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Abstract. This paper presents a general theory of multiple diffraction of x rays
in a perfect crystal on whose surface a system of epitaxial films has been grown,
without restrictions on film thickness or diffraction geometry. In the general case
some of the diffracted rays pass through the plate (Laue diffraction) and some are
reflected and exit from the plate through the entrance surface (Bragg diffraction).
The author develops a method for calculating the intensities of the diffracted waves in
one crystal layer in terms of matrix algebra and the explicit isolation of Laue—Laue,
Bragg-Bragg, and Laue-Bragg scattering. The general problem of calculating the
parameters of multiple diffraction in a multilayer system is solved by the method
of matrix recurrence formulae. A concrete example of applying the theory is given,'
namely, the three-wave (333,113) diffraction of radiation CuK« in a crystal with a
homogeneous epitaxial film in which the interplanar distance (11 1) is slightly changed.
The method of direct calculation of the angular dependence of the intensity of the
weak (113) ray is used to show the possibility of measuring directly the variation in
the phase of the wave reflected from the (333) plane, the variation being caused by
distortions of the crystal lattice in the film.

1. Introduction

The phenomenon of multiple diffraction of any radiation with wavelengths of the order
of the interatomic distance in a crystal is widely known and can be easily observed
experimentally. It emerges when a certain relation between the wavelength and the
direction of propagation of a ray in the crystal is met and consists in a strong diffractive
reflection of the plane wave from several systems of crystal planes simultaneously. For
x rays of a given frequency w multiple diffraction is realized inside a narrow cone near
certain directions specified by a unit vector s, whose two free components satisfy the
Bragg law

(Ksy+h,)? = K? (1)

where K = w/c = 2w /), with X the wavelength, and h_ is the reciprocal lattice vector
with number m.

The angular deviation of the ray from the direction of s, must not exceed a
quantity of the order of the scattering amplitude, whose role in the present case
is played by the Fourier component of the crystal’s polarizability, x,,. In standard
conditions the absolute value of x, is of the order of 10~3. Hence, for the experimental
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investigation of the multiple diffraction of x rays in pure form, the collimation of the
incident ray in two planes must be no worse than several fractions of an angular second.
This is an extremely stringent requirement that has been realized in experiments only
recently. Kov’ev and Simonov [1] were the first to use a doubly collimated ray in
studies of multiple diffraction of x rays. By measuring the angular dependence of
the intensities of the diffracted rays they ‘found in a direct manner the phase of
the scattering amplitude x, in a perfect silicon crystal, that is, the phase problem
of structural analysis was solved (in this particular case). Applying synchrotron
radiation [2] enabled shortening the time of the experiment drastically, which makes
the method of multiple diffraction extremely promising for a great number of problems
in which the structure of perfect crystals and near-the-surface layers is studied.

The basics of the theory of multiple diffraction of x rays were formulated in the
works of Ewald and Laue in the first half of this century, but to this day only the theory
of perfect crystals has been well developed [3]. Lately, however, science and technology
have made extensive use of perfect crystals with a complex system of epitaxial films
of various composition grown on the crystal’s surface. The study of such systems by
the multiple-diffraction method is currently hindered by the total absence of a theory
or sufficiently clear understanding of the potential of the method.

The present paper is devoted to this problem. It presents a rigourous theory of
multiple diffraction of x rays in multilayer crystal systems with layers of arbitrary
thickness. The approach considers the most general and complicated (from the stand-
point of analysis) case, namely, when a fraction of the rays are reflected back and leave
the crystal through the entrance surface (Bragg diffraction). Owing to the complex
nature of the boundary conditions, the problem proves to be self-consistent. The
method of matrix recurrence formulae developed to solve this problem can, naturally,
be employed in similar problems with any type of radiation (electrons, neutrons, or
Mossbauer gamma rays). The discussion in this paper is restricted to the case where
the diffraction angle is not very small and mirror-reflected waves can be ignored.

