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Abstract

A novel algorithm for a reconstruction of the phase shift profile produced
by a transparent object in a coherent wave, from a set of two recorded
intensity distributions is presented. Contrary to well known algorithms of
in-line holography, the method works under the near-field condition where
the size of the first Fresnel zone is much less than the characteristic size of
the object’s details. Such a condition is typical for an in-line holography
experimental setup with the use of coherent high energy X-rays
(E > 20keV) produced by synchrotron radiation sources of the third gener-
ation like ESRF. The novel algorithm is fast and insensitive to a partial
loss of coherence or weak detector resolution. The method can be applied
to X-ray refraction tomography.

1. Introduction

As it is well known, transparent objects produce only a
phase shift of the light wave passing through them. This per-
turbation cannot be measured directly by a detector which
feels only an intensity variation. If the object is illuminated
by a coherent wave then the inhomogeneous phase shift
transforms to an inhomogeneous distribution of intensity in
space at some distance from the object. This fringe pattern
accumulates the information about the phase shift profile
and can be called in-line hologram similarly to the well
known technique for opaque particles [1-3]. The method of
reconstruction of the phase shift from the hologram has to
be developed for practical use of in-line holography. In stan-
dard Gabor in-line holography the image arises in space at
the same distance from the hologram as in recording when
it is illuminated by the same coherent wave (a plane wave,
for example). Such a technique of reconstruction is not pos-
sible for a phase object because the phase of the wavefield is
invisible. Therefore, computer methods of recovering the
phase from an inhomogeneous intensity have to be applied.

A lot of different algorithms have been proposed in recent
time for a solution of this task in the case of complex-valued
objects which produce refraction and absorption of the radi-
ation simultaneously (see, for example, [4—7]). The task can
be formulated in this case as a phase retrieval from two
intensity measurements at two planes separated by a defi-
nite distance. From the point of view of Fresnel diffraction
we should distinguish between the far-field condition and
the near-field condition. Only the far-field condition, when
the size of the first Fresnel zone is comparable with the size
of object, is acceptable for these algorithms. In addition, the
wave scattered by the object must be much smaller than the
incident wave. These conditions are easy to fulfil in the case
of laser illumination of relatively small objects.

Recently, the possibility of imaging the transparent object
with coherent high energy X-rays produced by a synchro-
tron radiation source of the third generation like ESRF has
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been discovered [8] in the experimental setup of in-line
holography. This fact opens the possibility of hard X-ray
tomography [9] based on a refraction effect which is much
more sensitive in the hard X-ray domain of electromagnetic
radiation as compared with the widely used absorption
tomography. However, owing to the extremely small wave-
lengths it is very difficult or impossible to fulfil the far-field
condition in the in-line holography experimental setup.
Instead, near-field or intermediate conditions are typical.
Among the known algorithms of phase retrieval from two
intensity measurements only a modified Gerchberg-Saxton
iterative algorithm [10, 11] seems to be free from the far-
field and small scattering conditions. The technique consists
of simulating the direct and back propagations of the wave-
field from one plane of measuring to another plane with the
use of a propagator function. Starting with an arbitrary
phase profile the computer program keeps the calculated
phase profile while it replaces the modulus of wavefields by
the true known value at each step of iteration. The initial
Gerchberg-Saxton algorithm is based on Fourier transform-
ation which is valid in Fraunhofer (far-field) diffraction.
Nevertheless, the same procedure works for any other pro-
pagator function.

As it is known, this method requires a large number of
iterations. Moreover, the convergence is not guaranteed in
the general case. Our computer application of this method
for hard X-ray in-line holography shows that it works under
far-field and intermediate conditions but does not work
under the near-field condition which only exists with
extremely high-energy X-rays (E > 40keV). Another diffi-
culty of using this method under the near-field condition is
that the propagator becomes a very high frequency oscil-
lating function and the use of a Fast Fourier Transform-
ation procedure cannot give the necessary accuracy.

Thus, the possibility of refraction tomography with hard
X-rays depends on the successful solution of the problem of
phase shift reconstruction under the near-field condition.
No approach applicable to laser light illumination can be
used and it is necessary to find a quite novel way of solu-
tion. In the present paper I propose an approach which is
based on ideas of geometrical optics. As it is known, geo-
metrical optics work just under the near-field condition,
namely, at small distances and short wavelengths when the
wavelength of radiation is much smaller than the character-
istic size of the object.

