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A general theory of X-ray Bragg-Fresnel focusing by both the flat
and the elastically bent perfect crystals having the phase zone relief
on the surface in a sagittal direction is proposed for the explanation of
the experimentally observed focusing effect. A general case of the X-ray
spherical wave asymmetrical Bragg diffraction is considered. A small an-
gle approximation is used for the description of the radiation transfer in
the space between the Bragg-Fresnel lens and the observation plane. A
special attention is paid to the consideration of the finite wavelength
band of the radiation as well as the finite size of the source. It is shown
that for a monochromatic incident wave the intensity on the topograph
depends on the position along the focus line. This dependence is due to
both the variation of the Bragg diffraction reflectivity and the change of
the phase difference between the different phase zones. The existence of
the wavelength band of the radiation leads to a homogeneous intensity
distribution along the focus line. Each point of the line contains the con-
tributions from all other points having the different intensity in the case
of monochromatic wave. In the symmetrical case the lens of the finite
length gives the image of the finite size. In an asymmetrical case the
additional increase of the image size takes place. The meridional focus-
ing by bent crystal gives the asymmetrical form of focus with the size of
order of the micrometer.
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1. Introduction

The optical devices play a very important role in various spheres
of the human life and the science. The electromagnetic radiation of the
different parts of the spectrum brings the unique information about the
structure of the universe on one hand and about the inner structure of the
nuclei on the the other hand. The appearance of the artificial powerful
sources of the electromagnetic radiation at the synchrotron radiation
beamlines opens the new branch of optics and stimulates the intensive
investigation of new elements of the optical experimental arrangements.

For the parts of the electromagnetic radiation spectrum from a vi-
sual light up to soft X-rays the main coherent effects are the reflection
and the refraction of the light beam at the boundary of two optically
inhomogeneous media as well as the phase zone plates. As for the hard
X-rays it is difficult to use these effects because of a very weak interac-
tion of X-rays with a matter (the susceptibility lies within 1076 —107?).
As a consequence the very small reflection and refraction effects as well
as the very small dimension of phase zones take place.

However for hard X-rays optics one has a new remarkable coherent
effect, namely, the Bragg reflection by perfect single crystals. It opens
the possibility to incline the X-ray beam by any angle with a hundred
percent reflectivity within the narrow range of the angles of incidence of
about few seconds of arc. This effect is used widely in different experi-
mental arrangements for collimating and monochromazing the incident
X-rays, especially, at the synchrotron radiation beamlines. The following
development becomes possible thanks to a significant success in the tech-
nology of microstructuring which allows to create the arbitrary relief on
the silicon single crystal surface with the teeth of about few micrometers
height and from few to fraction of micrometer width. The combination
of two effects, namely, the Bragg reflection and the phase zone focusing
gives rise to the new optical device for hard X-rays — Bragg-Fresnel lens
(BFL) which allows to obtain the line or point focus having the size of
about tenth fraction of micrometer and to perform different transforma-
tion of angular properties of the incident synchrotron radiation beam.

The first proposal of Bragg-Fresnel optics was made in [1,2]. As a
result of the experimental study it was foung that the best focusing
effect arises in the geometry where the Bragg diffraction and phase zone



focusing works in different directions [3-9]. In recent years the different
applications of BFL on the ESRF (Grenoble) beamlines were performed
(see the review [10] and references therein). Both the circular and linear
BFL were used in the experiments. The circular BFL gives the point focus
spot but it works in the arrangement of back scattering and therefore it
is limited by the definite X-ray wavelength. The linear BFL gives the
linear focus but it can be applied for various wavelengths. The change
of wavelength leads only to the change of the Bragg angle and the focus
distance. The combination of two perpendicularly oriented linear BFLs
can give point focus as well.

Another way to obtain the point focus with a linear BFL is to use
the elastically bent crystal. Such BFL combines the mirror focusing (in
a meridional plane) and phase zone focusing (in a sagittal plane) and
gives the focusing with a very high intensity inside the focus spot. First
experimental testing the BFL of this type is performed in [11].

All the cited papers present the results of the experimental investi-
gation of different properties of the Bragg-Fresnel lenses while the con-
sequent theory is absent up to now. The goal of this article is just to
present the general theory of hard X-ray Bragg-Fresnel optics. A general
case of the spherical wave asymmetrical diffraction by elastically bent
crystal having the phase surface relief in a sagittal plane is considered.
A small angle approximation is used. A special attention is paid to the
small deviations of the wavelength inside the narrow wavelength band
of the previously monochromized incident radiation as well as to the
positions of point sources within the limits of the source size.

