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Equations are obtained for calculating the angular dependence of the secondary radiation yield 
(the photoelectron emission or fluorescence radiation) under the conditions of multiple dynamical 
X-ray diffraction. For a small yield depth L,i the intensity of secondary radiation is proportional 
to  the intensity of X-rays a t  the atomic sites of a surface layer of the single crystal. If LYt > LA, 
where LA is the X-ray penetration depth, then the secondary radiation intensity is proportional to  
the total absorbed energy of X-rays. Computer simulation of the threewave case (444, 335, Bragg 
geometry, CuK,, Si) shows that  the angular dependence of the photoelectron emission yield can 
be described as a repulsion interaction of two crossing two-wave maxima. New possibility of ob- 
serving the two-wave X-ray standing waves is discussed where the angular dependence of induced 
second reflected wave with a small intensity is analysed instead of the secondary radiation yield 
within the total reflection domain for the first reflected wave. 

Gleichungen zur Berechnung der Winkelabhangigkeit der sekundaren Strahlungsausbeute (Photo- 
elektronenemission oder Fluoreszenzstrahlung) unter den Bedingungen der dynamischen Rontgen- 
mehrfachbeugung werden erhalten. Fur  eine geringe Ausbeutetiefe L,i ist die Intensitat der Sekun- 
darstrahlung proportional zur Intensitat der Rontgenstrahlen an den Atomplatzen einer Ober- 
flachenschicht des Einkristalls. Wenn L,i > Lg, wobei LA die Rontgeneindringtiefe ist, ist die 
sekundare Strahlungsintensitat proportional zur gesamten absorbierten Energie der Rontgenstrah- 
len. Computersimulation des Dreiwellenfalles (444, 335, Bragg-Geometrie, CuK,, Si) zeigt, daB 
die Winkelabhangigkeit der Photoelektronenemissionsausbeute als repulsive Wechselwirkung 
zweier sich schneidender Zweiwellenmaxima beschrieben werden kann. Neue Moglichkeiten zur 
Beobachtung der stehenden Rontgenwellen irn Zweiwellen-Fall werden diskutiert, wobei die Win- 
kelabhangigkeit der zweiten induzierten reflektierten Welle mit einer geringen Intensitat anstatt 
der sekundiiren Strahlungsausbeute innerhalb der Gesamt-Reflexionsdomane fur die erste reflek- 
tierte Welle analysiert wird. 

1. Introduction 

The X-ray standing wave analysis of the subsurface layer of semiconducting crystals 
has been widely used in recent years (see, e.g., [l t o  61). It consists in the registration 
of the angular dependence of the yield of secondary radiation (SR) such as photo- 
electron emission or fluorescence radiation, under the conditions of dynamical X-ray 
diffraction in single crystals. The amplitude E of the electric field of X-rays a t  an 
atomic site is the superposition of two plane waves: the entrance one Eo and the re- 
flected one Eh. Within the angular domain of total reflection the amplitudes of these 
waves have nearly equal values. As a result a standing wave arises. The number of 
photoelectrons or fluorescence quanta emitted by atoms, is proportional t o  I El2 and 
depends strongly on the phase of the relation EhIEo. That is why the angular depend- 
ence of the photoelectron emission differs essentially from the angular dependence of 
the X-ray reflection that is equal to  IEh12/1E012. 

l )  pl. Knrchatova, SU-123 182 Moscow, USSR. 
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Fig. 1. The scheme of three-beam X-ray diffraction 
and the rotation axes of a crystal 

The phase sensitivity of the X-ray standing 
wave method makes i t  very useful for studying 
the position of impurity atoms a t  the surface 
(adsorption) and in the bulk of a crystal near 
the surface. The method also allows to  meas- 
ure the displacements due to  the crystal lattice 
relaxation after ion implantation or due to  
the incommensurability of lattice parameters 
in layer and substrate. 

