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Nuclear resonant inelastic absorption of synchrotron radiation in an anisotropic single crystal
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The Singwi and Sjo¨lander theory of nuclear resonant inelastic absorption of x rays is extended to the general
case of an anisotropic single crystal. The energy dependence of nuclear inelastic absorption for the specific
direction of the x-ray quantum relative to the crystal lattice is described using the density of phonon states,
weighted by the projection of the phonon polarization vectors to the wave vector of the x-ray quantum. An
applicability of the sum rules in the case of the anisotropic crystal is analyzed. The method of calculation of the
phonon projected density of states from experimental data is proposed, where deconvolution of the data with
the instrumental function of the monochromator and the subtraction of the multiphonon absorption is handled
using the Fourier transformation. The results are illustrated by processing the experimental data of nuclear
inelastic absorption of x rays in the anisotropic ferric borate FeBO3 single crystal.@S0163-1829~98!01938-9#
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I. INTRODUCTION

Inelastic scattering of radiation with creation or annihi
tion of phonons is a powerful technique to study the latt
dynamics. Neutron,1 x-ray,2 and light3 inelastic scattering
have long been used to measure the phonon dispersion
v(q), where\v is the phonon energy andq is the wave
vector. Recent progress in the domain of nuclear reson
scattering of synchrotron radiation4 paved the way for a new
inelastic technique, nuclear inelastic absorption.5 Measure-
ments of nuclear inelastic absorption benefit much from
large nuclear resonant cross section, so the new field de
ops rapidly.6–9 The theoretical description of nuclear inela
tic absorption in the case of an isotropic crystal was done
Singwi and Sjo¨lander10 ~for other relevant theoretical pape
see Refs. 11,12!.

The determination of phonon energy by means of nuc
inelastic absorption assumes no momentum resolved in
mation on the phonon spectra and therefore is not applic
to the investigation of the phonon dispersion lawv(q). In-
stead of this, the experimental energy spectra of inela
nuclear absorption are discussed in terms of the phonon
sity of states~DOS! g(E). This is described by the Singw
and Sjölander theory,10 which was proposed for a crysta
with a cubic Bravais lattice. The theory fails to describe t
anisotropy of nuclear inelastic absorption, which has b
recently observed9 in the FeBO3 single crystal. Therefore a
more general theoretical description is necessary, wh
takes into account the direction of the incident x-ray be
relative to the crystal lattice and considers the densities
phonon states with various phonon polarizations. Suc
theory is the main subject of this work.

Another problem we address is the calculation of the p
non density of states from the experimental data. In orde
extract the density of states, one has to deconvolute the
with the instrumental function of the monochromator and
separate the single-phonon absorption from the multipho
contributions. The first problem may be partially overcom
PRB 580163-1829/98/58~13!/8437~8!/$15.00
e

aw

nt

e
el-

y

r
r-
le

ic
n-

e
n

h

of
a

-
to
ata

n

with an x-ray monochromator of higher energy resolutio
However, even in this case the elimination of the instrum
tal function remains desirable. We show that both proble
can be solved successfully using the forward and the
versed Fourier transformations of the data from energy
time space.

We illustrate the developed technique by two exampl
nuclear inelastic absorption in the polycrystallinea-iron foil
and anisotropic nuclear inelastic absorption in the ferric
rate FeBO3 single crystal. In the first case we demonstra
the reliability of the data processing technique by compar
the calculated DOS with the data known from a neutron sc
tering experiment.13 In the second case we obtain the den
ties of states, weighted by the projection of the phonon
larization vectors to the different crystallographic axes. Th
significantly differ in shape, revealing the anisotropy of t
lattice vibrations in the noncubic single crystal.