2. General equations

The experimental arrangement is shown in Fig. 1. The spherical wave
from the point (&5, 75) at the source plane with a centre at the point S
falls on the surface of a crystal plate of thickness ¢. The intensity of
reflected wave is fixed by the film. The distance from the source to the
crystal is Lg, the distance from the crystal to the film is L;. Let us
choose the reference coordinate system with the origin on the surface of
the flat crystal so that the direction SO, which is represented by the unit
vector Sy, satisfies exactly the Bragg condition (kg 4+ h)? = K? where
ko= K Sy, K =271/, A is a centre of the considered wavelength band
and h is the considered reciprocal lattice vector. The notation kg + h =
k1 = K S; will be used. The scattering plane is (X, Z) and the vectors



S0, S1 have the coordinates Sg = (¢g, 0, v ), S1 = (¢1, 0, —y; ). Here
co = cos by, ¢c; = cos by, yg = sinfy, v = sinby, O is the angle between
the direction Sy (incident beam) and the X-axis, 0; is the same for S
(reflected beam).

The current wavelength value A enters in the equations by means of
wavenumber 27 /A = K (1 —§) where 6 = (A —A;)/A = AX/A is a small
relative wavelength shift from the centre of the wavelength band. The
high sensitivity of the diffraction effect makes it necessary to analyse the
influence of the wavelength dispersion in an explicit form.

The intensity distribution on the topograph will be described in terms
of the local coordinate system (£, n) where n-axis coincides with Y-axis
and 7, axis while £-axis is normal to the S direction. Similarly the &, axis
is normal to the S direction. To analyse the diffraction inside the crystal
by means of Takagi equations [12] the oblique-angled coordinates sg, s1
will be considered which are determined by the relation » = 59.5¢+51.51.
It is easy to obtain that & = cg sg 4+ ¢1 51, 2 = Y0 So — V1 S1-

The Bragg angle is g = (0p+01)/2. The notation v = sin 20p will be
used as well. For the sake of simplicity only the case of o-polarised radi-
ation will be considered. In the case of m-polarisation only an additional
polarisation multiplier will arise. In our case the solution of Maxwell’s
equation inside the crystal volume can be written in the form

E(r) = Ey(r) exp (ikor) + E1(r) exp (ik1r) (1)

After substituting (1) in the Maxwell’s equation and eliminating the
rapid oscillations by taking into account the crystal periodicity and the
small value of scattering amplitude by an individual atom one can obtain
the well known Takagi equations [12] in the following form

dE , ; .

EU+'LK6E0 = %K [x0 Eo + xjexp (ihu) Eq |,
0

dF, . ] .

—dS +’LK(5E1 = §K [XheXp (—’Lh’u) E(] +X0 El] s (2)
1

where xo0, Xn, Xj are zero, h and —h Fourier components of the crystal
susceptibility. The derivatives over the oblique-angled coordinate mean
the following
d d n d d d d (3)

= ey — —, L= — -y —

dsg 0 d " dz dsq Vdz m dz
The phase factor exp (ihu) describes the additional phase due to atoms
desplacement in the lattice of elastically bent crystal plate.



The boundary of the crystal is the plane at z = 0 which corresponds
to the top of the surface relief (see Fig.1). The nondiffracting areas under
the plane z = 0 will be taken into account as the areas with xg = x5, =0
in solving the Takagi equations. Therefore it is sufficient to put the
amplitude of the incident wave A(x,y) = Ey(z,y,0) as the boundary
condition. The result of solution of the Takagi equations must be the
function B(z,y) = E1(z,y,0) at the same plane.

Let us determine the function A(z,y) for the case of the spherical
wave from the source at the point (&, ns). If the source is placed at
the distance Ly from the sample then the vector r from a point at the
source to the surface of the crystal has the expression r = LgSy +
X — &€+ (y—mns)Y where X, Y and &, are the unit vectors along
the corresponding axes. Taking into accout the explicit form of S (see
above) and &, one has

1
T:\/ﬁﬁLo-i-xco—i-E (55’70_53)24‘(?/_773)2] (4)

Because of kgr = K z ¢y at the surface of the crystal one obtains

exp (2mir/A)
r

with A(z,y) = A1(z) Az(y) where

~ A(z,y) exp (i kor) (5)

F, . . K
Ai(z) = \/—2_0 exp <—1K(560x +1 m (zy0 — fs)2> )

Any) = —=exp (157 (=) (6
Here Fy=-exp (i K Ly(1 —0)) is an invisible phase multiplier.

The field passage through the air from the surface of the crystal to the
film, where the focusing effect may be looking for, can be described by
means of standard technique of plane waves expansion. In this way one
represents the field at the surface of the crystal as the two-dimensional
Fourier integral. Then z coordinate along the normal to the surface is
introduced so that the vector k in the phase kr has z-component which
is determined from the condition that the modulus of k must be equal
to 2w /A. Then passing to the coordinates ¢ and 7 in the film plane and
making the inverse Fourier transformation one can obtain

Cl.n) = [ dody G(&.n.5.9) Blay) ©
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with

Ky F )
G(S’naxay) = 27:;.1[/11 exp (zK5c1 T +

+z’%[(§—w71)2+(77—y)2])a (8)

where F} = exp (iK Ly (1 —9)) is another invisible multiplier.

