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A general theory of reflectivity by a perfect X-ray multilayer mirror based on the usage of a recurrent 
relation is developed. The reflectivity is described by the well-known Fresnel formulae which take 
into account jumps of susceptibility at the boundary between the layers. The analytical solution 
in the frame of the most general dynamical approach is found and the condition of application 
of the kinematical approximation is discussed. Special attention is paid to the periodic multilayer 
structure containing two layers of different materials with more than one pair of these layers in the 
period. 

1. Introduction 

The reflection of light at the boundary of two optically inhomogeneous media is the most 
widely used effect in optics. Different interference instruments, polarizers, focusing lenses, 
and coatings are used in different spheres of life and science [ 11. In recent years large success 
was achieved in the technology of creating a multilayer system with a very small thickness 
of the layers of about nm. The semiconductor monocrystal superlattice opens a new branch 
of technology - quantum tunneling devices [2]. The synthetic multilayer structure is an 
excellent tool for the preparation of X-ray beams with desired characteristics. The latter 
problem is essentially important for the use of synchrotron radiation sources [3,4]. An 
interesting application of multilayer structures for decreasing the electronic reflectivity 
background in studying the coherent nuclear scattering of y-radiation (Mossbauer effect) 
was discussed recently [5, 61. 

The theory of reflectivity of a multilayer structure is in general based on an iteration 
procedure with the use of a recurrent formula which connects the reflection amplitudes of 
X-ray waves in two nearest layers. This formula is a direct consequence of the Fresnel 
formulae, namely, the law of penetration and reflection of radiation at  the boundary of two 
homogeneous media. In this way only a computer simulation is possible. O n  the other 
hand, considering the periodic multilayer structure, the so-called X-ray multilayer mirror, 
it is possible to find the analytical solution of the problem. The main purpose of this paper 
is to present this analytical solution in a most general case taking into account multiple 
reflections and a nonzero boundary condition. 

In Section 2 the basic formulation of the problem of X-ray multilayer structure reflectivity 
is given and the computer simulation is described. The analytical solution is presented in 
Section 3. The probabilities of penetration and reflection by one cell of the periodic structure 
are discussed in Section 4. Section 5 contains comments on the role of defects. A numerical 
example is presented in the last section. 
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2. Fresnel Formulae and the Recurrent Relation 

Let us consider an  artificial system which consists of plane parallel layers of different 
materials with abrupt boundaries between them. The layers are homogeneous along the 
surface which is parallel to the ( X ,  Y )  plane of the rectangular coordinate system so that 
the change of the material occurs only along the Z-direction perpendicular to the surface. 
Let a plane monochromatic wave of X-rays fall on the system and have a wave vector k 
in the plane ( X ,  Z )  with positive k ,  and k ,  components (see Fig. 1). At the boundaries the 
plane wave is refracted and reflected. As a result two plane waves exist in each layer, a 
refracted one and a reflected one. These waves have just the same k, components of the 
wave vector in all the layers but the kz components have opposite signs in the two waves 
and, moreover, they differ from one layer to another. Thus, the electric field vector in the 
layer with number m has the form 

E,,i(x, Z,  t )  = E(x,  t )  [Em ~ X P  ( i k z m z )  + E r m  ~ X P  (- ikzmz)I > (1) 

where E ( x ,  t )  = exp (ik,x - iwt), E,, and E,, are the amplitudes of refracted and reflected 
waves in the middle of the layer and the coordinate z is measured from the middle line of 
the layer (see Fig. 1). 

Inside the layer these waves do not interact with each another. Each of them is the 
solution ofthe Maxwell equation in a homogeneous medium with susceptibility X, = E,,, - 1. 
This equation determines the value of k= as 

Here 1 is the wavelength of radiation. Let 6 be the angle between the direction of the 
incident wave and the surface (see Fig. l), then 

Y 

Fig. 1. Geometrical parameters of the theory 
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As follows from (3), k, differs in different layers due to different values of susceptibility x,,,. 
The susceptibility is very small for X-rays (about therefore the reflectivity will be 
sufficient only for small enough values of the angle 0 (of about tens of mrad). 