II. THE PROBABILITY OF NUCLEAR INELASTIC
ABSORPTION OF X RAYS IN A SINGLE CRYSTAL

We start from the general expression for an x-ray abso
tion cross section per a nucleus in terms of the time integ
which was obtained by Singwi and Sjo¨lander.10 We assume
that the phonon energy is much larger than the possible
perfine splitting of the nuclear levels, therefore the hyperfi
structure can be neglected. In contrast to Ref. 10 we cons
in the explicit form a crystal with a complex unit cell, whic
may contain several different atoms as well as several id
tical atoms at various positions. Let the total number of re
nant nuclei per unit cell benr . The resonant nuclei in the
unit cell are labeled with indexm. We consider the normal
ized probability of absorptionW(E) per unit energy interval
at the energyE. Now Eq. ~2! of Ref. 10 can be rewritten a
follows:

W~E!5E dt

2p
expS 2 iEt2

G

2
utu D 1

nr
(
m

Fm~k,t!, ~1!
8437 © 1998 The American Physical Society
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where t5t/\, t is the time,G is the natural width of the
nuclear excited state,E is the energy of the x-ray quantum
relative to the resonance energy of nuclear transition, ank
is the wave vector of the incidentg ray. The function

Fm~k,t!5^exp@2 ikum~0!#exp@ ikum~t!#& ~2!

is the time-dependent correlation function, which descri
the correlation between the displacementsum of the nucleus
at two different moments of time separated by the time
terval t5\t. In the single crystal this function has transl
tional symmetry. It may be different for various nuclei insid
the unit cell.

To deal with this function, Singwi and Sjo¨lander10 intro-
duced the Van Hove space-time correlation functionGs(r ,t)
in a spherically symmetrical approximation. Afterwards th
applied this function to the case of a cubic Bravais lattice
this way the dependence on the direction of the photon b
has been lost. However, it is not necessary to consider
space-time correlation functionGs(r ,t) for the calculation of
Fm(k,t). As it was shown by Van Hove@see Eq.~51! of
Ref. 14#, this function can be represented in a general cas
an anisotropic crystal as follows:

Fm~k,t!5exp@2Zm~k…#exp@Mm~k,t…#, ~3!

where

Zm~k!5Mm~k,0!5
ER

N (
q j

us–em j~q!u2

\v j~q!
~2n̄q j11! , ~4!

Mm~k,t!5
ER

N (
q j

us–em j~q!u2

\v j~q!
$~ n̄q j11!exp@ i\v j~q!t#

1n̄q jexp@2 i\v j~q! t#%. ~5!

Equations~3!–~5! extend the Van Hove formulas to the ge
eral case of a non-Bravais crystal lattice with several re
nant nuclei in the unit cell. The derivation is similar to th
given by Van Hove14 and we omit it here. In the formula
~4!,~5! ER5\2k2/2M is the recoil energy,N is the number of
unit cells per unit volume of a crystal,v j (q) is the phonon
dispersion relation for the branchj, em j(q) is the polarization
vector of vibrations formth atom in the mode$q j %, s
5k/k,

n̄q j5$exp@b\v j~q!#21%21 ~6!

is the Bose-Einstein distribution function,b5(kBT)21, kB is
the Boltzmann constant, andT is the temperature. We not
that exp@2Zm(k…#[ f m(k… is the angular-dependent Lamb
Mössbauer factor.

To calculate the integral in Eq.~1! we expand the expo
nent exp@Mm(k,t…# in powers series of the argument an
arrive at the expansionW(E)5(n50

` Wn(E), where each
term corresponds to the photon absorption accompanie
creation or annihilation ofn phonons.

The zero term of this expansion describes elastic nuc
absorption, which is not accompanied by phonon creation
annihilation. It can be calculated directly using the tabula
integral
s

-
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m
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-
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E dt

2p
expS 2 iEt2

G

2
utu D5

1

2p

G

~E21G2/4!
5dG~E!.

~7!

As a result we have

W0~E!5dG~E!
1

nr
(
m

f m~k!, lim
G→ 0

dG~E!5d~E!, ~8!

whered(E) is the Diracd function.
The first term describes the single-phonon nuclear ine

tic absorption. It is calculated through the same integral~7!,
however, the result has a more complicated form:

W1~E!5
ER

Nnr
(
m

f m~k!(
q j

us–em j~q!u2

\v j~q!
$~ n̄q j11!dG

3@E2\v j~q!#1n̄q jdG@E1\v j~q!#%. ~9!

