fi
width. For simplicity, we assume that the shape of the an
lar and frequency spectra of the monochromator is rectan
lar. Thus, the spectral reflection line interesting us can
calculated from the formula

Rk0
(s)~uv!5

1

Tu
2Tv

E duv8E du1du2Rk0
(s)~u1 ,u2 ,uv82uv!,

~12!

whereTu and Tv specify the angular and frequency width
of the monochromator, respectively, and the integration
performed in these limits.

3. „1,9,9… BACK REFLECTION IN SILICON UNDER THE
CONDITIONS OF SIX-WAVE DIFFRACTION. GEOMETRY AND
CALCULATION RESULTS

In crystals of cubic symmetry strict backscattering on
reciprocal-lattice vector with fairly large Miller indices i
always accompanied by reflection into other reciproc
lattice vectors, which satisfy the Bragg conditions as a c
sequence of the symmetry of the crystal lattice. For exam
in a silicon crystal the~1,9,9! reflection occurs simulta-
neously with the (24,0,4), (24,4,0), ~5,9,5!, and ~5,5,9!
reflections, so that six-wave diffraction is realized when t
Bragg conditions are strictly satisfied. In this case the tr
cated Bloch waves are sums of plane waves with the w
vectorskm5K01hm , which have the following values in
units of p/a, wherea is the lattice constant, in the coord
nate system of the reciprocal lattice of the crystal:

~20.5,24.5,24.5!; ~24.5,24.5,20.5!;

~24.5,20.5,24.5!;

~4.5,4.5,0.5!; ~4.5,0.5,4.5!; ~0.5,4.5,4.5!.
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Let the crystal plate be cut so that the normal to
surface is parallel to the (0,21,21) direction. In this case
the parametersgm are equal to 0.997, 0.554, 0.554,20.554,
20.554, and20.997, respectively, i.e., we have three Lau
type waves and three Bragg-type waves. Figure 1 shows
directions of the diffracted beams relative to the crystal pla
The polarization vectors in each wave can be chosen a
trarily. Taking into account the scattering symmetry, w
choose the polarization vectors in the following manner. T
vector e0p is parallel to the (0,1,21) direction, and the re-
maining vectors are defined according to the formulas

ems5sm3e0p , emp5ems3sm . ~13!

At the same time, the set of three vectorse0p , e0s , ands0 is
used to resolve the vectorq, as follows from formula~10!.

The numerical values for the Fourier componentsxm of
the polarizability of the crystal were obtained usin
Stepanov’s X0H program. When this work was carried o
this program was freely available on the Internet.16

As we know, a symmetric 232 matrix with diagonal
elements equal to one another has eigenvectors with com
nents that are equal in absolute value and thus corresp
exactly to dynamical diffraction. Therefore, the centers of
two-wave reflection maxima are determined with consid
ation of the dynamical displacement of the parameters
the relationsAm5Hmm2H00, which depend, among othe
things, on the parametersgm , rather than by the condition
am50. In the case under consideration these conditions h
the following form in microradians~mrad!:

~24,0,4!: 20.118u120.176u220.105uv520.271

~24,4,0!: 10.118u120.176u220.105uv520.271

~5,9,5!: 20.118u120.176u210.429uv510.949

~5,5,9!: 10.118u120.176u210.429uv510.949

~1,9,9!: 10.296uv510.678. ~14!

FIG. 1. Directions of the diffracted beams relative to the crystal plane.
plane of the plate is perpendicular to the (0,21,21) direction.
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As follows from these conditions, two-wave back reflecti
does not depend on the angular variables, but the reflec
maximum is shifted with respect to the photon energy
DE5D05Ecuv

(0)533.4 meV.
It is difficult to graphically represent the three

dimensional dependence of the reflectivityRk0
(s)(DE,u1 ,u2),

whereDE5Ecuv . Therefore, we shall present and discu
only fragments of the general dependence. Figure 2 sh
the dependence of the back reflectivity for the~1,9,9! reflec-
tion in the (DE,u2) plane of arguments atu150, and Fig. 3
presents the dependence in the (DE,u1) plane atu250 for
both polarization states in the incident wave. As follow
from the calculations represented in these figures, the t
wave band of the back reflection maximum due to~1,9,9!
diffraction vanishes as the multiwave region of parameter
approached. In addition, it is easy to discern the presenc
additional reflection bands in regions where the Bragg c
dition for ~1,9,9! diffraction is not satisfied but the Brag
condition for other reflections is satisfied.

While the value of the reflectivity increases as we mo
along the two-wave band of the~1,9,9! reflection from the
center to the edges, it decreases as we move along the
tional bands. This is because the additional reflection ba
have an essentially multiwave character. The slope of th
bands relative to the energy axis in the (DE,u2) plane at
u150 is determined from the conditions~14!. For example,
the conditions for two-wave diffraction in the~5,9,5! and
~5,5,9! reflections are satisfied in the line atu250.167DE
25.932. Here and below, the shift of the photon energyDE
is measured in millielectron volts~meV!. This means that
three-wave~0,0,0; 5,9,5; 5,5,9! diffraction occurs in this line.
The ~1,9,9! back reflection is weak~kinematic!, but it is en-
hanced because of the simultaneous presence of se
strong waves. A more detailed analysis is given in the f
lowing section.