3. Bragg reflection by elastically bent crystal plate.

The elastically bent crystal plate of thickness ¢ with the curvature
radius R, in the scattering plane (X, Z) (see Fig.1) is decribed by the
field of displacement w(z, z). It is well known (see, for example, [13]) that
the general solution of the equation of the unisotropic elasticity theory
gives the following expression for the vector u(z, z).

x t A11 t

_ A "2
um_Rc (Z 2) 2RC (Z 2) ’
.’11‘2 A31 t 2

where A1, A31 are some combinations of the elastic compliance tensor
components (see, for example, [14])

With taking into account the relation h = K(S7 — Sg) we write the
phase hu in the form hu = &5 4+ &, where

KC() K'YO 2 Ka() 9
@ = — = —k
oz, 2) R Tz + SR, z° + 5R, P ou,
Kco Ky Kay
Dy(z,2) =+ R xzt+2Rc x2+2Rc 2 = kiu, (10)

where 2t =2 — t/2, apg = C()A11 + ’)’0A31, a) = —61A11 + ’)’1A31.
To obtain the solution of Takagi equations (2) with the displacement
field (10) let us make the substitution

E() = E(,) exp(i(IDU), E1 = Ei exp(—i@l) . (11)

It is easy to verify that the derivatives of the phases ®,, (m = 0,1) along
the direction S, does not depend on x. The Takagi equations for the
new fields E{, and E] take the form

d Kag '

dS(] Rc 5
d , Kd [
[dsl‘ﬂm_z Rlzt} By =5 K [xu By +x0 B, (12)
C
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where af, = ¢ — yoao, a} = ¢ — yia1.
Correspondingly, the boundary condition for the field Ej takes the
form

FyF} . o z?
/ _ 0 _
Al(z) = i exp ( 1qoT + 1 2a0> . (13)

Here and below the following notations are used

7065 t
q0 K<t00+ L0>a t +2Rc’
L, L, )
“m = K2 M, My < ko) T

. 52 a0t2
F = K e . 14
s (i 55 - oo (14

The solution of the equations (12) can be found by means of stan-
dard technique of the variables x and z separation. For this purpose we
represent the boundary condition (13) as the Fourier integral

d .
Aj(a) = | 51 Ai(q) expligr) (15)
with
Ai(q) = [ do 44(@) exp(~iqn) =
_ RyF} ( 2mi \2 g 2)
=% () e (1T arw?). 1)

Here and below a table integral is used (see, for example, [15,16])

oo .\ L 2
/ dz exp(iaz + ibz?) = <%Z> ’ exp <—z' Z—b> (17)

Then the solution of (12) can be represented in the form of the same
Fourier integral (15) in which the integrand will contain the solution of
(12) with the plane-wave boundary condition A}(z) = exp(igz). This
solution can be found in the form similar to the case of the flat crystal

Ey(x,z) = Ey(q, z) exp (igz)
Ej(x,z) = Ey(q, z) R(q, 2) exp (iqx) (18)



with E{(q,0) = 1. Substituting (18) in (12) and eliminating the func-
tion Ej(q,z) from the equations one can obtain the following nonlinear
equation for R

dR
= =i(ov—1z)R—i % [1+ fRY (19)
where
oo= 9 Xy X =R 20t
Yov1 270m
t K ! !
v :K(SL“L%) ‘o1z, 01=—4 <@+ﬁ> )
Yo 2 Re\v m
Kxn YXF
— 22Xk oy Xk (20)
it YoXh

It is well known that in the Bragg case of X-ray diffraction the
reflected beam is formed inside the thin layer of thickness about an
extinction length L., = (sv/f)~' near the surface. At the depth Le,
depending on z term yields the phase 9 = oyL2,/2. It can be ex-
pressed in the case of the symmetrical diffraction v9 = 1 = sinfp as
¢ = (2nL2,)/(AR.sinfp). In this work only small bending of the crys-
tal will be considered. Typical values of the parameters L., = 1.5 um,
A =1A R, = 10m and sinfp = 0.2 lead to ¢ = 0.07. Therefore in
the case of large radius of curvature one can neglect the depending on z
term in the equation and use the known solution for the perfect crystal.
Then bending shows itself in the R-function only by means of shift of the
Bragg angle depending on the thickness of the crystal plate. The exact
numerical solution of the Eq.(19) for different values of bending radius
obtained in [17]| corresponds to this suggestion. It is interesting to notice
that the Eq.(19) has the analytical solution through the Weber func-
tion which was found for the first time in [18,19]. The exact analytical
solution of Eq.(19) see in Appendix.