Up to  now the nature of the arising X-ray standing wave and the motion of its 
nodes relative to  the atomic planes with varying deviation from the Bragg angle is 
known well enough only for the two-beam case of X-ray diffraction. I n  the case of 
multiple diffraction the electric field which is the superposition of several plane waves, 
depends essentially on two mutually perpendicular angular deviations of the direction 
of the entrance beam from the direction that satisfies exactly several Bragg condi- 
tions. If the direction of the entrance beam is fixed, then the intensity of both re- 
flected beams and the photoelectron emission change with crystal rotation around 
two axes, i.e. the axis 8 (rotation in the plane perpendicular to  the crystal surface) and 
the axis y (rotation in the surface plane), as is shown in Fig. 1. 

The analysis of the two-dimensional angular dependence allows to  localize two 
coordinates of an impurity atom site. Hence the measurement of SR yield under the 
conditions of multiple diffraction gives additional valuable information. I n  a single 
crystal one obtains the possibility t o  study the motion of two-dimensional stationary 
waves with the change of the entrance beam direction. To solve these problems it is 
necessary to  develop further the theory of multiple X-ray diffraction. This is the aim 
of the present paper. 

In  the following section the derivation of the general equations is given. The specific 
example of the photoelectron emission in the case of three-beam (444, 335) diffraction 
of CuK, radiation in a Si single crystal is analyzed theoretically in Section 3. In  
Section 4 a new possibility of using two-wave standing waves without the measure- 
ment of SR yield is discussed in brief. 

2. Derivation of General Equations 

Let the crystal be oriented with respect to  the entrance beam such that two Bragg 
conditions (or more in the presence of additional crystal symmetry elements) are 
satisfied simultaneously for reciprocal lattice vectors h,. Then the amplitude of the 
electric field in a crystal has the form 
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where N is the number of strong waves, k ,  = ko + h,, k, is the wave vector of the 
entrance wave, z the coordinate along an inner normal no t o  the crystal surface. The 
transverse character of X-rays in a crystal is conserved because small additions of the 
order (1 - E )  = where E is the dielectric function, can be neglected. Hence we 
may consider only two components of the vectors Em(z) ,  namely, 

E m ( Z )  = C Ems(z) em , (2) 
s=x,a 

where emx and ema are the unit polarization vectors for the rn-th wave which are 
perpendicular both to  k ,  and to  each other. 

The scalar amplitudes Ems(z) satisfy a set of equations derived from the Maxwell 
equations. In this procedure we can neglect the second derivatives of the amplitudes 
with an  error not exceeding (1 - E ) ,  if the parameters y m  = k m n o / ( k m 1  are not too 
small. Then the set of equations has the form 

Here xzm. = ~mm~(emsem,s~) (in dipole approximation), xrnnz. is the Fourier transform 
of the crystal polarizability x = xr + ixi with the reciprocal lattice vector h, - hmj, 
1 the wavelength, 

where x = 27t/;l = w/c.  The OL,, parameters characterize the deviation from the Bragg 
conditions depending on AO, Aq. Kronecker’s symbol Sz,, is equal to  unity if m = m’ 
and s = s’. 

Equations (l), (2) and the set of equations (3) are valid for a deformed crystal, too, 
provided the atomic displacements u from the initial positions depend only on z.  
In  this case i t  is necessary to  use instead of xgmp where 

(5) “83‘ SS‘ 
Xmm’ = Xmm, exp [ i ( h m ,  - h m )  ~ ( 2 )  - W m m , ( z ) l  . 

Here we introduce in addition the static Debye-Waller factor IS]. 
For a single crystal the set (3) has an analytical solution 

where E ,  + ipl and EmS(j) are complex eigenvalues and eigenvectors for the matrix 
on the right-hand side of (3), the parameter 1, are determined by the boundary con- 
ditions. In  the case of N beams the matrix has the order 2N 2 6. Hence ~ 1 ,  pj, and 
Ems(j)  have no analytical expressions. 