After the replacement ofdG(E) by d(E) and taking into
account thatn̄q j depends only on\v j (q) @see Eq.~6!#, the
expression~9! can be represented as follows:

W1~E!5
1

nr
(
m

f
m

~k! Sm
~1!~E,k!,

Sm
~1!~E,k!5

ER gm~ uEu,s!

E@12exp~2bE!#
. ~10!

The form of this expression is similar to that used for t
polycrystalline sample~see, for example, Refs. 6,7!. How-
ever, the dependence of the absorption probability on
direction of the incident photon beam relative to the crys
lattice is obtained here in an explicit form through the fun
tion

gm(E,s)5V0(
j
E dq

~2p!3
d@E2\v j~q!#us–em j~q!u2

5
V0

~2p!3 (j
E dq1dq2

ugradq\v j~q!u
us–em j~q!u2. ~11!

HereV051/N is the volume of the unit cell. We have pass
from the sum to the integral according to the usual techniq
The integral is taken over the surface of the constant ene
\v j (q)5E in q space within the first Brillouin zone. The
coordinatesq1 and q2 are the axes of the local referenc
Cartesian system. They lie on the surface of the cons
energyE. The third axisq3 of Cartesian system is directe
along the vector gradq\v j (q).

The function gm(E,s) coincides with the conventiona
phonon density of states for an isotropic crystal, wherev j (q)
does not depend onj. Taking into account the property of th
polarization vectors( j us–em j(q)u251 we find that the de-
pendence ons vanishes in this case. The dependence os
also vanishes for a polycrystalline sample, where the dir
tion of photon beam relative to the crystal lattice averag
over many crystalline grains. However, in an anisotro
single crystal the functiongm(E,s) does not coincide with
the DOS. In contrast to the DOS, it contains the contrib
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tions of phonons, weighted by the projection of their pol
ization vectors to the direction of the x-ray beam.

Therefore we will call this function the projected dens
of states~PDOS!. We note that it may be different for vari
ous sitesm of the resonant nuclei in the unit cell. As will b
shown below, this function is normalized to unity for anys
direction.

Considering the higher-order terms of the multiphon
expansion we omit the energy widthG of the nuclear levels
as negligible compared to the phonon energy. Then we
write Eq. ~1! as follows:

Wn~E!5
1

nr
(
m

f
m

~k! Sm
~n!~E,k!, ~12!

where

Sm
~n!~E,k!5E dt

2p
exp~2 iEt!

Mm~k,t!

n

@Mm~k,t!#n21

~n21!!
.

~13!

The integral in Eq.~13! is the Fourier image of the prod
uct of two functions. It can be represented as the convolu
of the Fourier images of these functions. This leads to
recursive relation

Sm
~n!~E,k!5

1

nE dE8 Sm
~1!~E8,k! Sm

~n21!~E2E8,k!,

~14!

which permits us to calculate the multiphonon scatter
cross section from the single-phonon term.

As a result we obtain the expression for the probability
nuclear absorption in a form which is similar to the formu
obtained by Singwi and Sjo¨lander,10 namely,

W~E,k!5
1

nr
(
m

f
m S dG~E!1 (

n51

`

Sm
~n!~E,k!D . ~15!

In our case, however, the explicit dependence of nuclear
sorption on the directionk of the photon propagation relativ
to the crystal lattice is revealed through the projected den
of phonon stategm(E,s).

In order to calculate the Lamb-Mo¨ssbauer factor we not
that

Sm
~1!~E,k!5E dt

2p
exp~2 iEt! Mm~k,t!, ~16!

therefore

Mm~k,t!5E dE exp~ iEt! Sm
~1!~E,k!. ~17!

Now from Eqs.~4! and~10! we obtain the Lamb-Mo¨ssbauer
factor

f m~k!5expS 2ERE
0

`

dE gm~E,s! E21
11exp~2bE!

12exp~2bE! D .

~18!