Thus the solution of Eq.(19) in the limit o3z = 0 will be considered
below which just corresponds to the flat crystal. This solution in the case
of thick absorbing crystal plate has the form

R(g) = 5[00 +\Jo? — 2] (21)

The solution takes place at the real surface of the crystal. If the surface
has the phase relief in the form of a stripe parallel to the scattering plane
(along the X-axis, see Fig.1) then at the places of etching the crystal the



plane z = 0 of boundary condition and the real surface of the crystal
will be divided by air layer of thichness d. In this case the additional
solution of (19) is necessary inside the air layer where xg = x5 = 0 and
the equation takes the simple form dR/dz = ioyR where o( equals oy
without the term containing xo. Since the function (21) is dependless
on z solution of (19), it is easy to understand that we have to solve the
Takagi equation inside the air layer with the boundary condition (21).
As a result the air layer brings the additional phase —iqzy — ivd to this
solution where d depends on y and x4 = dy/vov1.

The formulae obtained allow to write the total solution of the Takagi
equations (2) with the displacement field (9) in the next approximate
form

1

, , FyF < 27i )5

B(z,y) = A exp{—1P1(z,0) — ivd X
(z,y) = Az(y) exp{—i®1(z,0) }70 K,

< [ 52 R exp (ia(o — 20— 5 0+ ) 22
s 2

In the following consideration the integral in (22) will be estimated
approximately by means of the stationary phase method. The main con-
tribution to the integral is brought by the region closed to the point
q = qs(z,d) where the first derivative of the phase over ¢ equals zero.
This point is determined by gs(z,d) = (z — z4) /o — go. Regarding the
function R(q) as the slow one it can be replaced by R(gqs) and the re-
mained integrand can be calculated explicitly. As a result one obtains

obviously the function A} (z — z,), i.e.

B(z,y) = As(y) A (z — 24) R(qs(@,d)) exp(—i®i(z,0) —ivd),  (23)

where A)(z) is determined by (13).

Substitution of (23) into (7) with taking into account (8), (13) leads
to the following expression for the radiation field at the plane of obser-
vation

C(é.n) = %/dy exp ('L 2% (n—y)? —ivd) x
x Aa(y) [ dz Rlgy(z,d) exp(i¥(z.d)) (24)

where
. &2 at?
Fl = K|> -
PR (Z lQLl 8R. | )
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(z —za)® | 2
U(z.d) = — _ Wwokd) o, T
(z,d) qo(r — zq) + 1z + %0 %’

q1 = K ((5,501 — ’YLl_§> . (25)
1
Let us consider first the case where the focusing condition is not
met. Then the integral over z in (24) can be estimated approximately by
means of the stationary phase method once again. The point which brings
the main contribution to the integral is determined from the condition
d¥/dz = 0 and it equals

1
=21 O (g — 26
T, °$d4'1(Lx7§(q° 0, (26)

where

2 2 LoL +
Lx:LlMg—FLoley—;:Ll—i-Lg’y—é——o 1(70 ’Yl)

"0 Y0 R.g

Taking out the function R(qs(x,d)) at the point (26) from the integral

and calculating the rest integrand one can obtain with taking (6) into
account

(27)

-n Finy(§)
Olem =0 = v [ duRlau(e.a)

X eXp{i(Ptra (y) - Z.(Pf"“e (67 d)}a (28)

where Fj,, is the invisible multiplier which vanishes in the intensity (nev-
ertheless, it can be essential in considering the following passage of the
coherent wave), ¢y is the phase describing the transfer in y direction,
@ fre is the additional phase which is brought by the Fresnel surface relief.
These and other parameters are determined by the following expressions

. LoL1(q0 — q1)?
Finy(€) = FyFy FyF] exp <—Z W ;

K [(y=—ns)* | (n—y)?
5’[ Lo + L L

(pfre(fa d) = wd (f - gm)\ - ffs) - 6(d) s
as(ed) = B (¢ ey gy el

L,
K Myy v d?
w = . e(d) = ——— MoM;
LYo (@) VAL,

Ptra(y) =




) c Mi~vic
Emx =& — —, fA:5t<L1—1+L0717120>
w 041 MO’)’O
v / y1 My
=T = d -, = Y 29
§a = Tay1 M 1\41% §s =&s oMo (29)

The result obtained is valid for the flat crystal as well in the limit
R, = oo. The Eq.(28) is similar to that obtained in the small angle ap-
proximation in the theory of phase zone plate. Significant differencies
arise in both the X-ray beam reflectivity and the formation of the addi-
tional phase which depend on the coordinate along the focus line in the
scattering plane. The stationary phase method gives the possibility to
find the correspondence between the different points on the topograph
and on the surface of the crystal. This ray-approximation similar to ge-
ometrical optics will be called as a local approach.