We are interested in the intensity of radiation a t  an atomic position r = rA in the 
crystal. According to  (l), (2), (6) i t  equals to  

(7) F(r , )  = l E ( r A ,  t ) l z  = C Ajj. e-Mj5’Z~ C E,t8,(i) E&(i’) XzL,(rA) , 
jj ’ mm’ 

ss’ 

where the following notations are used : 

3 physica (a) 106/1 
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I n  experiment one determines an intensity of SR (e.g., of photoelectrons) which 
reaches the crystal surface. Consequently we must calculate the sum of (7) over the 
coordinates of all atoms and over all positions in which atoms move due to  thermal 
vibrations. Moreover, we must account for the absorption of SR emitted in the depth 
z in the crystal bulk when they move towards the surface. 

If SR is registered above the entrance surface of a crystal, then the intensity, 
averaged over atoms in the unit cell and the thermal vibrations, must be multiplied by 

p(x) = e-!-W, (9) 

where pyi is the absorption coefficient of SR. For fluorescence radiation the exponen- 
tial form of P(z) is exact, but in the case of photoelectron emission it is not 191. How- 
ever, for the sake of simplicity we shall use approximately (9) for this case, too. 

The procedure of averaging over atoms in the unit cell and over thermal vibrations 
changes only the function X%,(r:) .  It is replaced by 

where N ,  is a number of atoms in a unit cell, and M E k , ( T )  = 0.5(hm - h,,)2 (u;). 
The factor exp ( - M g k , )  is the thermal Debye-Waller factor. The sum on the right- 
hand side of (10) is known as  the structure factor. We note also that  if one neglects 
weaker X-ray absorption processes than the photoelectric one, then 

where xfgm, is the imaginary part of the matrix which enters the set of equations (3). 
Finally we have the following expression describing the angular dependence of SR 

yield : t 
x(Ai3, Ay) = K J dx P(z )  2 Ajj, e-xjji‘zIjj,, (12) 

0 jj’ 
where 

t is the crystal thickness, K a factor that does not depend on A0 and Ay. Substituting 
(9) into (12) and integrating over z one obtains the expression 

In (14) the SR yield is normalized to  its value in the absence of Bragg diffraction. 
If ,+.it > 1, then the quantity Ljj)  does not depend on t .  If, moreover, ,uAt > 1, then in 
(14) i t  is necessary to  account only for eigenvalues that correspond to  pg > 0 and to  
find quantities 1j from the boundary conditions only for the Laue beams (ym > 0) 
[lo, 111. Thus, in a thick crystal the SR yield does not depend on its thickness. 
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Let us consider the case where Lexpyj > 1, and L,, is the extinction depth. Then 
Ljj, = L o  and i t  follows from (14) that the function x ( n 0 ,  Ap) describes directly the 
angular dependence of the X-ray wave field intensity a t  the atom positions of a crys- 
ta l  subsurface layer. 

Instead of (14) one may use also another formula which is derived with help of the 
relation 

where 
p,iIjj# z= M j j * @ j j p ,  (17) 

The derivation of (17) in the case i = i‘ has been done in [ 121. A more general equation 
with j $. j’ is derived similarly in [13]. As a result the equivalent expression for 
x ( A 0 ,  Ap) may be written in the form 

x(A0, Ay) = (pAL0)-l C AjjfLjj,Mjj@jjt. (19) 
j j  ’ 

Equation (19) is more suitable for a computer simulation because ajJr involves only 
one sum over ms instead of the double sum in I j j p .  

Consider now the case, where,uYi < Mjj,, but pnt > 1 (thick crystal). Then Ljj’Mjj, = 
= 1 and in accordance with (19) the angular dependence of the SR yield is described 
approximately by the expression 

ym<o 

where R,, is the X-ray reflection coefficient for the s-th polarization state, 

(21 1 lYml  

j Yo 
Rms = I E A,Ems(i) lz  __. 

The right-hand side of (20) is a consequence of the boundary conditions and of the 
definition of Rms. 

The expression obtained has a simple physical meaning. When the SR yield depth 
becomes greater than the X-ray penetration depth, the SR intensity is proportional 
to  the total absorbed energy of X-rays in the crystal. Such a situation is realized, as a 
rule, when one registers the fluorescence radiation. 