We see that the Lamb-Mo¨ssbauer factor in an anisotrop
crystal is determined completely by PDOS.
-
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III. LIPKIN SUM RULES

The Lipkin sum rules12 offer a useful tool for treating the
data on inelastic nuclear absorption, because they simp
the normalization of the experimental spectra.6 Therefore it
is important to investigate the application of the sum rules
the case of an anisotropic single crystal. We rewrite Eq.~1!
as follows:

W~E!5E dt

2p
exp~2 iEt!F~t!

5
1

EnE dt

2p
exp~2 iEt!S dnF~t!

i ndtn D , ~19!

where

F~t!5expS 2
G

2
utu D 1

nr
(
m

Fm~k,t! ~20!

is the Fourier image of the energy spectrum of the absorp
probability. The right side of Eq.~19! is obtained by integra-
tion by parts taking into account thatF(t) and all its deriva-
tives equal zero atutu→`.

We will use the notation̂En&A5*2`
` dE A(E) En for the

nth momentum of the functionA(E). The zero momentum
of the absorption probability is

^E0&W5E dE W~E!5F~0!51, ~21!

which follows immediately from the left side of Eq.~19! and
the expression~3!. This proves the correct normalization o
the absorption probability in Eq.~1!.

The first momentum can be easily calculated through
right side of Eq.~19! with n51, namely,

^E1&W5E dE W~E! E5S dF~t!

idt D
t50

5
1

nr
(
m

S dMm~k,t!

idt D
t50

. ~22!

Substitution of Eq.~5! gives

^E1&W5
ER

Nnr
(
mq j

us–em j~q!u2

i\v j~q!

3@ i\v j~q! ~ n̄q j11!2 i\v j~q!n̄q j #

5
ER

Nnr
(
mq j

us–em j~q!u25ER . ~23!

Thus we obtain the Lipkin sum rule:12 the first momentum of
the total probability of nuclear absorption equals the me
recoil energyER .

The higher-order energy momenta can be calculated s
larly. For example, the second energy momentum of the
sorption probability equals

^E2&W5E dE W~E! E25S 2
d2F~t!

dt2 D
t50

. ~24!
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We note that this momentum diverges if the integral is tak
over the infinite energy interval. The divergence results fr
the property of the functiondG(E), which is not exactly the
d function, but behaves asE22 at the tails. However, in
practice we handle the data, which are taken over the fi
energy range of 2Emax, whereEmax is larger than the phonon
energy but much smaller than̂E2&/G. This allows us to
neglect the tails during the integration and treatdG(E) as the
exactd function for all considered energies. In this appro
mation we obtain

^E2&W5ER
21

ER

Nnr
(
mq j

us–em j~q!u2 \v j~q! ~2n̄q j11!

5ER
21ER

1

nr
(
m

E
0

`

dE gm~E,s! E
11exp~2bE!

12exp~2bE!
.

~25!

To obtain this expression we multiplied the right-hand s
by unity in the form*0

`dE d@E2\v j (q)# and performed the
integration.

Using the same approximation one may consider
higher energy momenta. For example,

^E3&W5ER
31

1

nr
(
m

E
0

`

dE gm~E,s!

3S 3ER
2E

11exp~2bE!

12exp~2bE!
1ERE2D . ~26!

The theory presented above describesincoherentnuclear ab-
sorption, which is valid only for theinelastic contribution.
Due to the relatively small cross section of inelastic abso
tion the experimental data in this case are proportional to
absorption probability. In contrast to that,elastic interaction
of x rays with nuclei may also proceedcoherently. In this
case the x-ray field in the sample is governed by forw
scattering,15 which significantly influences the absorptio
process. The signal, which is measured in the experim
~delayed fluorescence radiation!, is no longer proportional to
the absorption probability. It can be described by the m
extended theory.16 Therefore the experimental energy spec
of nuclear absorption do not provide the correct ratio of el
tic and inelastic contributions. Thus it is of interest to co
sider the energy momenta separately for the elastic and
elastic parts of the absorption probability.

