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Abstract

First experimental results are presented for a coherent phenomenon in
reflection of radiation by a mirror with a concave round surface. It consists
of interference fringes which arise owing to the interaction of rays under-
going different numbers of reflections on the mirror. An analytical theory of
the phenomenon is given in the frame of a geometrical optics approach in a
small angle approximation. The experimentally measured interference
fringes for the visual light of a Ne—He laser reflected by the round part of
the mirror are in qualitative coincidence with the results of accurate com-
puter calculations performed in the frame of a geometrical optics approach.

1. Introduction

As it is well known, interference phenomena are observed
with coherent radiation characterized by a well determined
wavelength 4 and direction of propagation [1]. Interference
strips arise due to the difference in optical paths of an
integer number of wavelengths between the interfering
beams. In the simple case of plane wavefront beams this
difference arises when the beams intersect each other in
space under the definite angle Af. The ray path difference is
Ari, = A AB where A¢ is the distance between two points
on the fringes pattern. Therefore the distance between two
neighboring strips (the period of intensity oscillations)
equals A, = A/A0. If the angle A0 is small enough then the
fringes can be seen directly even for small wavelengths. Each
interference device has to have a splitter which divides one
beam into two beams and a system of mirrors or other ele-
ments which deflect the direction of the beams to make
them intersect each other.

The classic interference devices like the Fresnel biprism
are usually symmetrical. These caused only the angle
between beams while the absolute ray path difference in the
central position equals zero. Such a device allows to observe
interference fringes even under the condition of poor tempo-
ral coherence when the longitudinal coherence length
exceeds only a few wavelengths. When the source has a high
degree of temporal coherence like a laser or there is a possi-
bility to monochromatize the incident beam as in high
energy X-ray optics this condition is not necessary and one
may consider the asymmetric interference device when dif-
ferent parts of the initial beam interfere directly. One of such
devices is presented and studied both theoretically and
experimentally in this paper. It is the reflection of a parallel
beam by an uneven concave mirror under grazing incidence
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when one part of the beam can make one reflection, a
second part — two reflections and so on. The rays which
perform different numbers of reflections leave the surface
under different angles [see Fig. 1(a)].

For example, with a laser light wavelength 4 = 0.63 pm
and A6 = 2mrad we obtain A¢, ~ 0.3mm. For X-rays with
A=10"*um and A6 = 0.01 mrad we obtain A, ~ 10 pm.
Thus we arrive to a conclusion that the interference fringes
can be observable for both laser light and X-rays. However,
the angle between interfering beams must have different
orders of magnitude. Let r,; be the distance between the
reflecting area of the surface and the detector, 6, be the
angle between the direction of the reflected beam and
the “middle plane” of the surface. Then we can estimate the
distance between different reflecting areas of the surface,

(b)

Fig. 1. (a) Experimental layout. L — Ne-He-laser, O — objective, S — slit
with moving upper edge, M — cylindrical mirror, D — detector (CCD
matrix), (b) Geometrical parameters of the theory. The point c is the centre
of the interference pattern.



Ax =~ ABry/0,, while the distance between different parts of
the incident beam which interfere is Ay ~ry Af. For
example, for 8, ~ 100 Af we have Ay = 2 mm for laser light
and Ay = 10 um for X-rays while Ax = 1cm in both cases.
The estimations performed allows to conclude that this kind
of interference pattern is more easy to observe in a laser
light. On the other hand, it can be used for testing a surface
of mirror of extremely high quality with coherent X-rays
owing to very high sensitivity of X-rays to this kind of inter-
ference.

The limiting case of multiple reflection of the beam by a
concave mirror when the radiation propagates along the
mirror surface are known (see, for example [2]). A practical
implementation of the effect is being developed, the Kumak-
hov lens [3, 4]. However, the interference fringes described
above were out of the study. Nevertheless we think it is of
interest to understand the possibility of this technique to
test the coherence property of a beam especially for syn-
chrotron radiation after a monochromator system. To make
ourselves sure about the result we have first performed the
experiments with a laser source having a great degree of
coherence.