4. The physical nature of the local approach.

Let us discuss the physical nature of the results, obtained by means
of the stationary phase method. The relation (26) sets the connection
between the points at the surface of the crystal (lens), at the source
plane and at the observation planes. This relation with account of (14),
(25), (27) can be rewritten in a more clear form

£(z) = L [vo(z — xa) + 1 (z — 20,d) | + 271, (30)

where xg = dc¢1/v1, 4 = dy/voy1, and

W (&Y
on(m) B 71Lo (m 70) * 4! (Cl CU)’

(] (.’L‘, Z) =

20+ ) + (2 = 5) (e —eo) | =

1
_ dhu(x, z) ‘ (31)
"le dr

a 71 R,

are the angular deviations of the local ray at the point = from the refer-
ence direction determined by the vector k.

The relation (30) can be interpreted in the frame of geometrical optics
approach of X-ray diffraction in disturbed crystals [12|. In this approach
the crystal is considered as having a variable reciprocal lattice vector

_ dhu(z, z)

h =h
(‘Tﬂ Z) de

X +eZ, (32)
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where X, Z are the unit vectors along the X and Z axes, a parameter ¢
is unessential for our consideration.

Let us consider first the region of the crystal surface at the top of
the relief where d = 0. Then at the point x the local wave vector of an

incident ray is
2
i (m — §—S> —dco
Ly Yo

where f is determined from the condition kff = (27r/))?. The z-projection
of the local wave vector k{(x) can be obtained directly from (6).
The wave vector of the reflected ray is

k\(z) = ky(z) + h(z,0) + KfZ = k1 +

2
N (, &) _ 1 dhu(z,0)
( Lg <x 70) 500) K dx

Here f is determined from the condition k¥ = (2m/))? ~ K2(1 — 26).
As a result one has

f=<7—g<x—5s>—i7dh“(‘”’0)> o sloaa (35)

k\(z) = ko + K X+KpZ (33)

+K X+KfzZ. (34)

Ly Yo K  dx " 7

To obtain the shift of the point at the topograph one must find the
transversal component of k) which determines the angular deviation of
the local ray. It equals obviously Ak} | = Ak], sin6, + Ak}, cos 6. After
a simple calculation one has

Akyy = K [tho(z) +41(2,0)]. (36)

Thus the first term in (30) is really due to the angular deviation
of the reflected ray from the basic direction which is determined by the
vector k1 and the second term is simply the projection of the point at the
surface to the film plane with a use of the k; direction. This situation is
illustrated by the Fig.2. The angular deviation depends on the incident
ray direction (the function 1)y) and on the local reciprocal lattice vector
value (the function ).

It is clear that at the bottom of the surface relief the inlet and outlet
points of the reflected ray are divided by the distance x4. For the outlet
point x the local incident ray is determined by the point z — z4. It is
due to the fact that the real reflection occurs at the point z — zg and at
the depth d (see Fig.3). That is why the arguments of the 1; function
correspond to the real reflection point.

11



The relations (30), (31) allow to consider the lens of finite longitu-
dinal length and clearly show the role of the waveband of the incident
radiation. Namely, in the case of the symmetrical reflection 61 = 0y the
wavelength shift leads to the topodraph image at the same place. A shift
of the wavelength leads to the different reflectivity and to the different
additional phase due to the surface relief but the location of the image is
conserved the same. On the contrary in an asymmetrical case the lens of
short length will give the image (a focusing strip) with the length much
larger than the usual projection if the incident radiation has the wide
wavelength band.

5. Sagittal focusing by Bragg-Fresnel lens.

The Eq.(28) allows to analyse the focusing effect in y-direction by
means of the special phase zone surface relief where d depends on y

according to the law
)\Lf (2n) < |y| < 1/)\Lf (2n—|— 1)

VINAL; <y

y < —/2N]AL;

d(y) =

Qa8 & O

Here A is a wavelength, L is the focus distance of the lens. This profile
is usually obtained by etching the surface. Below in this section the
parameter d will be considered as a constant.

So called zero order intensity is obtained when the total surface is
placed at z = d independently on y. In this case R and ¢, functions do
not depend on y and the remained exponent function can be integrated
analytically.

Co(e.n) = 1o Tl =) g ¢.4) expl—igyecleca) ). (39)
where L, = Lo + Ly and F,, = exp(iKn?/2L,) is a standard phase
multiplier for a spherical wave on the distance L, in the small angle
approximation.