We note that the probability of elastic nuclear absorpt
W0(E) as determined by Eq.~8!, leads to the zero momen
tum ^E0&W0

5nr
21(mf m(k), whereas all other moment

equal zero. Therefore, the relations~23!, ~25!, ~26! hold for
the inelastic part of nuclear absorptionW(E)2W0(E) as
well.

IV. CALCULATION OF PHONON PDOS

In this section we address the practical point of the cal
lation of the projected density of phonon states from
experimental data. PDOS can be obtained from the sin
phonon term of inelastic absorption. Therefore this term
to be separated from elastic and multiphonon contributio
In addition, the experimental data are influenced by the fin
n

te
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energy bandwidth of the x-ray beam, whereas in the disc
sion above we assumed monochromatic radiation. There
it is necessary to examine the application of the Lipkin s
rules to the experimental energy spectra and to consider
deconvolution of the data with the instrumental function.

We note that the conventional measurements of inela
absorption5–9 do not allow one to distinguish the differen
sites of the resonant atoms in the unit cell. Therefore in
discussion below we omit the indexm. By these means we
obtain the density of phonon states, which is averaged o
the different sites of the resonant atoms.

Let P(E) be the normalized energy distribution of th
quanta in the x-ray beam~instrumental function of the mono
chromator!. We exclude the elastic part of the absorpti
from our analysis for the reasons discussed in the prev
section, and consider only the inelastic part of the absorpt
The experimental energy spectrumI (E,k) can be repre-
sented as follows:

I ~E,k!5I 0E dE8P~E8!Winel~E2E8,k!

5I 0f LM~k!E dt

2p
expS 2 iEt2

G

2
utu DQ~t!

3$exp@M ~k,t!21#%. ~27!

HereI 0 is the scaling factor andQ(t) is the Fourier image of
P(E). It is evident thatQ(t) is a peak with a characteristi
width w which satisfies the inequalityw@G. For example, if
P(E) is the Gaussian with the standard deviation@random
mean square~RMS!# s, thenQ(t) is also Gaussian with the
RMS s21:

P~E!5
1

sA2p
expS 2

E2

2s2D ,

Q~t!5E dEexp~ iEt!P~E!5expS 2
t2

2s22D . ~28!

Therefore we again may consider the limitG→0 and omit
the term containingG.

The contribution of single-phonon absorption to the e
perimental data is

I 1~E,k!5I 0 f
LM

~k!E dE8 P~E8! S1~E2E8,k!,

S1~E,k!5
ER g~ uEu,s!

E@12exp~2bE!#
. ~29!

We suppose that the functionE21@12exp(2bE)#21 is slow
in the range of the energy width of the monochromator. T
leads to an approximate formula

I 1~E,k!5I 0 f
LM

~k!
ER ḡ~ uEu,s!

E@12exp~2bE!#
, ~30!

where
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ḡ~E,s!5E dE8 P~E8! g~E2E8,s!

5V0(
j
E dq

~2p!3
P@E2\v j~q!#us–em j~q!u2.

~31!

This function is the smoothed PDOS, where thed function is
replaced by the energy spectrum of the monochromator. T
smoothing may be destructive because the functiong(E,s) is
not a slow function in general. It may contain sharp peak
the phonon dispersion branches have plane areas on
curvev j (q) in q space with a small value ofugradq\v j (q)u.
In this cases the deconvolution procedures are desirable

Considering the higher-order terms, we note that the
cursive relation ~14!, which was obtained for the mul
tiphonon contributions to the absorption probabil
S(n)(E,k), is not valid forI n(E,k). Therefore the procedure
which use the recursive relation~14! in order to eliminate the
multiphonon terms from the experimental data are, in g
eral, not exact. Here we propose a quite different approa
which allows one to separate the single-phonon term fr
multiphonon contributions simultaneously with the deconv
lution of the data with the instrumental function.

In the first step we determine the scaling factorI 0 . Simi-
lar to Ref. 6, we use for this purpose the sum rules. The z
and the first momentum of the experimental energy spect
can be found as follows:

^E0& I5E dE I~E,k!5I 0@12 f LM~k!#, ~32!