Maxwell's equation determines only the wave vector and the wave amplitudes remain 
free. They are determined by the boundary conditions. Let us consider first the more simple 
case of o-polarized radiation when the amplitudes Elm and E,, have only a y-component 
perpendicular to the scattering plane. Below the layers will be numbered from the bottom 
of the structure to the top in the direction of the reflected wave (see Fig. 1). The conditions 
of continuity for the electric and magnetic fields at the boundary between the layers with 
numbers 1 and 2 can be written as 

(4) 
Et2C2 + E,2Cy1 = EtlC;' + E,,C1, 

kzZ(EtZC2 - Er2Ci1) = k:,(Et,C;' - Er1C1). 
Here and below C ,  = exp (ikz,,,Dm/2), where D ,  is the thickness of the m-th layer, and the 
amplitudes in each layer are determined for the middle line of the layer. 

Let us assume the amplitudes Et2 and E,, to be known and the amplitudes E,, and Er2 
to be found. The solution of this problem can be written in the form 

( 5 )  Er2 = r%)E12 + t,,E,,, E,l = tl2EI2 + ri2:Erl , 
where 

and the formulae for t,, and ri;) are obtained from (6) by permutation of the indexes 1 and 2. 
Thus, we introduce a 2 x 2 matrix. The nondiagonal elements of this matrix describe the 

penetration of the waves from one layer to another through the boundary (the refraction 
effect). The diagonal elements describe the reflection of the waves when the waves remain 
in the layer as a result of reflection from another layer with number given by the upper 
index. These formulae are the well-known Fresnel formulae [7] which are written in a form 
convenient for us. We note that the formulae remain true when we increase the indexes by 
an arbitrary number m. In the case of rc-polarized radiation it is convenient to consider the 
magnetic field vector instead of the electric one [7]. In this case all the consideration remains 
valid if we replace (6) by 

where c, = 1 + zm is the dielectric function in the m-th layer. 
If we are interested only in the reflectivity of the multilayer structure, then we can use 

these formulae in another form, namely, in terms of the reflection amplitude R, = Er,/Elm. 
Indeed, (5) can be rewritten as 

t12 - +) t21t12R1 
Ell = 4 2  2 2 - 22 + (2)R . 

1 - rI:)R, 1 - r 1 1  1 

This formula gives the expression for R, through R, and the characteristics of the boundary 
between layers 1 and 2, so it is a recurrent formula. It gives the simple solution of the 
computer simulation of an arbitrary multilayer structure by means of multiple use from 
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the ‘lower layer’ with number 0 (substrate) where R,  = 0 to the ‘upper layer’ that is the 
air above the structure. If the structure has N layers, then R ,  = riy) and using (7) N times 
we obtain R,  + , = R,,, as the relation of the electric field amplitude reflected by all layers 
to the amplitude of the incident wave R,,, = EJE,. The reflectivity is P(8) = IR,o,(0)[2. 

We note that (8) coincides completely with the well-known Parratt recurrent formula (81 
for RL = R,Ci, 

Although the Parratt formula is more simple we shall use our notations which are more 
convenient for our analytical consideration (see the following section). 

The susceptibility ~ ( o )  is a complex quantity in the X-ray regions of frequencies, 

where the a sum is over atom sorts, N ,  is the number of atoms of a-th sort in a unit volume, 
r ,  = e2/mc2,  Z,  is the number of electrons in the atom, AYb the resonant dispersion error, 
and (T, the absorption cross-section. The real part x‘ of the susceptibility is negative, while 
the imaginary part ,y” is positive and has much smaller magnitude than the real one, x’’ 6 I%’(. 
Since x = 0 in air, it follows from (3) and (6) that there is some region of angle 0 values 
near zero where kZ ,  is imaginary even if the medium is non-absorbing. It is the region of 
total external reflection. The limiting angle of total reflection is about 8, = m. 