In the next Section a general formulation of the problem
is given. Here I consider only a one-dimensional object
which has a variable structure only in one direction in a
plane perpendicular to the direction of the incident plane
wave (a fiber, for example, see Fig. 1). The properties of the
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propagator function together with standard reconstruction
techniques are also analyzed. In Section 3 a novel algorithm
is formulated. The algorithm is based on an approximate
analytical calculation of the convolution integral. As a
result, a differential nonlinear equation has been found
which allows to calculate the phase shift profile from the
known difference between the recorded intensity distribu-
tions at two distances. The algorithm is much faster than
the Gerchberg-Saxton algorithm. It is of interest that the
partial loss of spatial coherence owing to the finite size of
the source and a finite detector resolution does not lead to a
loss of information about the phase shift profile. Moreover,
the characteristic smoothing of recorded fringe patterns is
necessary to avoid the influence of interference between dif-
ferent rays at the same point. A typical example of the appli-
cability of the technique proposed is demonstrated in the
last Section.

2. Standard object reconstruction algorithms

Let us consider a simple experimental setup of in-line holog-
raphy (Fig. 1). The object is homogeneous along the Y-axis
and has finite sizes in the X—Z plane. It is illuminated by a
plane wave with a unit amplitude exp(2wiz/A) (coherent
beam of radiation) moving in the positive z-direction. Here
A is the wavelength. Thanks to the refraction and the
absorption of the radiation by the object and the sub-

sequent diffraction of the perturbed wavefield, the homoge-
neous distribution of the plane wave transforms to
complex-valued functions of x, namely f;(x) and f,(x) at the
positions z; and z,. The holograms record the intensity as
the square modulus of the complex wavefield

Hy() =i Hyx) =) @)

while the wavefields themselves are connected in accordance
with the Fresnel-Kirhhoff principle [12] by means of con-
volution with the propagator function

folx) = jdlez(x — %1)f1(x1) = Po(x — x1) *f1(xy)- v

Here and below the sign * means a convolution as an inte-
gral over the variable appearing twice. In a usual approx-
imation when the transversal dimension of the holographic
images are much smaller than the distance z between them
we can use a small angle approximation of the spherical
wave and omit the terms in phases connected with a longi-
tudinal movement. Then the propagator for a one-
dimensional case can be written as follows

12 . x?
P,(x) = (i42) exp (m )._z> 3

where z = z, — z, is the distance between the holograms.
Hereby, the problem is to calculate the phases of the wave-
fields f;(x) and f,(x) from two intensity distributions (1) by
means of connection (2) with a propagator function (3).

Taking into account the known expression of the Fourier
image of the propagator

po=[axew iorw=on (i Zs) @

and the known property of the convolution one can easily
verify the following properties of the propagator (3)

Pz1(x - X1) * Pzz(xl - x2) = Pz1 +zz(x - x2)7

Pz1(x - xl) * P,zkz(xl - X2) = Pn—zz(x - x2)’

P,(x — x1) % 1(x1) = 1(x),

Po(x — x1) = 6(x — xy). &)

Here 1(x) means the constant function which equals unity
for all x, while d(x) is a standard Dirac delta-function which
equals infinity for zero argument and zero for all other
values of argument.

These properties allow to express the hologram H,(x) in
terms of the object function o,(x) = f(x) — 1 as follows

Hy(x;) =1+ P,(x; — x)*04(x)
+ P}(xy — x)*0f(x)
+ | P(x; — x)*0,(x) >, ©6)

A standard computed reconstruction technique (see, for
example, [3-6]) corresponds to the optical reconstruction
setup, namely, illustrating the hologram itself to obtain the
object at the same distance. It considers the function

Ro(x) = P¥(x — xq)* [H,(x,) — 1]
= 04(x) + P3(x — x4) * 0%(xy)
+ PHx — x1) % | P,(x; — X5) % 04(x,) | Y

Physica Scripta 56



16 V. G. Kohn

This function contains three terms which are called an
object, a twin-image and an intermodulation term. Under
the far-field condition (Fraunhofer diffraction) when Az > d*
where d is the characteristic size of the object function, one
obtains the focused image, the defocused twin-image and
smoothed small intermodulation term as a background.