3. Analysis of the Specific Case Three-Beam (444, 336) Diffraction 
of CuK, Radiation in Si 

The above-obtained equations can be used for an analysis of the angular dependence 
of BR yield under conditions of multiple X-ray diffraction with arbitrary number of 
both Laue beams ( y m  > 0) and Bragg beams ( y m  < 0). As an example, in this section 
we consider the photoelectron emission in Si under the conditions of three-beam (444, 
335) diffraction of CuK, radiation (A = 0.154 nm). The reciprocal lattice vectors 444 
and 335 are denoted as  h and g. In  this particular case they are nearly parallel and 
make an angle of 14.5’. Moreover, the wave vectors ko, kh, and k, for the given wave- 
length are nearly in the plane of the vectors h and g. It is easy to  understand with 
account of this facts that  all polarization factors are approximately equal to  unity. 
As a result both the intensity of the photoelectron emission x(A0, Ap) and the X-ray 
reflection coefficients R,(AO, Ap) ; m = h, g, depend weakly on the polarization state 
of the incident radiation. This fact has been confirmed by a numerical computation. 
3’ 
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I I -7 Fig. 2. The curves of AO-dependence 
of X-ray diffraction reflection coeffi- 
cients for different values of A q  in 
the case of three-beam (444, 335) 
diffraction of CuK, radiation in Si. 
Solid lines 444, dotted lines 335. 
The angular deviations AO, A q  are 
given in seconds of arc (1" = 0.485 x 
x rad) 

Fig. 2 and 3 show the computational results for a nonpolarized, ideally collimated 
beam. The crystal surface is normal to  the vector h. For the rotation axes used (angles 
6 and pl, see Fig. 1) the Bragg condition for the vector h (parameter a h )  does not depend 
on Apl. As a result the region of total diffraction reflection (RTDR) for the h-beam 
has the form of a stripe parallel to  the axis pl on the plane of the angular deviations 
A6, Apl. The angle between the axis pl and the RTDR stripe of the g-beam is 36.8'. 
It is known [7] that the value of the section of two-beam RTDR with the 6-axis is 
equal t o  x, =48&1/21~ml/la,ll, where 8, = ~ / ~ / l ~ ~ , ~ l  and 01,1 is a coefficient in (4). The 
displacement of a RTDR centre from the point A6 = 0 on the line Apl = 0 is equal 
to  A6, = -lxol (1 + ~ , , , ) / ~ m ~ m l .  In  the case considered these parameters have the 
values x, = 5.24" and 2.32", A6, = 8.58" and 5.22" for reflection 444 and 335, 
respectively. 

According to  Fig. 2 and 3 the angular dependence of x and R, can be described as 
an interaction of the two-beam RTDR due to  their crossing. Let us consider the change 
of the form of RTDR along the 6-axis with varying value of Apl. For large values of 
Apl when the distance between RTDR L(Apl) > x, their interaction can be accounted 
for perturbatively [la, 151. Then the equations of the two-beam approximation are 
conserved but only with renormalized values of the parameters x,~.. For example, in 
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Fig. 3. The curves of AB-dependence 
of the photoelectron emission for dif- 
ferent values of A? in the same case, 
as in Fig. 2 

the h-beam 

(22) XhsXsO 
X h  = XhO - XhO I_ c, Ag, ’ 

where C ,  is a coefficient. Accordingly such parameters of RTDR as width and centre 
displacement also change asymmetrically with respect to  the sign of Ay. 

It iu easy to  see in Fig. 2 that  RTDR for the h-beam become narrow and move to  
the left on the side A’p > 0 from the multiple region and vice versa. The RTDR for 
the g-beam becomes narrow on the side Ag, < 0. Therefore, the existence of two maxi- 
ma of X-ray reflection for each beam in the central part of the many-beam region is a 
natural consequence of this behaviour. In  fact, two maxima exist also for Ay values 
which correspond to  L(Ag,) > 2,. The reason for this can be understood if one con- 
siders, e.g., the equation for the amplitude E,. Neglecting, for the sake of simplicity, 
polarization effects one obtains easily from (3), (6) the expression for the amplitude 

(23) x[XgOEo + X g h E h l  E ,  =- -__ -- 

Y Q E  - 3 t X O  + xag ’ 
where E = E + ip is a complex eigenvalue. 