In the places without etching the R-function has argument g¢4(&,0)
and the additional phase —¢ .. (¢, d) is absent. For calculating the inten-
sity with the surface relief (37) it is convenient to replace the variables

12



of integration y = /ALy t, and to write the expression for the reflected
field as follows

C(&n) =Co(&n)[1+A(§) B (n)] (39)
where
4© = ()" (a©-1).
_ R(gs(£,0) ,
A(g) R(qs(f,d)) €xp (Z (pfre(f d))
Nzl v/on+1
B(n) = /\/2_ dt exp{ia (t + bn')?} +
n=0 n
Nyp—1 m
4 Z / VI bt explia (t — b)) (40)

Here a = nLy/Ly, b = L, (Li\/AL;)™", ' = n+ nsL1/Lo, L, =
LoLi/Ly and N is the number of teeth at the left side of the lens while
N, is the same number at the right side.

The function B(n) can be expressed through the Fresnel integrals
(see, for example, [20])

F(z)=C(2)+1iS5(») / dtexp( §t2> z>0,
F(z) =—-F(-z), =z<0. (41)

by the next way

N;—1
BW:&(Z [ Fla(vV2n+T+bn)) = Fla(V2n+b)) | +
n=0
Ny—1
+ Z [ a(V2n+1-bn)) - (a(\/ﬁ—bn’))}). (42)

where & = \/2a/m = (/2 Ls/L, . For the purpose of computer simula-
tion the Fresnel integrals can be calculated by means of the computer’s
procedures S20ACE, S20ADE of the NAG library of the FORTRAN
subroutines.

As follows from (39), (40) the focusing in 7-direction by the Bragg-
Fresnel lens is determined by the two conditions. Firstly, the zero order
intensity | Co |? must be large enough and, secondly, the phase difference
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©re has to be close to —nw (n = 1,3, ..) at the same £ point. The value
of |Cy|? is determined mainly by the Bragg reflectivity of the lens. So
at & point the reflectivity corresponds to the angular argument ¢4(&,0).
The reflectivity depends effectively on the parameter og which can be
written by means of variable £ as follows

00 = w(€ — &mr — Ems — §;) » &ms = g ) (43)
where the notations are defined by (29). Since the centre of the total
reflection region in the Bragg case is shifted from the zero point deter-
mined by the Bragg condition in the air and is determined from the
condition og = 0 (see Eq.(21) ) the maximum intensity on the topograph
corresponds to the point & = &ns + Ema + &L

On the other hand the effect of focusing depends on the value of
the phase difference. The Eq.(29) shows that ¢..(¢,d) = —mn (n =
1,3, ..) when & = =7 (n — e(d) ) Jwd + &nx + &, Therefore the strong
focusing with the maximum reflectivity corresponds to the condition
X =—m(n—e(d))/d.

This condition determines a proper height of the teeth for a good
focusing

_ Ao n— e
= ol (ro 471y ™~ @) (44)

The Eq.(44) means that the condition of good focusing does not depend
on the distances Lg, L1 and R, as well as on the wavelength shift 4 and
&s- The latter is due to the fact that the function A(¢) depends effectively
on & —&na — &, Therefore the condition of good focusing is the same for
different § and &, but the focusing effect takes place at different &-points.

The additional phase difference may arise from the shift of the ar-
gument of the reflection amplitude Ags; = ¢5(£,0) — gs(€, d). In terms of
&-dependence Ags corresponds to &4. In the conditions far off the focus-
ing, where L, does not equal zero, the parameters € and &4 are small and
do not influence the effect.

Although formally the focusing effect takes place for all values of ¢
(focus spot has the form of a strip) the region of maximum focal intensity
for infinite lens is limited by both the width of the crystal rocking curve
and the region where the phase ¢.(&,d) is close to —m. The focusing
effect can occur also at the tails of rocking curve where ¢g,.(¢,d) =
w, —3m, 3w, —bm, --- with a small reflectivity. For the real lens of the
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finite length the length of the focusing strip is limited by the length of
the lens.

Now let us consider the function B(n) describing the focusing effect.
The important condition is Ly = L, n, n =1, 3, 5... for a good focusing
of n-th order. It means that the first order focus distance L must be
slightly larger than L; when Ly is large, namely,

Ly Ly

L ==L

n (o Ly/n) (45)

A shift of the point source on the distance 7, relative the lens centre leads
to a shift of the image in the topograph on the distance n = —ns L1/ Ly
(in the opposite direction). So for L; < Lg one obtains the focus of much
smaller dimension as compared with the source dimension.