However, even in this case the function Ry(x) is not an
object function in an integral sense because of a pure trans-
parent object

jdXRo(x) = 1(x) * P}(x — x1) * [H,(x;) — 1]

= del[HZ(xl) —1]=0. ®)

The last relation shows simply that the transparent object
cannot change the integral intensity. Such a relation is
absent for an object function itself. Therefore the standard
reconstruction technique is based on focusing the object
image with simultaneous defocusing of all other parts of the
function. When the far-field condition is not met eq. (7)
becomes a particular form of integral equation for calcu-
lating the object function by means of numerical iterative
methods. However, under the near-field condition of small z
the propagator P (x) =~ d(x) and all three terms of (7)
become focused. In this case the integral equation in unac-
ceptable for a computer calculation.

The modified Gerchberg-Saxton algorithm considers
direct and back propagations of the wavefield from one to
another

05(x1) = P,(x; — x)* 04(x),
01(x) = P}(x — x) % 05(x,) )
where

0x) = /() — 1.

It is possible to formulate an iterative process which sup-
poses the calculation of 0, from o,, then o, from o0, and so
on. Starting with an arbitrary phase profile (for example,
zero) for fi(x) one can replace the modulus of the complex
functions by the measured value at each step. The properties
of this process can be studied only by computer experiments
because the analytical theory is absent. The practice shows
that this process converges successfully in the cases when
the object covers a limited number of Fresnel zones and the
outer part of the image recorded is comparable in size with
the object shadow. Under the near-field condition this algo-
rithm does not work.

3. Novel approach to a phase retrieval problem under the
near-field condition

Let us consider once again eqs (1)—(3). Under the near field
condition Az < d?> the propagator is a significantly local
function which makes the region of small values of its argu-
ment in the integral to be preferential. In accordance with
(3) the size of this region equals approximately Ax, = \/A_ .
For example, when A =3+10"°cm (E = 40keV), z = 3cm
one evaluates Ax, as 1 pm. Let us assume that the complex
argument of the function f;(x) is smooth enough inside a
region of this size. Then we can use the following approx-
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imate representation of the function f;(x) in the integral (2)

filxy) = exp {&(x,)},

&xq) = &) + E)xy — %) + E"(Nx; — x)*/2 (10
where

; ,_dE, _d¥%
£=d+l¢, é _dx’ é _dxz' (11)

Substituting (10) in (2) and making a shift of variable of inte-
gration x; — x = X} — x, one obtains instead of (2)

£09 ~ (122) 71 fdxl exp (é FEn by (c" + ‘)x) (12

where ¢ = Az/2xn is a small parameter. Here we assume that
only one region inside the integral (2) is essential with x, ~
x and the limits can remain infinite without loss of accuracy.

The integral (12) is calculated analytically with use of
table integral [12]

de exp (+bx — cx?) = (g)l/zexp (Z—i) 13)
As a result we obtain

fo%) & (1 — i) "1 exp (é + % (lf—wé)) (14)
Let us represent f,(x) as

fax)=exp {n(x)},  n(x)=p+iy (15)

and consider the value ¢£” to be small enough to use a
power series expansion up to a second degree. As a result,
we obtain the approximate local relation between 5 and
derivatives of ¢ in each point
ie . ie g2
n ~ 6 += 6/2(1 +18€”) += 6” _z 6”2' (16)
2 2 4
We are interested in the real part of this relation which rep-
resents a differential equation for the phase ¢ of the
complex function f;(x). It is convenient to write this equa-

tion in terms of the variable x, = ¢¢’ in the following view
convenient for the iterations

2 — f)— e2(%a” + 2a"?) — 20'x0 + 0" X2 + 1x2
1—2a'x, ’

Xo= a7
This is the main equation of the algorithm. The quantities «,
o', a”, B are known from measurements, while x, is a value
which we need to find for calculating the phase shift profile.
A practical implementation of the algorithm which I used
in the calculations presented in the next section, is as
follows. One chooses the width of the image region and
introduces a set of points x;, j = 1,..., N with a step d. The
region may coincide with the measured data. Then one uses
the approximate net values for the derivatives
o = Xj+1 — Oj—q ,

2d

g ey 0y — 20
aj _— .

d2

(18)