^E1 & I5E dE I~E,k! E5^E0& I^E
1&P1I 0 ER . ~33!

Here we use that̂E0&P5Q(0)5*dE P(E)51, because the
instrumental function is normalized. It, however, can
asymmetric, therefore the first moment ofP(E) may be dif-
ferent than zero. From Eqs.~32!, ~33! we obtain I 0 and
f LM(k) as

I 05~^E1& I2^E0& I^ E1&P!/ER , f LM~k!512^E0& I /I 0 .
~34!

In the next step we calculate the functionM (k,t) directly
from the experimental energy spectrum using the Fou
transformation as follows:

M ~k,t!5 ln@11J~k,t!#, ~35!

J~k,t!5

E dEexp~ iEt! I ~E,k!

I 0f LM~k!Q~t!
. ~36!

Finally, we perform the reverse Fourier transformati
and obtain the projected density of phonon states as
is

if
the

-

-
h,

-

ro
m

r

D~E,s!5
E

ER
@12exp~2bE!#E dt

2p
exp~2 iEt! M ~k,t!,

g~E,s!5D~ uEu,s!. ~37!

We note that Eq.~35! eliminates the multiphonon process
by means of logarithm function,17 whereas Eq.~36! provides
the deconvolution of the data with the instrumental functio

In addition, we consider the possibilities to verify the r
liability of the experimental data and to check the proced
of their treatment. For this purpose we derive several re
tions, which connect the various energy momenta of the
perimental data with those of PDOS. It is convenient to wr
them as the conditions on the function

Gn~s!5E
0

`

dE g~E,s!En
11Cn~E!

12Cn~E!
,

Cn~E!5
12~21!n

2
exp~2bE!. ~38!

From Eqs.~18!, ~23!, ~25!, and~26! we obtain

G21~s!5
1

ER
lnS 1

f LM~k! D , ~39!

G0~s!51, ~40!

G1~s!5ER
21^E2&W2ER , ~41!

G2~s!5ER
21^E3&W23^E2&W12ER

2 , ~42!

where the momenta of probability density are connected w
the measured data as follows:

^E2&W5I 0
21~^E2& I2^E2&P^E0& I !22^E1&PER , ~43!

^E3&W5I 0
21~^E3& I2^E3&P^E0& I !23^E1&P^E2&W

23^E2&PER . ~44!

These relations follow directly from Eqs.~34!–~37!.
Conditions~39!–~42! can be used for the verification o

the experimental results. In particular, Eq.~39! gives the
comparison of the Lamb-Mo¨ssbauer factor obtained from th
area of the inelastic part of the normalized experimental
ergy spectrum to that calculated from the derived PDO
Equation~40! verifies the normalization of PDOS.

Another possibility to examine the reliability of the ex
perimental data is to compare the results of Eq.~37! for
positive and negative values ofE. The part ofE.0 describes
the PDOS, which is determined from the processes of p
non absorption, while the part ofE,0 describes the PDOS
from the processes of phonon creation. Both functions m
coincide, namely,D(2E,s)5D(E,s). In fact, it is more ac-
curate to calculate the projected density of phonon sta
from the positive part, because the processes of phonon
sorption provide higher statistical accuracy.
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V. SINGLE-PHONON SCATTERING WITH SMALL
ENERGY TRANSFER

The experimental energy spectra of nuclear inelastic
sorption allows one to obtain the PDOS and the Lam
Mössbauer factor. PDOS may be used to verify theoret
models of the dispersion relations and of the interatomic
tential. The most simple analysis can be performed for sm
energy transfer, where only the acoustic phonons particip
in the inelastic absorption. Let us estimateg(E,s) in this
limit.

For the acoustic modesv j (q)5qcj (n), wheren5q/q is
the unit vector alongq andcj (n) is the sound velocity for the
given direction of the phonon propagation. Using the sph
cal coordinates in the integral overq and calculating the
integral over modulusq by means of thed function we ob-
tain

g~E,s!5E2
V0

~2p\!3E0

2p

dwE
0

p

du sinu(
j

us–ej~u,w!u2

cj
3~u,w!