According to  (23) the maximum of E ,  with a change of A0 can appear under two 
conditions. Firstly, i t  arises when the Bragg condition for the g-beam is satisfied 
(a ,  = 0) ,  then the denominator of (23) decreases. Secondly, when the Bragg condition 
for the h-beam is satisfied ( o i h  = 0), then the numerator of (23) increases sharply with 
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the  increase of the amplitude Eh,  and the second maximum arises. This becomes weak 
with increasing L(Agl), when ag grows. Hence, the first and second maxima can be 
called the proper maximum and induced maximum, respectively. At the point of 
intersection of two-beam stripes of RTDR the proper maximum transforms into the 
induced one and the two-beam stripe breaks off. It is interesting that in the multiple 
diffraction angular region there are areas where the sum of X-ray reflection coefficients 
has a value that is smaller than unity. In  other words, the total reflection effect does 
not exist under the conditions of three-beam diffraction. 

The intensity of photoelectron emission has contributions from all beams. As a 
result, the angular dependence of the photoeffect (Fig. 3) has two equivalent maxima 
for all values of Agl. We used in the calculations (19). In  a given case the yield depth 
of the photoelectron emission is L,i = 0.46 pm [9]. Following [15] we used P(z)  in the 
exponential form with pyi = 2.3/LYi = 5 pm-l. 

Fig. 3 shows that the total radiation field a t  the atoms of a crystal depends on A0 
as in the two-beam case (see, e.g., [l, 21). Such an angular dependence takes place 
practically for all values of Agl, but the amplitude of the intensity change depends 
strongly and asymmetrically on Aq. The change of two maxima in Fig. 3 with decreas- 
ing distance between them can be characterized as a repulsion. The left maximum 
becomes weaker with decreasing distance. For the minimum distance i t  almost va- 
nishes though the sum of X-ray reflection coefficients does not equal zero for the given 
angle values. Therefore, this effect has interference character. 

The reciprocal lattice vector g has a nonzero projection along the crystal surface. 
Thus, one can obtain a structural information about the crystal in both directions 
normal and parallel to  the surface through analysing the two maxima. 

4. X-Ray Standing Wave Method without Secondary Radiation 
In  this section we want to  show a new possibility for the observation of X-ray standing 
waves in the intensity of the induced maximum of X-ray reflection. According to  (23), 
for large values of ag we have 

In the RTDR for the h-beam the angular dependence of the g-beam intensity con- 
tains information about the phase of the ratio EwIE,,. Because ag has a large value, the 
g-beam is weak and does not practically influence the amplitudes E,, and E h .  There- 
fore, they have the values of the two-beam approximation. It follows from (24) that  
the angular dependence of the induced maximum differs essentially from that of the 
proper maximum. This fact has been observed clearly in experiments [17, 181. On the 
other hand, the intensity of the h-beam depends on the phase of the ratio E,IE,, within 
the RTDR for a g-beam. 

Moreover, this method can be used in an analysis of the structure of distorted sur- 
face layers. If the atoms near the surface are displaced from the regular positions, then 
the parameters xmmT have additional phase factors as follows from (5). Taking into 
account also the polarization factors we have the following expression for the intensity 
of the induced beam in the case of a polarized entrance beam (s = x ,  a) : 

where ~ ( 0 )  is the'displacement of an atomic plane'on the surface of a crystal. 
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Now the angular dependence on A0 allows to  determine the phase hu(0) in addition 
to  the phase of E,IE,. Consequently we may characterize the degree of crystal lattice 
deformation in the subsurface layer as  in the X-ray standing wave method in the case 
of photoelectron emission. However, in a given case there is no necessity to  measure 
SR. It can be shown that the thickness of the subsurface layer which is analysed by 
this method is very small and i t  tends t o  zero with increasing mg. 
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