2. Theory

To obtain a qualitative picture of the effect under consider-
ation we shall use geometrical optics. In this approach at a
first stage one has to draw a surface of constant phase of the
incident radiation. For an incident plane wave it is a plane
normal to the beam direction. A ray has a direction normal
to a surface of constant phase at the point of its beginning.
In empty space a ray trajectory is a straight line. After a
reflection of a ray by an even fragment of a surface we have
E; = R,E, where the reflection amplitude R, satisfies the
same rule as the plane wave, namely, Fresnel formulas [1].
When the angle of incidence 0, <./|x| (xy =¢— 1 is the
susceptibility of the mirror matter) the reflection amplitude
R~ — 1.

Let us consider the case where all reflections occur in one
plane (the mirror has a cylindrical shape). Let # be a coordi-
nate along the front of the incident plane wave while £ be a
coordinate along the detector line [see Fig. 1(b)]. The ampli-
tude of the field which is brought by the ray having a begin-
ning at # and the end at & is defined as
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Here we assume that the incident wave has a homogeneous
density of rays while at the detector the rays can have an
inhomogeneous density which is measured by (d¢/dy)~ . In
(1) Ry(n) is the total reflection amplitude, r(n) is the total ray
path length from # to & The functions &(), r(n) and R(n)
are single defined that means, for example, one value of £ for
each value of 5. Nevertheless, the function £(y) may take the
same value for different 5. It means that the reverse function
n(¢) may have a multiple branch structure n(¢). Therefore
the real intensity at the point ¢ is calculated as follows
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Interference fringes are possible to observe in cases where

jmax > 2'
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We shall consider a surface with a round pit of radius R
which is very large compared to the size of the pit, 2a [Fig.
1(b)]. In this geometry all angles are small and we shall use
a linear approximation to make formulas simpler and to
obtain the result in an analytical form. A rectangular coor-
dinate system (x, z) is shown in Fig. 1(b) as well. The equa-
tion of the surface is as follows z = R — ./R? — x* ~ x?/2R.
The slope of the surface at the point x can be characterized
by an angle between a tangent line to the surface and the
X-axis, 0, = dz/dx = x/R. The maximum slope corresponds
to the end of the pit and equals 6, = a/R.

Let the angle for an incident beam equal —#6,,. The ray
path within the incident beam is described in the linear
approximation as z = —0,x + 5 [see Fig. 1(b)]. The solu-
tion in common of this equation with the equation of the
surface gives the x, z coordinates of the point of first reflec-
tion. It is enough to characterize this point by only the x-
coordinate because the z-coordinate is defined by the
equation of the surface. Thus we obtain

[ 2n
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Here we introduce a new ray parameter s. It is evident
that the value of s runs from 0 to 2. Therefore n has values
from —af,/2 to 3af,/2 [see Fig. 1(b)]. The index shows that
this point is the point of first reflection. The angle of the
reflected ray is defined by the general rule 6,, — 0, =
0, — 0,,, in our case 0, = 0, 0,, = —0,, therefore we have
0, =20, + 6, and taking into account that 6, = x;/R we
obtain 6; = 0,(2s — 1). The trajectory of the ray will follow
the perimeter of an inscribed polygon. Therefore, in follow-
ing reflections the angle will change with the same value.
This allows us to write directly for the n-th reflection

©)
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The number of possible reflections is determined from the
condition that the point of the next reflection exceeds the
size of the spherical pit a, therefore s < s, . = 2/2n — 1)
for n reflections.

This means that one reflection occurs for 2/3 < s < 2, two
reflections occur for 2/5 < s < 2/3, and so on. On the other
hand, the equation 5 = 1af,(s*> — 1) allows to define the
boundary of zones in terms of the n-variable. It is conve-
nient to use a dimensionless variable ' = 25/af, = s* — 1.
Let r,; be the distance from the centre of the mirror to the
detector. Then the point of intersection of the outgoing ray
with the detector line is &(n, n) = rq(6, — 0,) + z, — 0, x,,.
Substituting the expressions for 0,, x, and z, = x2/2R we
obtain for the dimensionless variable:

&', n) = 2&/ab, =
=4ri4sn—1)—(2n — 1]s — 1)([2n + 1]s — 1),
®

We are interested in the reverse dependence s = s(¢). The
dependence may be multiple defined s = s,(£). Below we
restrict ourselves only to the case where the distance
between the mirror and the detector is very large ryg > 1
assuming simultaneously that &/ri; can be significant. In
this limit we shall obtain the solution as a power series

Tl = ry/a.
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expansion over 1/r; up to the first order
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The solution (6) allows to determine the main character-
istic of interest, namely, the angle difference at positions of
various beams which intersect at the same point at the
detector [see Fig. 1(a)]. With the use of (4) one has
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Let us make an estimation for ry = 100cm, a = 3.2 cm,
R =20cm. Under these conditions we obtain 6, = 0.16,
req =31.2. At the point ¢ = —aly/2 =n,;,, we have
&= —1, a=1 and according to (6) s,=n"' — 0.008n"3.
The boundaries of the n-th band are defined by s, . =
1/(n — 1/2), 8, min = 1/(n + 1/2). Therefore, the number of
possible bands equals infinity ie. together with the ray
which glances along the surface as a result of infinite reflec-
tions there exist also rays which have made one, two, etc.
reflections. The angles between different rays are different.
Equation (8) gives the estimation Af,, = 0.0126, = 0.0019,
A05, = AB5,3%2 = 0.0022, Ab,, = A0, — AB,; = 0.0003, etc.
For laser light with 4 = 0.633 um we obtain the main period
of oscillations, A¢,; ~ 0.3 mm.

In another point, for example, £ = —1 + 0.88r,; we
obtain s, =1.228n"' —0.012n"3. Now x; = 1.05a and
therefore only two reflections are possible. The angles A6,,,
become larger because a® = 1.5 while the period of oscil-
lations A¢,; ~ 0.2mm. The angle between rays depends on
¢ rather slightly, therefore near some point pure sinusoidal
oscillations will be observed with the same period.

The calculated parameters allows to estimate the intensity
distribution inside any local region at the detector. Let us
assume that the angles of reflection are small enough to
neglect the angular dependence of the reflection amplitude
and to take R(f) ~ —1. Then

IE+A) =3 [In +2Re Y (=1, 1,)"
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Here n,,, is the total number of rays possible for a given
point &, I, and Af,,, are defined by (7), (8) while r,,(¢) =
r(&) — r,(£) is the absolute ray path difference where r,(£) is
the total ray path length from the origin to the point & at
the detector for the n-th band. In calculating the A¢ depen-
dence one can keep the values r,,(¢) constant. This influ-
ences the interference pattern very slightly for a completely
coherent radiation.

Let us consider now a case of finite longitudinal
(temporal) coherence. In this case the observed intensity
must be averaged over the spectral width of the radiation.
Let the function S(4,) describe the spectral distribution of
incident radiation near the wavelength 4. We shall assume
this function to be a normalized Gaussian distribution of
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width ¢, namely, S(1,) = 2(o./7) ! exp (—4435~2). Then
assuming A, < 4 we represent the factor exp [2nir,,/
(A + A,)] as exp (2nir,,,/A) exp (—2mir,, 4,/4%) and calculate
the average value of the second exponential

Cu@= [t o (-2 rion, Jso
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As a result the expression (9) takes the form
IE+A)=Y [1,, +2Re Y (—1*™1,1,)>Cyn
n=1 m<n
2mi
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One can see that the wide spectral width of the incident
radiation leads to decreasing interference fringes similarly to
the Debye—Waller factors in X-ray Bragg diffraction. It is
easy to estimate the temporal coherence needed for observ-
ation of the interference fringes. The bandwidth of the radi-
ation, o, has to satisfy the condition

2

r 1(5)

To use this equation we have to calculate the value r,,(¢)
with better accuracy than considered above. This may be
performed with the result

o< (12)
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Substituting (4) and (6) and conserving only the main terms
we arrive at the expression
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where C does not depend on n while
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m=1
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m=1
For example, if a = 1 (¢ = —1) then r,; ~ af?3. For the

condition considered above (6, =0.16, a =3.2cm), we
obtain the estimation r,; ~ 0.02cm. This leads to a degree
of light monochromaticity AA/A = Afry, = 32+1073 for
A =0.633 um (¢ = 2nm) which is quite reachable for laser
light. On the other hand one can see that the ray path differ-
ence contains about 300 wavelength.