2. Statement and solution of the problem in one crystal plate

The propagation of x rays in a medium can be described fairly accurately by the
Maxwell equations with allowance for the quantum mechanical nature of the response
of the medium to electromagnetic radiation. For the Fourier components of the electric
field, E(k,w), we have the following equation:

4miw

(k2 — K} E(k,w) — k(k - E(k,w)) = = ik.w) (2)

where j(k,w) is a Fourier component of the induced-current density and is calculated
as the quantum mechanical average of the current-density operator over the state of
the crystal in the radiation field [4]. Allowing for the periodicity of the crystal lattice
and the weakness of the interaction (linear in the field strength), we can generally
express the current in terms of the field as an expansion in reciprocal lattice vectors:

o Csz i1 ;
5 (ko) = o 3 X g, k) B (R, ) (3)
mj

where k., = ko + h,,, and x%(k,,k,,) is a frequency dependent Fourier component
of the crystal’s complex-valued polarizability tensor, which allows for all types of
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scattering of x rays, both the classical Thomson scattering and resonance scattering
(the photoelectric effect, Compton scattering, and diffuse thermal scattering [5]).

Suppose that a plane wave with a wavevector K, ~ K 8;, where s, satisfies the
Bragg law (1), is incident on the upper surface of a crystal shaped as a plate of
thickness t. The only component of the wavevector that can change inside the crystal
is the one parallel to the inward unit normal n, to the surface of the plate, that
is, kg = K, + eny/2. The complex-valued quantity ¢ is defined in such a way that
its imaginary part is equal to the absorption coefficient for the wave propagating
to within the crystal. Next we substitute (3) into (2) and allow for the fact that
k- E(k,w) = 0 in the approximation linear in the field strength and that out of the
infinite system of equations it is sufficient to isolate only those reciprocal lattice vectors
that approximately satisfy the Bragg law (1). The transverse nature of the electric
field makes it possible to introduce two scalar amplitudes,

E(k,,w) =10 Y Bnyenm, (4)

s=n,0

where e, . and e, are mutually perpendicular unit polarization vectors normal
to k,,, and v,, = (k,, - ny)/ K.

Thus, the problem consists in finding the complex-valued refraction correction €
and the scalar amplitudes B,,,, which are, respectively, the eigenvalues and eigen-
vectors of a matrix,

- -1/2 ss’ s’
eBp, = 3 K7t 7t (—ambams + Xoame) B - (5)

m’s?

Here 6,’,:,'", is the Kronecker symbol, e, the parameter that is the measure of the
extent to which the reciprocal lattice vector with number m does not obey the Bragg
law,

1
a, = —k—g [(Ke+hm)2_K2] (6)
and
Xt = 3 €y X (R, B s e (7)
ij

is the kinematic scattering matrix.

Obviously, condition (1) can be met with any two reciprocal lattice vectors for any
given wavelength of the radiation. Actually, because of the symmetry of the crystal
lattice, equation (1) is often satisfied by a combination of three, four, or a larger
number of reciprocal lattice vectors. If it is satisfied with N — 1 vectors, we speak of
the N-wave case. Since there are two polarizations, the rank of matrix (7) is 2N, and
system (5) has 2N solutions. The total amplitude of the electric field in the crystal is

E(r,w) = Z ’\J exp(ikmj ' r)7r;1/2Bmsjems (8)

msj

where k... = K, +h,, +¢;m,/2, the quantity }; is the degree of excitation of the jth
solution of system (5), and the eigenvectors B, ,, are normalized to unity.
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Parameters A; are determined by the boundary conditions. In the geometry of
reflections a fraction of the scattered waves exit from the crystal through the upper
(entrance) surface (v,, < 0). We call these waves Bragg-scattered and denote them by
the letter B. The waves exiting from the crystal through the lower surface of the plate
are Laue-scattered and we denote them by the letter L. Formula (8) remains valid as
well when any wave of the L-type with a wavevector K e+ h,, isincident on the upper
surface of the crystal and any wave of the B-type with an appropriate wavevector is
incident on the lower surface.