In the experiments the lens of finite length D, and the radiation of
relatively wide waveband Dy are usually used. Then the effective image
size at the topograph in a meridional direction according to (30), (31)
equals

Lag (c1 — co)
D¢ = D, +
" Loy " gal
On the other hand as follows from (29), (43) the intensity in each £-point
contains the contributions which corresponds to other &-points shifted

due to the wavelength change by &,,). The total interval of averaging is
A& = (0&n/09) Dg. The parameter &, (29) can be written in the form

LDj. (46)

— t
fon = A= 5 L, (A6+B ) , (47)
oR,
where
tel —
A= 0808  p w [01(01 Co)_ao_al]. (48)
y1 My Mo Y1

As follows from these formulae in the symmetrical case 8y = #; the
image size does not depend on waveband but the interval of averaging
equals A¢ =~ AL, D; and does not turn to zero if the meridional focusing
condition (L, = 0) is not met. So the strip of homogeneous darkness
should be observed in the topograph with the intensity which is the
integral over the ¢ intensity. The source size plays just the same role.
Just the topographs with such structure of focus line were observed in
the experimental works [3-10].
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6. Meridional focusing by elastically bent crystal.

As follows from (30), (31) the point £(z) at the topograph is inde-
pendent on z if the following condition is fulfilled

’Y_g 7_%:704"71
Lo L R.

(49)

In this case all the incident rays are gathered with the very high intensity
at one and the same point

Ly 0 ( Ly ) YoL1
¢ —¢y) oy +d— — &g —— 50
&= M1 (e1 = <o) Y0 7R, ¢ v1Lo (50)

As follows from (50) the regions at the top and at the bottom of the
tooth gather the radiation at different points.

It is clear that under the condition (49) the phase ¥ in (24) does
not contain the terms of 22 and the stationary phase method is invalid.
Formally the expression (28) is infinite because the parameter L, = 0.
If My # 0 then the expression (24) is yet finite if it will be calculated
explicitly. However, it gives the correct value only at the point { = ;
because it corresponds to the ray approximation. To obtain the intensity
at all the values of £ under the condition (49) it is better to perform
the calculation without the ray approximation at all. For this purpose
one can substitute (22) in (7) and first calculate the integral over z. It
can be performed accurately with a use of (17) in a suggestion of long
enough lens. To eliminate the wavelength dependence of the reflectivity
one can made in addition the shift of ¢ variable by ¢\ = vypy1 /7y with v
determined by (20). The result has the form

C(&n) = Fins /dy exp{iQira(y }/ L R(g—q») x
(L0L1M0M1
f gm)\ - fs fd . :c 2 )
X ex — 1 51
o iy 2K EMM; ! oy
where

lenv(g) FOFlF(]Fl eXp( i 2 [aO(CIO +Q)\) +
o (g + a3) ] — iga (€ — & — &) /n M) (52)

is a new invisible multiplier while other notations are determined by

(14), (29).
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This expression clearly shows that the intensity depends only on
(E—&mr—&L) because the invisible exponent factor vanishes and R(q—q))
does not depend on the wavelength and the source position. It means that
the integration of the intensity over the wavelength band is equivalent
to averaging the ¢-dependence. The surface relief, in general, leads to
a change of both the phase and the amplitude of the field because the
phase factor is under the integration sign.

The condition (49) is equivalent to L, = 0. When this condition is
not met the integral can be calculated by means of the stationary phase
method with the result described by (28), (29). It is clearly seen from
(51) that the cases where My = 0 or M; = 0 have to be considered
separately due to the formal divergences in the expressions. The case
when the distances Ly, L lie at the Rowland circle with the diameter
R, corresponds to Ly = voR., L1 = 71 R, that means in our notations
My = M; = 0 simultaneously. It is easy to see that the expression (51)
becomes undetermined and for obtaining the accurate result we must use
the following term of the expansions in (6), (8). Below these situations
will not be considered. We shall assume that My # 0, M; # 0 and
only My = —Mi(y?Lo)/(v3L1). In this case the focusing effect takes
place and the intensity distribution can be calculated by means of (51).
The integral over g becomes simply the Fourier image of the crystal
reflectivity.

Let us consider now the sagittal focusing by Bragg-Fresnel lens under
the condition of meridional focusing. For the d(y) dependence described
by (37) one can obtain the expression (39) once again but with the new
values Cy(&,7n) and A(€), namely,

1
A ’ F'i’nv (g)FShp(T/ - 775)
LyM()Ml 21y

FR(&—&nr — &)

Cﬂ(gan): ( FR(f_fm/\—fg_fd)a

B = Tt~ -8 - &) (53)
where
_ - . fq . Lm 2
Fule) = [da Bl - g exp (i S~ gt ) 6)

When L, = 0 the function Fg(£) is known to have the analytical
expression [21]. Substituting (21) in (54) and taking into account (20)
one obtains

_ .y Y0 X sV £
rue = nist2h e (i5e) 1 (Ste) o (55) 9
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where

Fio(x) = Jo(@) + Do(x) = 22 (56)

and J,(z) is the Bessel function of order n. The function é(z) equals
to unity if x > 0 and zero otherwise. This expression reads that the
intensity distribution inside the focal spot is asymmetrical with abrupt
low £ side. The width of focus is about micrometer. So the surface relief
can really give the focuses in different places by it’s top and bottom
fragments for rather large height d. In this case the Fresnel focusing
becomes the amplitude focusing instead of the phase one.