If 8 > 8,, then the reflectivity decreases with the increase of 8. Additional peaks can arise 
in the periodic multilayer structure which we shall call the multilayer mirror (MLM) at 
angles if the phases of waves reflected by different cells of the MLM differ by an even 
multiple of 71. If D is the thickness of the cell, then the condition of Bragg peaks is 
2 0  sin H = d. In the following sections we shall consider the Bragg peaks of MLM in 
more detail. 

3. Reflectivity by a Perfect Multilayer Mirror 

Let us consider two cells of MLM. The amplitudes of refracted and reflected waves in the 
first layer of each cell are connected by relations similar to (3, 

(1 1) 

but here the indexes 1 and 2 number the cells from the bottom to the top of the MLM 
and the probabilities of penetration and reflection of the waves do  not depend on the 
number of cells because all the cells are identical. Now we introduce once again the reflection 
amplitude R ,  = E,,/E,, in the first layer of each cell and (11) immediately leads us to the 
recurrent formula 

E,, = rEt2 + FEr1 , Ell = tElz + FErl, 

tfR, 
K , + l  = r + ~ 

1 - ?R, 

with constant coefficients. 
A relation of such type has been considered earlier in the theory of X-ray diffraction in 

a semiconductor superlattice [9 to 111 and the analytical solution has been found with the 
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boundary condition R, = 0. Here we consider a more complicated case with arbitrary 
boundary condition. First of all we find the solution in the form 

(1 3) 
rA, 

A ,  - f i A , - l  
R, = 

With the use of this expression (12) transforms to 

A,+1 - ~ v A ,  - A , - ,  - 
A , + ,  - FAn 2vA, - - F A f l ’  

where 
1 + t t -  r f  

v =  = cos (y/2). 
2 f i  

It can be seen directly that (14) becomes valid if 

Afl+ , (v )  = 2VA,(V) - A,- , (v ) .  (16) 

Thus, we pass from (12) to a more simple equation, i.e. the recurrent relation for 
Chebyshev’s polynomials [12]. The detailed analysis shows that in the case of arbitrary 
boundary condition we must choose A,  in the form 

A,(v) = ( r  - Ro) V,-l(V) + fi-R,U,(v),  (1 7) 

where U,(v) are Chebyshev’s polynomials of second kind which can be determined by the 
recurrent relation (16) and the following terms: 

u- ,  = -1, u- ,  = 0,  uo = 1 .  (18) 

Equations (13) and (17) are useful due to the analytical expression of Chebyshev’s 
polynomial 

Here the complex phase tp is determined by (15). To obtain the equation for R ,  in a more 
convenient form we introduce the second phase cp by the relation 

t t  = exp (icp) . (20) 

Now by use of (15), (17), (19), and (20) the formula for R ,  can be written in the form 

r - Ro f- - ( r  - R,f+) exp (iny) 
R, = r 

f+ (r  - ROf-1 - f- (r  - R,f+) exp (W) ’ 
where 

f? = 1 - exp (i[q y1/2), exp (k iy/2) = v T l/vz--l. (22) 

The functions f k  can be expressed directly via the parameters of penetration and reflection 
by the cell using (15) and (20), 

5 physica (b) 187/1 
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Our formula for R,  has a such structure that the limiting value of reflectivity for very 
large values of n is clear. The physical nature of the subject under consideration demands 
the phase y to have a positive imaginary part, so exp (inw) vanishes and we have 

(24) 
r r R = - =  oc 

.f+ a + v z  
This expression does not depend on R,  and this fact is very clear from the physical point 
of view. It is easy to see, the formula for R ,  is very similar to Darwin’s formula in the 
dynamical theory of symmetrical Bragg X-ray diffraction by thick absorbing crystals [ 131, 
because this approach is the dynamical theory of reflectivity by a multilayer mirror. We 
note that in the case under consideration the parameters are related to a complex cell and 
have not so simple expressions as in the Darwin theory. For this reason the approach 
considered may be called the generalized dynamical theory. 

It is interesting to consider also a more simple kinematical theory of MLM reflectivity. 
This theory ignores multiple reflections, so it uses the approximate recurrent formula 

R,+l = r + t tR , .  (25 )  

With account of (20) the solution can be obtained directly by summing up the geometrical 
progression 

1 - exp(incp) 
1 - exp (icp) 

R, = I’ + R,  exp (incp) . 