As follows for Fig. 2, there is a second line of addition
reflection. It corresponds to three-wave~24,0,4;24,4,0;
1,9,9! diffraction. The Bragg condition for this case is ob
tained by subtracting the condition for the (24,0,4) reflec-
tion from the condition for the~1,9,9! reflection in formulas
~14!. At u150 a simple calculation then permits determ
nation of the equation of the second line
u2520.156DE15.932. The two lines cross at the poi
DE536.73 meV, u250.742mrad. The lines split at the
crossing point, and there is symmetry of the~1,9,9! back
reflectivity in the split lines relative to the change in the si
of the quantityu220.742, although the physical condition
for reflection on both sides of the symmetric pattern are d
ferent. In one case the~1,9,9! reflection is a disturbance in
the Bloch wave, where the strong waves are the~0,0,0!,
~5,9,5!, and~5,5,9! waves. In the other case the~1,9,9! wave
is a strong wave together with the (24,0,4) and (24,4,0)
waves, but the perturbation is a component in the incid
~0,0,0! band; therefore this Bloch wave is weakly excited
the crystal. The presence of polarization in the incident wa
weakly influences the two-wave band of the~1,9,9! reflec-
tion, but has a very significant effect on the additional refle
tion bands.

The dependence shown in Fig. 3 is even more com

e
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FIG. 2. Dependence of the reflectivity for~1,9,9! back reflec-
tion at u150 for two polarization states of the incident wav
~p ands!.
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cated. The two-wave diffraction in the~0,0,0; 5,9,5! and
~0,0,0; 5,5,9! reflections now takes place in the lines
u2560.249 (DE232.2). The additional reflection band
are strongly split for both polarization states. In additio
two-wave (24,4,0;1,9,9) and (24,0,4;1,9,9) bands are dis
played in the lines atu2560.239 (DE233.7). The bands
are closely spaced, although they do not coincide with
another. Therefore, the two-wave case with strong renorm
ization of the scattering parameters is partially realized h

The experimental observation of the dependences of
reflectivity presented in this paper requires a strongly co
mated~less than 1mrad2) and monochromatized~of the or-
der of 1 meV! beam. If the beam has finite collimation and
not scanned over the angle, the dependence of the bac
flectivity on the photon energy shiftDE can be obtained by
integrating over the angular variablesu1 andu2 in assigned
limits @see formula~12!#. Figure 4 shows the back reflectio
energy spectra forTv50 andTu50, 4, 8, 12, 16, 20mrad,
and`. The integration was carried out by simple summat
on a square grid with a spacing of 0.2mrad along both axes
For better visibility, the curves for different values ofTu

have been shifted to achieve 0.2 spacing along the ver
axis. The lower curve corresponds toTu50 and the upper
curve ~for Tu5` within the approximation considered! cor-
responds to pure two-wave diffraction.
,

e
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e.
e
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As follows from the calculations, multiwave effect
are displayed even with collimation of the beam
20320mrad2 in the form of a lower maximum of the prin
cipal reflection and additional regions of weak reflectio
However, already with angular misorientation of the bea
exceeding 10310mrad2, the principal maximum is fully dis-
tinguishable and has a position on the energy scale co
sponding to the two-wave case. This result can be utilized
calibrating monochromators with an energy resolution of
order of 1 meV.

4. TWO-WAVE DYNAMICAL DIFFRACTION, KINEMATIC
DIFFRACTION, AND THE INFLUENCE OF OTHER
REFLECTIONS ON THEIR PROPERTIES

Multiwave dynamical diffraction is described by the sy
tem of equations~6!, which does not have an analytic solu
tion in the general case. Moreover, the results of deta
studies only of cases of systematic diffraction, in which
the vectors of the reciprocal lattice lie in a single plane, ha
been published hitherto. In such cases the variation of
energy of the incident photons leads only to variation of
reference point on the plane of angular parameters with
alteration of the angular dependence of the reflectivities. T
case which we considered refers to nonsystematic~random!
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FIG. 3. Dependence of the reflectivity for~1,9,9! back reflec-
tion at u250 for two polarization states of the incident wave
r
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diffraction in Chang’s terminology.17 Nevertheless, we can
use the approximate approach previously developed fo
qualitative analysis of the calculation results.

Let us consider the important special case where two
the set of parametersAm characterizing the deviation from
the Bragg conditions are close to one another, for exam
the parameters with the indicesi and j , while the remaining
parameters have values differing strongly from these two
this case it is natural to presume that only the componentBi

and Bj of the eigenvector will have large and comparab
values, while the remaining components will be small. W
first consider the situation in which the small compone
a

f

e,

n

s

can be completely neglected and the polarization can
separated. This corresponds to two-wave diffraction,
which in the system of equations~6! it is sufficient to retain
only two equations:

~«1Ai2Hii !Bi2Hi j Bj50,

2H ji Bi1~«1Aj2H j j !Bj50. ~15!