5E2
V0

2p2\3

1

c̄s
3~s!

. ~45!

Here we introduced the mean sound velocityc̄s along the
directions through the relation

c̄s~s!5S 1

4pE0

2p

dwE
0

p

du sinu(
j

us–ej~u,w!u2

cj
3~u,w!

D 21/3

.

~46!

Equations~10! and~45! show, that for small energy trans
fer the probability of single-phonon absorption is appro
mately a linear function of energy:

lim
uEu →0

W1~E,s!' f LM~s!
ER

b

V0

2p2\3

1

c̄s
3~s!

S 12
b

2
ED .

~47!

This function varies slowly with energy, so it is not influ
enced much by the convolution with the instrumental fun
tion. In the cases of negligible multiphonon processes
~47! provides a useful approximation of the energy spectr
of inelastic absorption in the small energy region. This a
proximation helps to eliminate the central elastic peak fr
the experimental data. On the other hand, Eq.~45! allows
one to estimate the mean velocity of sound for the particu
crystallographic direction from the calculated PDOS.

VI. SPECIFIC EXAMPLES

In order to illustrate the theory we present here the
amples of processing the experimental data for the polyc
talline a-iron foil and for the FeBO3 single crystal. As dis-
cussed above, in the case of polycrystallinea-iron @Fig. 1~a!#
there is no dependence of nuclear absorption on the direc
of the incident photon beam. Nevertheless we choose
example in order to demonstrate the reliability of the d
processing, since the data on the phonon DOS ofa-iron are
available13 from neutron scattering. For the FeBO3 single
crystal we consider the energy spectra of nuclear absorp
b-
-
al
-
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i-

-

-
q.

-

r

-
s-

on
is
a

on

for two different orientation of the incident x-ray beam rel
tive to the crystal lattice. One spectrum@Fig. 1~b!# was mea-
sured when the angle between the beam and the@111# axis
was 85°, in the second case@Fig. 1~c!# the beam was paralle
to the @111# axes~see Ref. 9 for the details of the cryst
orientation!. The data were taken at the Nuclear Resona
beamline18 ID18 at the European Synchrotron Radiation F
cility. The energy resolution of the monochromator19 was
1.65 meV. The abundance of the resonant57Fe isotope in
both samples was about 0.95. All data were taken at ro
temperature. The instrumental function of the monoch
mator P(E) was known from the energy spectrum of fo
ward scattering.

In order to use the fast Fourier transformation code
experimental data were smoothed with use of the stand
mathematical technique. This allowed us to decrease the
tistical errors and to obtain the constant step array. The c
tral peak of elastic absorption was removed from the exp
mental spectrumI tot(E) according to the relationI (E)
5I tot(E)2aP(E), where I (E) stands for the energy spec
trum of pure inelastic absorption. At room temperature
contribution of the multiphonon processes is small, theref
according to Eq.~47! I (E) should be approximately linear in
the vicinity of the central peak. This property was used
determine the factora before the subtracted instrument
function. Then the derived energy spectrum of pure inela
absorptionI (E) was normalized according to Eq.~34!.

The density of the phonon states was calculated from
normalized spectrum of inelastic absorption through the f

FIG. 1. Energy spectra of nuclear resonant absorption of s
chrotron radiation~a! in the polycrystallinea-iron foil and~b!,~c! in
the 57FeBO3 single crystal, where the angle between the x-ray be
and the@111# axes was~b! 85° and~c! 0°.
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ward and the reversed Fourier transformations accordin
Eqs. ~36! and ~37!. In practice, the complete deconvolutio
of the experimental data with the instrumental function
impossible, because it would increase significantly the
mained statistical error of the data. Therefore applying
~36! we used the function (11b)/@Q(t)1b# instead of
1/Q(t). This substitution means that the calculated funct
is not the exact DOS, which is described by Eq.~37!, but the
linear combination of the exact DOS and the ‘‘smoothe
DOS @given by Eq.~31!#, with the relative weights of 1/(1
1b) andb/(11b), respectively. In order to reach the effi
cient elimination of the instrumental function one needs
choose the constantb as small as possible. In practice, th
allowed compromise depends on the statistical accurac
the experimental data. In our calculations we usedb50.3.