The derived formulas allow to draw a conclusion about
the general properties of the interference pattern. As it
follows from (6) the parameter « increases slightly with
increasing £. In accordance with (8) and (9) we may con-
clude that the period of oscillations will decrease and the
amplitude of oscillations will increase with increasing &.
Possible values of o for different bands follow from (6).



Approximately, the area for a path with n reflections is as
follows

1 1

S L — 1
T+12n 1= 1/m (16)

This formula shows that areas for different reflections coin-
cide very well as there exists a possibility of interference of
many different rays with different numbers of reflections
from 1 to infinity. However, the more number of rays inter-
fere the narrower becomes the region with the centre at
a=1(&=—-1.

3. Experiment and discussion

The experimental layout is given in Fig. 1(a). A Ne—He laser
(A = 0.633 um) and an objective (f = 100m) give practically
a plane wave of radiation. We use a cylindrical mirror with
20 cm radius while the central angle of reflection is 0.32 rad.
A slit is placed directly before the mirror. The lower edge
of the slit always coincides with the front edge of the
concave region of the mirror while the upper edge can move
in vertical direction to change the input aperture of the laser
beam. By means of fine rotation we have the possibility to
set the tangent to the front edge of the cylindrical shape
parallel to the beam axis. The size of the beam is three times
more than that of the input slit. Therefore we have a practi-
cally constant beam intensity in vertical direction in the
limits of the input slit. However we can change the beam
size moving up or down the upper edge of the input slit. By
means of adding gray filters we can adjust the intensity on
the screen to use the full dynamical range of the detector.

A CCD matrix without any objective is used as a detector
(5.5 x 7mm matrix size, 336 x 288 resolution). The matrix
plane is perpendicular to the tangent of the rear edge of the
cylindrical region of the mirror. The distance between the
mirror and the matrix plane is 1m. We have the
opportunity to put the detector at any place of the inter-
ference picture. The matrix accumulation time was 320 ms.
When switching off the laser beam we measure a back-
ground intensity which is about 2-3% of the full detector
dynamic range.

First of all let us give a general picture of the phenome-
non observed. When a simple screen is put behind the
mirror we easily see a rather complicated picture which con-
tains parts with a constant gray level and parts with inter-
ference structures of different kind. If the full concave region
of the mirror is irradiated (the height of the vertical aperture
is 10.24 mm) the length of the whole picture on the screen is
420mm. When the input vertical aperture is decreased by
the top edge of the slit the interference picture on the screen
changes in a rather complex way.

For the first detailed investigation we choose the simpler
part of the picture and use the CCD matrix instead of the
screen to get the best resolution as is shown in Fig. 1(a).
Figure 2 shows raw experimental data while Fig. 3 shows
the same experimental data in numerical form after com-
puter processing. Figures 2 and 3 show three different parts
of the total picture corresponding to the interference of the
rays which perform one and two reflections (a); one, two
and three reflections (b); two and three reflections when the
ray of one reflection cannot pass through the slit (c).

Fig. 2. Raw experimental data. The change of data along the axis of the
cylindrical mirror is due to an inhomogeneous beam and other reasons (see
text). A, B and C pictures correspond to Fig. 3 (see title).