Generally, the amplitudes of L-waves at the upper surface of the plate and those
of B-waves at the lower are known. Out of these we build a vector with components

Dm_,‘y;,l/ ?. To this end we must determine the missing amplitudes, which comprise

a vector Rm,'y;,l/ 2, Averaging the amplitude (8) of the electric field over the unit
cell at both surfaces of the crystal, we obtain the boundary conditions for each ray
independently in the following form:

Z Bmaj exp(isjtm/2)Aj = Dma (9)
J

where ¢, = 0 if v,,, is positive and ¢, = if Ym 18 negative. The required amplitudes
of the scattered rays are

R, = Z Bg; exp(ie; 2 /2)); (10)
J

where z,, =t if v, is positive and z,, = 0 if Ym 18 negative. The experimentally
measured reflection coefficient of wave (ms) transformed into wave (m's’) is

2
P(m's',ms) =

'Eﬂﬁ (1)

ms

Formulae (5)-(11) determine the approach to solving the problem in one crystal
plate implicitly. However, for further progress, we need an explicit form of solution.
This requires using matrix algebra. To simplify the notation we will discard the
polarization index s by incorporating it into m. Matrix B,,; is a square matrix of
rank 2N, and the parameters Aj, D,., and R, are vectors in the same space. When
the subscripts and/or superscripts are dropped from these quantities, the notation
is understood to be in matrix form. The systems of equations (5), (9), and (10) in
matrix form are

B.e=G-B X-A=D R=Y-A (12)

where €;;) = ¢; 6;;+ is a diagonal matrix. In explicit form the solution can easily be

expressed in terms of a multiplicative inverse matrix as follows:
R=Y -X"'.D=M-D M=Y.X1 (13)

We call M, .., the dynamical scattering matrix. This matrix depends on the
thickness ¢ of the crystal. Obviously, in the limit of £ = 0 we have X = Y and M =1,
where [ is the identity matrix. We can show that

1t
Mmm' ~ 6mm’ + °2" Sgn(7m) Gmm' (14)
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for small values of ¢, with G the matrix on the right-hand side of (5). Thus, for small
values of ¢ the dynamical matrix is simply proportional to the kinematic, but already
fort > xy, ! the relationship becomes nonlinear and fairly complex.

The solution in the form (13) is also unsatisfactory for thick crystals and in the
limit as £ — co. The reason is that when diffraction is due to reflection in an absorbing
crystal, the imaginary parts of the eigenvalues, €7, may be either positive or negative.
More than that, if in the N-wave case n rays undergo Bragg reflection, the number of
eigenvalues for which ¢} < 0 is exactly 2n, while in the other eigenvalues £/ > 0.

The physics of this property of elgenvalues can easily be explained. To each value
of j there corresponds a Bloch wave. The energy flux in 2n Bloch waves is directed from
the lower surface of the crystal to the upper, and the waves decay when moving in the
opposite direction. It is natural to call this group of Bloch waves Bragg propagating,
similar to the scattered rays. In what follows the respective set of values of j is also
denoted by a single letter B. The other Bloch waves are of the Laue type and are
denoted collectively by the letter L.

All this suggests that as t grows, a fraction of the elements of the X and Y matrices
decrease infinitely and the remainder become infinitely large. No numerical calculation
is possible in this case. To obtain a solution suitable for computer processing we order
the values of m according to decreasing values of v,,, and the values of j according to
decreasing values of ¢/ and then go over to the new notation L and B as described
above. We also introduce the diagonal matrices

i€t )
ELL = exp ‘—2"" 6.’]1 7 € L
15
ig;t ] (15)
EBB = exp “2—' 6]]' ] - B.

The system of equations (9) in the new notation splits into two subsystems and
can be written in the following form:

By, - AL+ Byg - Ag = Dy,

(16)
Bgy, - Epy, - AL+ Bpp - Egp - Ag = Dg

where By; and Bgp are, respectively, 2(N —n) x 2(N —n) and 2n x 2n square matrices,
and Bpp and Bg, are generally rectangular matrices. This system is used to find Ay,
and )g, bearing in mind that only square matrices can have multiplicative inverses.
The values are then substituted into equation (10), which in the new notation has the

form
Ry, =By, -Epp - AL+ Brg - Egp - A (17)
Rg = By, - A, + Bgp - Ag-

The solution of system (16) must be transformed into a form that contains
no increasing exponentials, that is, instead of matrix Egg we must deal with the
multiplicative inverse E‘gé. A simple calculation leads to the following result:

A, = 2t - (Dy - Bpp - Egg - Bg - Dp)

-1 — _ (18)
Ap = EBéZBé ’ (DB — By, - By, Buf 'DL)
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where