This can also be obtained from the accurate formula (21) in the approximation w = cp as 
it follows from (15) if multiple reflection is ignored. The more simple kinematical 
approximation is good enough in cases of small reflectivity by one cell and a small number 
of cells in the MLM. However, in the angular regions of the Bragg peaks it can give a 
non-physical reflectivity which exceeds unity in the limit of a large number of cells and 
slightly absorbing matter while the accurate formula (21) is correct in all cases. 

For the evaluation of the accuracy of the kinematical approximation inside the Bragg 
peaks we can use the ideas of the dynamical theory of X-ray diffraction. So in the kinematical 
approximation the maximum number of cells is limited by the absorption nahs = l/cp”, 
where cp” is the imaginary part of cp. On the other hand, for the dynamical reflectivity 
(extinction effect) to arise we need a number of cells nex, = l/m. The reflectivity by MLM 
with a large number of cells remains kinematical if nabs < next. For numerical calculation 
we need the accurate formula only near the most strong Bragg peaks while in the whole 
angular region where the kinematical approximation gives a small value of reflectivity, it 
is correct. 

The simplest real MLM has a substrate below and air above the periodic structure. Let 
x, be the susceptibility of the substrate. Then 

(27)  

To take into account the top boundary we must exclude the boundary between the last 
layer with the number N and the first layer of the cell and include the boundary between 
the last layer and air. As a result the total reflectivity of the multilayer mirror is determined 
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by the following formulae: 

where we use the index A for air and the probabilities of penetration and reflection are 
determined by the general formulae (6) with k,, = K sin 8, C ,  = 1. 

4. Reflectivity by One Cell 
The cells of the multilayer mirror must have at minimum two layers of different materials and 
consequently two boundaries. Let us make use of ( 5 )  twice, for two boundaries between 
layers 1 and 2 and between layers 2 and 3 (see Fig. l), and then exclude the middle layer 
2. As a result we obtain 

The formulae for t 3 ,  and r!;) can be obtained from (30) by permutation of the indexes 1 
and 3. It is easy to see, these formulae have the structure of recurrent formulae. Moreover, 
the problem can be formulated in terms of four recurrent procedures for calculating the 
four scattering parameters of the cell. 

For this purpose let us introduce the new notations 

and the recurrent relations 

where m = N + 1 - n and N is the number ,of layers in the cell. Now we can start from 
R, =-KO = 0, To-= $ = 1 and make use of (32) N times. As a result, we obtain r = RN, 
F = R,, t = T,, t = TN. The procedure of accurate calculation of the scattering matrix for 
one cell is not complicated for numerical calculations but very inconvenient for an analytical 
consideration. 

That is why for further consideration we restrict ourselves to an approximation where 
we can neglect multiple reflections inside one cell. That does not mean the kinematical 
approximation at all but it demands the reflection by one boundary to be small. This is 
just so near the Bragg peaks but not so in the angular region of total external reflection. 
In this approximation it is easy to write the formulae for the elements of the scattering 
matrix for the cell containing N layers, 

5* 
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- - - -  
t r l + r 2 + r 3 + .  . . 

Fig. 2. Reflection and penetration in 
one cell 

The physical sense of these formulae is illustrated in Fig. 2. Without multiple reflections 
the penetration rate through the cell is the simple product of penetration rates through all 
the boundaries in the cell, while the reflection rate is the sum of reflections by all boundaries 
with different weights which account for the penetration in the given layer and the penetration 
in the back direction. 