7. Numerical example

The formulae obtained in the previous sections allow to calculate the
detailed distibution of the intensity on the topograph under any condi-
tions which include the condition of focusing as a particular case. For
the long enough lens the formulae (53), (54) are the more general. These
describe the intensity distribution for an arbitrary angular dependence
of the crystal reflectivity including the deformations due to bending as
well as due to any external deformations, for example, after the ion im-
plantation of the crystal surface. In this section the results of numerical
calculation based on the Egs. (39), (40), (53), (54) are presented for the
reflectivity described by (21). More complicated cases will be consid-
ered in the following publications. As an example the case of Si, 111,
Y = 1 = 0.1977, A = 1.24 A(E = 10keV), Ly = 50m, Ly = 0.5m,
N; = N, = 30 has been calculated. For these values of free parameters
the remained parameters can be determined from the conditions of good
focusing. So we find from (44) d = 1.255 A, and from (45) Ly = 0.505m.

The results of calculation for these conditions and the flat crystal
(R, = o0) are shown in the Fig. 4. The monochromatic spherical wave
is assumed as an incident wave. The intensity is related to the intensity
of the spherical wave in a free space at the distance Ly 4+ Li from the
source. One can see that the width of the focus line is about 0.5 ym and
the focus has the form of very long but finite strip with the inhomoge-
neous intensity along the strip. The total longitudinal size of the focus
is defined by the width of the reflectivity curve (the Darwin table) but
the characteristic sinusoidal form of the intensity distribution is deter-
mined by the linear dependence of the phase difference ¢, on ¢ with
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the maximum intensity when ¢y, = —m. The intensity at the focus in-
creases by a factor 90 that coincides approximately with the estimation
16(N; + N,.)/7? given in [9]. The calculation in the ray approximation
( Egs. (25), (38), (40) ) gives the quitely identical result for this case.
It is of interest to notice that large values of the teeth height d lead to
the very fast dependence of the phase difference ¢y, on £ so that ¢y,
can take the values —3m, —m, m within the Darwin table. In this case
the intensity distribution along the focus line will have few maximums
separated by minimums.

Fig. 5 shows the results of calculation under the conditions of double
focusing when, according to (49) R. = 5.06m. In this case the maxi-
mum of the relative intensity (the gain) equals 1500. The focus has the
longitudinal size of about 3 um independently on Ly and a rather com-
plicated form which involves two peaks. The peaks have a sharp low ¢
side but not the abrupt one. It is due to the approximate calculation of
the integral in the limits of three Darwin table widths and without small
and long tails of the reflectivity curve. The first peak corresponds to a
pure amplitude focusing by the top of teeth of the surface relief. The
rays reflected by the bottom of the relief cannot pass to this point of
the topograph. The second peak is formed by the interference between
rays reflected by the top and the bottom of the structure but with dif-
ferent amplitudes due to the different focusing conditions. In this case
the result depends on the phase difference as well.
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Appendix
We shall find the solution of the Eq.(19) in the form R(z) = B(z)/A(z).
Then this equation can be divided on two equations
dA i dB i
5—5[—014"'5]03], E—E[O’B—SA], (A].)

where 0 = 0y — 01z. The next step is a transition from the two equations
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with the first order derivatives to one with the second order derivative
for each function C' = A, B separately
d’Cc 1
W = Z(:F2ZO-1 —S2f+0'2)0. (A2)
Here and below the upper sign is for A and the lower sign is for B. By
the substitution z — Z this equation can be transformed to

d’C Z?
where
_ - 2
g=Cv—nz Lo i (A4)

Vioq 2’ 4oy

The Eq.(A3) is a standard form of the equation for the special func-
tion of parabolic cylinder [20]. As a result the solution of (19) can be
written by means of the Weber function D, (z) in the form R(z) =
D_, 1(Z)/D_,(Z).
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Figure 1: Experimental arrangement and geometrical parameters.
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Figure 2: Correspondence between points at the crystal surface and at
the topograph.
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Figure 3: Path of the ray between teeth of surface relief.

23



>, 100 \

-+—

& |

c

% | _

= | )

: s

= S

— 50 Q

Q

& ] Y g
O X
&
Y

1

N

1

[
o
-
N —
w
IS

n (Mm)

Figure 4: Intensity distribution for a flat lens. Si, 111, £ = 10 keV,
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Figure 5: Double focus for a bent lens. Si, 111, E = 10 keV, Ly = 0.5
m, R. = 5.06 m.
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