Zyy, = By, — Byp - Egg - Bag - Bgy, - By,

(19)

Zpp = Bpp — By, - By, - By, - Bup - Epp.
Substituting (18) into (17), we obtain the solution in a new form:

Ry, = My, - Dy, + Mg - Dy Ry = Mpy, - Dy, + Mgp - Dy (20)
where the blocks of the dynamical scattering matrix have the following form:

My = By, - Eyy, - Zi — Big - Z5g - By - Evy, - B

Mg =Bip-Z5p — By, - Ery - 21 - Bip - Egg - Bpp (21)
Mgy, = By, - Z1y, — Bpp - Egp - Z5p - By, - Evp, - B

Mpg = Bpp - Egg - Zgg — B, - 21 - Bup - Exg - Bajh.

It is easy to verify directly that notwithstanding their unwieldy form these equations
are fairly convenient for calculations with any crystal thickness including the limit of
t — oo.

For thick crystals the block Mg, is the most interesting. In the zeroth order of
the perturbation expansions in small exponentials we get

(Mgy,),_.., = Bgy, - Bi}- (22)

An approximation equivalent to (22) has been suggested in [6, 7). The effect of the
anomalous transmission of Laue rays in the reflection geometry is described by the
matrix My, . In first-order perturbation theory directly from (21) we obtain

(M), .o, = (Buy — Bup - Bas - Bar) - Evy, - Bry. (23)

This result was obtained in [8]. In contrast to the approximate formulae (22) and (23),
formula (21) gives an exact solution of the problem in the most general case and for
all values of t.

3. Recurrence formulae for a multilayer crystal system

Let us consider a crystal on whose surface there has been grown a complicated
system of heteroepitaxial layers of a different composition but with almost the same
parameters of the crystal lattice, so that multiple diffraction is realized in all layers
on the same reciprocal lattice vectors. We isolate the subsystem consisting of the n
upper layers (figure 1). The amplitudes of the waves incident on this subsystem (from
above and below) are denoted by D; and Dj, the amplitudes of the scattered waves

by R;, and Rg, and the blocks of the scattering matrix by W,E;') (k,! = L,B). To
this subsystem we add one more layer, to which the blocks M ,E?H) of the scattering
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matrix correspond. We denote the amplitudes of the waves incident on this layer by
Dj, and Dy and those scattered by the layer by Ry, and Rp. By definition,

=W - Dy + WY - Di
RB — W(n) DL + Wé%) . DIB (24)
RL =M. D+ MY . Dy

=M . D+ MG - Dy,

For a system consisting of n+1 layers, as is evident from figure 1, not all the amplitudes
on the right-hand sides of the formulae in (24) are known. Instead we have the obvious
relations

D,=R,  Dj=Ri. (25)

" \R
DB /\RL

Figure 1. The ray pattern in a multilayer system.

The problem is to find the relationship between the amplitudes R; and Rg of the
waves scattered by the system of n + 1 layers and the known amplitudes D} and Dg
of the waves incident on this system, that is, determine the blocks of the complete
matrix that represents the scattering by the (n + 1)th layer:

R, =Wo . p + W) . Dy Ry=w. D+ Wit - Dy (26)

The solution method is the same as in section 2. Bearing in mind that the product
of matrices is noncommutative and that only square matrices have multiplicative
inverses, we must be careful in the calculations. Dropping the details, we can write
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the answer as
W("+1) — M£'£+l) ] (ILL - WI(,n) M("+1))'1 (")
n+41 n+1
W( + ) I(JB+ )

+ M(_"+1) . (ILL W(") M("+1)) W(") Mé'l‘;'l)

(27)
W("+1) W(")

+ WS- (Igg — MGY . W)™ MGHD
n -1 n
W("+1) WI(S'I‘B) (IBB _ Ml(3L+1) W(")) M( +1)

where I;; and Ipp are identity matrices of appropriate dimensions. Formulae (27)
are the required recurrence formulae. If the crystal has N layers, after finding the
scattering matrix for each layer by the procedure developed in section 2 we can easily
find the scattering matrix for the entire multilayer system by successively applying
27).