Let us consider the particular case that all layers in the cell belong to two types of matter 
but can have different thicknesses. Under this condition the number of layers in the cell is 
always even. Taking into account (6) and that the ( N  + 1)-st layer is identical with the 
first layer we obtain 

t = t = C N ( C ,  ... C,)2 , 
r = bC:[l - c'C; + c ~ ( C , C , - , ) ~  - ... - c2N-2(CN ... c,)"] 9 

? = bCi[1 - c2C; + c,(C,C,)~ - ... - c2N-2(C2 ... C,)"], 

(34) 

where 

Formulae (34) are obtained in the linear approximation in parameter b and since 
c = I/l-hz we can put c = 1. Then it is easy to write the expression for the phase cp (see 
(20)) as 

cp = 4nD sin 

Acp = 2D[Ak,,(dl  + d ,  + ... + d N - J  + AkZ2(d2 + d ,  + ... + d N ) ] ,  

+ Acp , AkZm = K(I/sin2 8 + x, - sin f l ) ,  
(36) 

where D is the thickness of the cell and d, the relative thickness of the layer with number 
m inside the cell. It is clear that d ,  = 1. 

m 

As follows from (26) the Bragg peaks arise when cp = 2nn. This condition without taking 
into account Acp gives the Bragg condition 2 0  sin 0 = nl.. Taking into account Acp and the 
more accurate formula (21), leads to a slight displacement of the first Bragg peak position. 
Formula (34) is useful for the evaluation of the reflectivity by one cell r (structure factor) 
near the Bragg peaks. It is very important because the enhancement of the reflectivity is 
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possible only for large values of r (see (26)). Let us consider, for example, a cell with N = 4 
and d ,  = d,  and omit Akzm for the sake of simplicity (they are small near the Bragg peaks). 
So we have 

rC;’ = b[l - exp ( iqd , ) ]  [l + exp (icp(d, + d4))]. (37) 

It is easy to see that if d ,  + d, = 1/2,  then the odd-order Bragg peaks are absent. It is 
clear as the real period in this case equals D/2. 

5. The Role of Defects 

The real multilayer mirrors are far from being perfect. The defects may be divided in two 
sorts: defects inside and outside the cell. The defects of the first kind are represented by 
the roughness and absence of sharpness of the interface due to the technological production 
and the diffusion of atoms from one layer to another. These defects can be taken into 
account in the frame of an analytical solution by a modification of the cell scattering param- 
eters. This can be made, for example, by introducing the Debye-Waller factor in the phase 
factors and by considering additional layers with intermediate density and composition. 

Among the defects of the second kind long-wave changes of period and material of the 
layers, structure of the cell, etc. may be assumed. These defects cannot be accounted for 
accurately in the frame of the presented analytical formula. One of the ways to take them 
into account is taking the average value over the considered parameters. However, we want 
to note that these defects are the consequence of errors in the technological process which 
can be eliminated by means of accurate preparation of the sample. 

6. Numerical Example 

The main problem of using a multilayer mirror for soft X-rays is to decrease the effect of 
absorption. For X-rays with wavelength about 0.1 nm an additional problem arises, namely, 
a very small reflectivity by one boundary. That is why only small grazing angles of incidence 
may be used near the total reflection region. Let us consider an MLM which has a two-layer 
cell with layers of equal thickness ( d ,  = dz). When O 9 OC, we have the following formulae 
for the evaluation of nabs and n,,,: 

The total Bragg reflection is possible only when the number of cells n > n::! and 
n$’J 4 ni:,). In the opposite case, for any n > n:;: the maximum of reflectivity is 
P,,, z (n$’~ /n~~~) ’ .  It is clear from (38) that with increasing 0 ,  the reflectivity drops faster 
than the absorption and we obtain the last case. 

For the sake of examination of the analytical approach presented above we elaborated 
computer programs using both the Parratt formula (9) and the analytical formula (21). 
Both methods give identical results in the whole angular region including the region of 
total external reflection but the computing time for large n is much smaller with the use of 
the analytical formula. Fig. 3 shows the results of calculation for the MLM: (Nb, Si) 
1000/glass with i = 0.154 nm (CuK,), d ,  = d, = 0.5, and D = 3.85 nm. In this case only 
odd reflections exist and Om z 20m mrad, n::: z 70m, n!:? w 24m2. It is easy to see, the 
peaks become small and narrow with increasing m but the first Bragg peak is large enough. 
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Fig. 3. Reflectivity of CuK, X-rays by the perfect (Nb, Si) 1000/glass multilayer mirror 
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