The vertical direction of Fig. 2 practically coincides with
the £-axis in Fig. 1(b) while the horizontal direction of Fig. 2
is perpendicular to the scattering plane (shown in Fig. 1).
One can see a periodical change of the gray level in vertical
direction sometimes of different amplitude. To obtain
numerical data from these pictures we use the following pro-
cedure. The digital intensity measured by the pixels having a
position strictly along the interference strip has been sum-
marized. As it was mentioned before these interference strips
have almost horizontal direction in Fig. 2. Therefore, any
inhomogeneity in the registration by different pixels, the
inhomogeneity of the input radiation and the inhomoge-

Physica Scripta 57



- - 4= == - == =2 == == 2= rr==2J 5 7 7/ A A

SIS St A Rt N NS ) B B S S S B s B B B B B B B B B

Relative intensity
. —~
T T

o

R —

M —
P—_ S Y
R ——_—

R ——]

P

I
R ————
—_— .
P e———— Y
I ——_

P ————}

— ..

e
PR —

D — =
P ——
R —

P
T

T T T T T T T T T T T T T T T T T T T T T T T T

Relative intensity
e

1. e Fa =
r o~ & ‘<Y
g 8 A ;’\" g % s \—
5 L PR ;% 3 £ |
£ 6 . iy -
g Fos L 1
= 4 - ° % N s 2 ° S -
= s v 7 * LI
7} 3 v £ 8 : 1 C
~ L ; W Y i
2 i&f fg%;a A%
[ U R R B B
0 1 2 3 4 5

Distance (mm)

Fig. 3. Experimental interference pattern under different conditions: A —
the waves after 1 and 2 reflections interfere, B — the waves after 1, 2 and 3
reflections interfere, C — the waves after 2 and 3 reflections interfere while
the wave after 1 reflection is cut off by a slit.

neity of the mirror surface become of less importance. All
these inhomogeneities can easily be seen in the raw data as
the aperiodic blackening changes in the horizontal direction
in Fig. 2. All summarized data were normalized to unity. We
do not eliminate the background and the noise from the raw
experimental data.

The experimental points are shown in Fig. 3 by circles
which are connected by straight segments to have a better
view of the dependence. Figure 3(a) gives the intensity dis-
tribution measured on the place of the screen where two
rays interfere after one and two reflections, correspondingly.
The period of oscillations in vertical direction is about
A¢,, = 0.2mm. Figure 3(b) gives the intensity distribution
measured inside the region where three rays interfere after
one, two and three reflections, correspondingly. The period-
ic structure with the period A¢;, =02mm remains but
there exists an additional modulation with a period A¢,; =
1.3mm. Figure 3(c) shows the intensity distribution mea-
sured at the region where two rays interfere after two and
three reflections, correspondingly, while the ray undergoing
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one reflection is cut off by a slit. Here the periodical struc-
ture of the period A¢;, = 0.2mm disappears and only the
structure of the period A&,; = 1.3mm is clearly visible.
Figures 3(b) and 3(c) correspond approximately the same
region but to remove rays of the first zone we simply move
down the upper edge of the slit from 10.24 to 1.15 mm.

We have performed theoretical calculations in the frame
of a geometrical optics approach for the specific parameters
of the experiment. We did not use the small angle approx-
imation of the analytical theory presented above. We have
found a qualitative coincidence of the results of calculations
with the predictions of analytical theory as well as with the
experimental results obtained. This paper is devoted only to
the presentation of the idea and first experimental results.
We do not perform a complete analysis of fine disagree-
ments. The qualitative coincidence of experimental and cal-
culated results allows to conclude that the main peculiarities
of the phenomenon are described well enough in the frame
of the geometrical optics approach. Nevertheless, it is of
interest to discuss some discords.

One can see that the experimental sine curve in Fig. 3(a) is
slightly modulated. The same occurs in Fig. 3(c). As for Fig.
3(b) we want to notice that the relation of short and long
periods, A¢;,/A&, 5, of oscillations in the experimental curve
becomes slightly different compared to the calculated value.
In addition, some new peculiarities of the intensity behav-
iour in the boundary region between two neighbour zones
were observed. We think that the main reason for this dis-
agreement is the possible diffraction phenomena which arise
for long distances between the mirror and the detector (in
our case it was 1m). These diffraction phenomena can be
evaluated theoretically in the frame of the Fresnel-Kirchhoff
approach. We plan to perform this detailed analysis in
further work.

In conclusion, we note that the coherent phenomenon
considered here may be useful for an investigation of the
source characteristics (for example, for a synchrotron radi-
ation source) as well as shapes and surface roughnesses of
mirrors.
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