( )The physical meaning of (27) is understood if we expand the matrices in power
series, after which the result can be represented as the sum of processes of multiple
reflection and transmission of the rays in the layers, which is schematically shown in
figure 2 for the (a) LL, (b) BL, (c) LB, and (d) BB scattering processes. Summing the
series by ordinary methods leads to equivalent results in a somewhat different form.
For instance,

n+1 n n n+1 n n41) -1 n
WD = WD+ W M) (1~ W - M) WD) 29

If the (n + 1)st layer is very thick (the substrate), only matrix (28) is of interest, and
in it we can employ approximation (22) for Mg; .

4. An example

The above theory makes it possible to give a meaningful description of a large
number of new effects of multiple scattering of x rays in multilayer systems. As an
illustration we apply the method to a fairly simple system, a thick single crystal with
a homogeneous epitaxial film. Suppose that the relative variation in the interplanar
distance in the film is Ad/d. This variation leads to an increase in the phase of the
complex-valued amplitude of the wave reflected in the substrate, A® = 2w(Ad/d)t/d.
If the film thickness is much less than the extinction length L, in the angular region
of total reflection the reflection coefficient Py of two-wave diffraction is practically
insensitive to the film, and there is no way in which the phase shift A® can be
measured. The film manifests itself only in a small maximum at the tail of the
reflection curve.

The situation is quite different in the method of x-ray standing waves [9] when
secondary radiation with a small escape depth is registered (photoelectrons, for
instance). The shape of the curves representing the angular dependence of the
yield of secondary radiation depends explicitly on the phase of the complex-valued
reflection amplitude. As first demonstrated in [10], a similar pattern emerges in the
event of three-wave diffraction in the angular region with strong reflection of the first
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Figure 2. Summation of the processes of ray scattering in layers.

ray (h) and weak reflection of the second (g), where the intensity of the weak ray is
approximately described by the following formula:

I, ~ Ig, 2

=x,0

2
Eha
EOa

PE3 4 P2 xeh exp(~iA®) (29)

with Igs = lxgo /argl2 I,, the intensity of the weak ray in the kinematic approximation
in the absence of the first strong reflection, PP}, = e, - e,, the polarization factors,
and xgho = xgh/ng‘

To demonstrate graphically this effect of the phase sensitivity of the curves, figure 3
shows the results of calculations of the coefficient of (113) reflection, P53, for the case
of (333,113) diffraction of CuKa radiation in Si with an epitaxial film 1 um thick.
The entrance surface of the crystal plate is parallel to the (111) atomic planes. The
calculation was done using formula (28), and the rotation axes of the crystal were
chosen in such a way that parameter a5;; was independent of Aep.

For large values of Ay, when ja, 5] > ngol, the (113) beam has a low intensity
and in the range of values of angle Af where P333 ~ 1, the (333) reflection curve
is of the well-known ‘Darwin table’ type since L333 = 8.2 um, which is considerably
greater than the film’s thickness. On the other hand, at A® = 0 the shape of the
(113) reflection curves, as figure 3 clearly shows, has a distinct dispersive nature and
strongly depends on the values of A®, changing in practically the same manner as
photoemission curves [9].

Figure 3 shows 11 curves corresponding to different values of A® from zero to 2«
with an interval of #/5. To make the pattern more graphic, the curves have been
shifted with respect to each other by one unit on the scale of the left vertical axis.

P
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(333,113), CuKa, Si, Ae=-1'
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Figure 3. The curves representing the angular dependence of the coefficient of
(113) reflection in the angular region of total reflection of the (333) ray but of weak
reflection of the (113) ray for different values of the deformation of the crystal lattice
in the epitaxial film, Ad/d. The respective variation of the phase of the (333) wave
on the surface of the crystal is plotted along the right vertical axis.

The right vertical axis shows the values of A® corresponding to different curves. Since
the interplanar distance d is 1.05A for the (333) reflection, the specified interval of
phase variation corresponds to Ad/d varying from zero to 1.05 x 10~*. The azimuthal
angle of the crystal’s rotation Ap is —1'. The effective escape depth of the (113)
ray can be estimated by the formula d g ~ A |7g/ag| ~ C/|Ap|, with the coefficient
C = 0.11 pms being very small in this case because |7 | is small (a glancing beam).
Thus, the demonstrated curve pattern will be observed for all values of Ay satisfying
the condition Iagl > |ng|.
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