At the beginning one may start with x,; = xp; = 0 for all j
and calculate a new value of x; from eq. (17). Then one uses
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the relations
d ! 7
Xoj+1 = Xoj T E(xoj' + Xoj+1)

d

Pjr1=P; + % (Xo0j + Xoj+1) (19
to obtain new values of x,; and ¢;. The boundary condi-
tions are naturally x,; = ¢; = 0 for j = 1. The self-consistent
solution has to give the same for j = N as well. However, it
is very difficult to obtain the last limit values at each step of
iteration. Moreover, owing to the fact that eq. (17) is
approximate, these conditions may not be fulfilled even after
a solution. To fulfil this one can use an artificial trick,
namely, to redefine the calculated values x;; at each step of
iteration by means of the relation

xp; = Xo; + C1x55 + C5 X5 (20
where the coefficients C; and C, have to be found from the
conditions x,; = ¢; = 0 for j = N. It allows to include these
conditions in the iterative procedure to improve the algo-
rithm. Really, to find the coefficients C, and C, I searched
the minimum of the functional &(C,, C,) = x2y + ¢3> by
means of multiple calculations of (19). New values of x,,; and
Xo; are used in eq. (17) once again and so on up to the
moment when all values of the phase ¢; bcome unchanged
within the chosen accuracy at the new step of iteration.

The convergence of the algorithm depends on the quality
of data. Let us discuss this point in more detail. The approx-
imation (12) to the integral (2) is valid when the equation
for x,

2 (x—x) + ) =0 @1

Z

has only one solution with x as a parameter. In accordance
with the stationary phase method [13] the solution of (21)
gives just the point of stationary phase of the integrand. If
the phase shift profile is smooth enough then indeed one
solution only may exist at the point x, & x because under
the near field condition the value Az is small. The difference
between the points x; and x just describes the inclination of
a particular ray from the Z-axis owing to inhomogeneous
phase distribution. However, real objects, for example fibers,
contain regions near the boundary where this condition is
not met. Indeed, for a round fiber the phase shift profile is as
follows

4nR x?

— g _ 22
$)=—0—= [1-75 (22)
where 0 is a decrement of the refractive index, R is the
radius of the fiber. One can see that ¢'(x) equals infinity at
x = +R. This means that each fragment of the complex
object having such a structure, will incline the rays in the
outer part at arbitrary angles. As a result, we obtain two or
more solutions of (21) in some regions of the hologram. The
existence of several stationary phase points gives a rise of
fast oscillations of intensity thanks to the interference
between the good ray which is inclined at small angle and
several bad rays of small amplitude which are inclined at
large angles. These oscillations are clearly seen in a com-
puter simulation with a completely coherent incident wave

(see the next Section). However these can only be partially
recorded in an experiment owing to a partial loss of
coherence.

It is clear that fast oscillations of small amplitude are
undesirable for both the experiment and the method pre-
sented. The latter supposes a single-valued correspondence
between the rays leaving the first hologram plane and those
entering the second hologram plane. That is why before an
application of the method the measured data have to be
smoothed by averaging over a region of size 2\/E or more.
This allows to provide the convergence of the procedure by
means of both eliminating the numerical difficulties and the
elimination of undesirable interference between good ray
and bad rays. As a result, the derivative of the phase shift
becomes smoothed which leads to a smoothed phase shift
profile. Therefore small details of the phase shift profile may
disappear while the main details are reconstructed well as it
is demonstrated in the next Section.

4. Computer simulation

The main application of the phase retrieval method is hard
X-ray refraction tomography. That is why I have considered
for a computer simulation the object shown in Fig. 1,
namely, a complex of four fibers of different matter: boron
with a tungsten core, aluminum and silicon. The fibers have
different radii and position. The energy of the X-rays is
E = 50keV (4 = 0.248 A). It is convenient to make one mea-
surement of intensity just after the object. In this case the
function f;(x) really has the form of an exponential function

f1() = exp {¢(x)},

&x) = —4/1—“ i RB, +i6)_[1— (x;R;ﬁ

where the square root of the negative argument is assumed
to be zero, f; is the index of absorption, J; is the decrement
of the refractive index, R; is the radius and x; is the position
of the j-th fiber. These parameters are shown in Table I. The
o value for W is given after subtraction of the B value. As it
follows from Table I, tungsten only is able to absorb X-rays
while all other materials are practically transparent. This is
clearly seen in Fig. 1 where the intensity profile just after the
object is shown as a first hologram.