The calculated DOS for polycrystallinea-iron is shown
in Fig. 2~a!. It is compared to the data from neutro
measurements13 ~solid line!. Two sets of data show goo
agreement, however, our results do not reveal the sharp
at E536 meV. This discrepancy may be connected with
noncomplete elimination of the instrumental function a
with the preliminary ‘‘smoothing’’ of the experimental dat
before the Fourier transformation.

Figures 2~b! and 2~c! show the projected densities of ph
non states for the FeBO3 single crystal, calculated for two
nonequivalent crystallographic directions. The obvious d
ference in two PDOS confirms the anisotropy of phonon
bration in the ferric borate crystal, observed earlier in Ref

FIG. 2. Results of processing the experimental data from Fig
~a! DOS for the polycrystallinea-iron foil, ~b!,~c! PDOS for the
57FeBO3 single crystal in the cases where the axis of projection
the angle of~b! 85° relative to the@111# axes, or~c! parallel to the
@111# axes.
to
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According to Eq.~11!, the peaks of PDOS correspond to th
‘‘high-density’’ areas inq space, whereugradq\v j (q)u is
small for the particular branchj of the phonon modes. The
conventional DOS includes the contributions of all branch
and all high-density areas contribute equally to DOS. In c
trast to that, the contribution to PDOS is determined by
projection of the polarization vectorem j(q) of the particular
branchj to the directions of the x-ray beam. Therefore high
density areas of various branches contribute differently to
projected density of states. Comparison of Figs. 2~b! and 2~c!
shows that the phonons with the polarization vectors perp
dicular to the@111# axis have one main high-density area
q space around the equienergetic surface ofE522 meV,
whereas the phonons polarized along the@111# axis have at
least two such areas, aroundE520 meV and E
530 meV.

For each set of the experimental data the Lam
Mössbauer factor was calculated. Fora-iron we obtained
f LM50.80360.001.20 This agrees perfectly with the data o
Ref. 6 and Ref. 7 (0.80560.003 and 0.80360.003, respec-
tively!. For the FeBO3 crystal we obtainedf LM50.837
60.003 for the crystallographic direction, which has
angle of 85 ° to the@111# axes andf LM50.80060.005 for
the direction along the@111# axes. This confirms the dat
obtained in the previous studies of lattice vibrations in t
FeBO3 crystal9 (0.8260.02 and 0.8160.02, respectively!.

Finally, we have calculated the mean sound velocityc̄ for
two considered crystallographic directions of the FeB3
crystal according to Eq.~45!. For both directions we ob-
tainedc̄5(862)3105 cm/s. This value is close to the da
reported in Ref. 21@transversal modes sound velocityct
5(560.5)3105 cm/s, longitudinal mode cl5(961)
3105 cm/s#.

VII. SUMMARY

We have considered nuclear resonant inelastic absorp
of x rays in the general case of the anisotropic single crys
The derived expressions are similar to those of the Sin
and Sjölander theory10 of nuclear absorption in the isotropi
crystal. However, instead of the conventional DOS, t
theory presented here deals with the projected density
phonon states, which is weighted by the projection of
phonon polarization vector to the direction of the x-r
beam.

We have described the method of calculation of PD
from the experimental data, which is based on the forw
and reversed Fourier transformations. The method prov
the separation of the single-phonon absorption from the m
tiphonon contributions and deconvolution of the data w
the instrumental function of the monochromator. Seve
useful relations between the energy moments of the exp
mental data with those of PDOS are derived, which all
one to verify the reliability of the obtained results.

In conclusion, we note that the developed theory is va
only for nuclearabsorptionexperiment, where the yield o
the products of nuclear internal conversion~atomic fluores-
cence or conversion electrons! is monitored. A theoretical
description of the nuclear inelasticscattering, which consid-
ers the radiative channel of reemission of the incident x-
photon, demands quite a different theoretical approach.
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