This system has two solutions, in which

«1,25Hii 2Ai10.5@2a6~a214Hi j H ji !
1/2#,
d
-

n
.

FIG. 4. Energy spectra of the angle-integrate
back reflectivity for various values of the colli
mation of the incident beam: 030 ~lower
curve!, 434, 838, 12312, 16316, 20
320mrad2, and the two-wave case~upper
curve!. For better visibility the curves have bee
shifted along the vertical axis with 0.2 spacing
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a5~Aj2Ai !2~H j j 2Hii !, Bj /Bi5~«1Ai2Hii !/Hi j .
~16!

Here the branch with a positive imaginary part is chosen
the square root.

If the index i 50 corresponds to the incident beam, a
the index j 5h corresponds to the~1,9,9! back reflection,
then in the approximation of a thick absorbing crystal, t
reflection amplitude is exactly equal to the ratio between
components of the Bloch wave and can be written in
standard notation1 as follows:

Bh

B0
5 i

p1Ap224bxhx h̄C

2x h̄
, ~17!

where

p5ab2x0~11b!, b5g0 /ugnu, C5~e0sehs!. ~18!

Here it has been taken into account explicitly thatgh,0. In
the case of back reflectionb51. Equations~17! and ~18!
correspond exactly to the upper curve in Fig. 4 with cons
eration of the relationa524uv524DE/Ec .

In the kinematic approximation, in which the rescatte
ing between the weak components of the mixed Bloch w
for mÞ i , j can be neglected and only the single scatter
from strong waves into weak waves need be taken into
count, the weak components are given by the following
pression:

Bm5
HmiBi1Hm jBj

«1Am2Hmm
. ~19!

As follows from this formula, ordinary single-wave sing
scattering from the incident wave withi 5(000) into the
back reflection wave withm5(1,9,9) can be enhanced in th
presence of several strong waves, and the appearance o
ditional reflection maxima can be expected in the case wh
the Bragg condition is satisfied for some wave w
j Þ(1,9,9) and this wave is scattered in phase with the in
dent wave.

In addition, we can write the system of equations
strong waves in the more exact form

~«1Ai2Hii !Bi2Hi j Bj5(
m

HimBm ,

2H ji Bi1~«1Aj2H j j !Bj5(
m

H jmBm , ~20!

wheremÞ i , j in the sum. Now, using formula~19 for weak
waves and substituting it into~20!, we obtain a system of the
type ~15!, but with renormalized coefficients:

~«1Ai2Fii !Bi2Fi j Bj50,

2F ji Bi1~«1Aj2F j j !Bj50, ~21!

where

Fkl5Hkl1 (
mÞ i , j

HkmHml

«1Am2Hmm
, k5 i , j , l 5 i , j . ~22!

Formulas like~19!, ~21!, and ~22! were obtained for a
more general case with consideration of the polarizat
r

e
e
e

-

-
e
g
c-
-

ad-
re

i-

r

n

multipliers in Ref. 18 as a method for approximate soluti
of the problem. In Refs. 19–21 the mechanism for renorm
ization of the parameters was called virtual Bragg scatter
The same approach was used in Refs. 22 and 23 to inv
gate standing x-ray waves and total reflection in a forbidd
reflection.

Under ordinary conditions for two-wave diffraction th
parameter describing the deviation from the Bragg condit
for a weak waveAm@«, Hmm, and the renormalization o
the coefficient is very small. However, in a situation which
close to the pure multiwave situation, this renormalization
significant and can significantly distort the character of tw
wave diffraction, i.e., can significantly shift the position
the maximum and alter its width and height. In this case e
the magnitude of the dispersion correction should be ca
lated self-consistently.

Thus, an analysis of the multiwave corrections to t
two-wave~1,9,9! back reflection reveals effects of two type
First, the two-wave back reflectivity peak is distorted as
result of the renormalization of the parameters of the scat
ing associated with rescattering on other reflections. Sec
renormalization of the kinematic diffraction appears wh
the Bragg conditions for any of the other reflections are s
isfied with consideration of the renormalization of its para
eters. Significant interference of the two scattering chann
then occurs, as a result of which, as the analysis showed
single-band approximation does not provide the required
curacy in comparison to an exact multiwave calculatio
Therefore, the formulas presented in this section are suit
only for a qualitative understanding of the results of the e
act calculation presented in Figs. 2 and 3, but cannot be u
directly for calculations.

The mechanism discussed here can also be consider
the case where the conditions for three-wave diffraction
satisfied simultaneously, as occurs atu150. The formulas
presented above can easily be generalized to this case.
situation is far more complicated when the regions of tw
wave diffraction for different reflections are fairly close, b
do not coincide exactly. In this case, the interference of d
ferent scattering channels leads to a complicated structur
peaks of kinematic scattering, as is clearly seen in Fig. 3

We express our thanks to Yu. Shvyd’ko for formulatin
the problem and taking an interest in this work.
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