The object considered is out of the applicability of the
method in a pure sense (see above) because the function &(x)
is not a smooth function near the boundary. So, in order to
verify the method in a pure sense let us consider, first of all,
the results for a smoothed profile &(x) which was obtained
from &(x) (23) by convolution with a Gaussian of 20 pm half-
width. The holograms of this artificial object at zero dis-
tance and z, = 20cm are shown in Fig. 2. Both intensities
have a unit background and a second curve is shifted verti-
cally by 0.2 to have a better view. The second curve differs

23)

Table I. Parameter values for computer simulations

J M R (pm) x (pm) B- 107 é-107
1 B 30 —20 0.00002 179
2 w 10 —20 0.198 10.7

3 Al 20 30 0.00091 2.14
4 Si 0 12 0.00107 191
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Fig. 2. Relative intensity distribution in two holograms for a smoothed
object.

only slightly from the first one and both curves are smooth
enough. A direct application of the method allows to recon-
struct fastly the phase shift profile for the object. No addi-
tional smoothing is necessary. The result is shown in Fig. 3
where the thin curve is an original phase shift curve while
the thick curve is a reconstructed curve. One can see that
the difference in contrast is very weak and there may arise
experimental difficulties to record this small difference.
However, I suppose that the difference can be measured
accurately and consider small z especially to demonstrate
the possibility to work under the near-field condition. Natu-
rally, for this smooth object the method works for longer
distances as well with a better contrast.

Holograms for a real object are shown in Fig. 4. The
second curve is shifted by 1 vertically. Thanks to the abrupt
boundaries a strong contrast and strong interference fringes
arise even at a distance z, = 5cm. The data of Fig. 4 as well

4 -

Phase profile

5 E
6 g

7 F

‘10 ] T T T T T LI
-70 -50 -30 -10 10 30 50 70

distance (um)

Fig. 3. Original (thin curve) and reconstructed (thick curve) phase shift
profiles for a smoothed object.
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Fig. 4. Relative intensity distribution in two holograms for a real object.

as all other data were calculated with a step 0.1 um. Natu-
rally, it is impossible to use the data of Fig. 4 in the method
proposed and it is very difficult to measure the fringe
pattern because the resolution of the modern detectors (the
nuclear films) does not exceed 1 pm. To eliminate the unde-
sirable interference fringes one can make the procedure of
smoothing. It occurs just in an experiment under the condi-
tions of partial loss of coherence and finite detector
resolution. Fig. 5 shows the result of smoothing the data by
means of a Gaussian with a half-width of 2 pum. Here the
vertical shift is 0.5. It is clearly seen that the interference
fringes disappear while the contrast is good enough to
record. The result of the application of the method to these
data is shown in Fig. 6. One can see that there is a corre-
spondence between the original phase shift profile (thin
curve) and the reconstructed profile (thick curve). Thus, the
method can be used for such objects as well. The advantage
of this technique is the fact that a loss of coherence and a

Relative Intensity

5 — . ' w
70 -0 -8 10 10 30 5 70

distance (um)
Fig. 5. The curves of Fig. 4 smoothed by a Gaussian of 2 um halfwidth.
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Fig. 6. Original (thin curve) and reconstructed (thick curve) phase shift
profiles from data of Fig. 5.

bad detector resolution are preferential. Therefore this
method is a find for poor experimentators.

Let us discuss the reason for the small difference between
original and reconstructed curves. The maximum difference
arises in the central part near the tungsten boundary. It is
owing to the fact that smoothing can kill the interference
fringes between a good ray (slightly inclined) and bad rays
(significantly inclined) but cannot kill the intensity itself of
these bad rays which still exists in the contrast at one place
and is absent in another place. This intensity is not taken
into account in eq. (17). Therefore the second derivative of

z,=5cm
z\ 15 _’MU\W_/\;_
o
]
E )l
[
2
é z,=0
" ’_\/
.5 T T T T T M T T T
- 70 -50 -30 -10 10 30 50 70

distance (pm)

Fig. 7. The curves of Fig. 4 smoothed by a Gaussian of 5 um halfwidth.
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Fig. 8. Original (thin curve) and reconstructed (thick curve) phase shift
profiles from data of Fig. 7.

the phase shift becomes overestimated or underestimated in
different points. I shall try to find a way to take this fact
into account in a future work to improve the method.
However, today I don’t see how to do this. It is of interest
that a more rough smoothing leads to a worse contrast but
gives a better result for a reconstruction. This is demon-
strated in Figs. 7 and 8 where the same calculation was per-
formed after a smoothing over 5pum. Despite the fact that
abrupt boundaries are not reconstructed, the average corre-
spondence becomes better.
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