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Abstract 

The general theory of X-ray spherical-wave diffrac- 
tion in two, either identical or different in nature, 
spatially separated perfect crystals is developed. The 
theory takes into account the phase shift of the waves 
both inside the crystals and in vacuum before, 
between and after the crystals. The nonmonochroma- 
ticity of radiation, the source dimension and the 
placing of a slit before the first crystal are considered. 
The results of theoretical calculation and an experi- 
mental study of the interference fringes and focusing 
the radiation are presented. A good agreement 
between the experimental and theoretical data is 
obtained for values of the experimental parameters 
that affect focusing. 

I. Introduction 

The diffraction pattern on the film behind a perfect 
crystal due to X-ray-spherical-wave diffraction is 
known (Afanas'ev & Kohn, 1977) to be defined to a 
great extent by the wave phase change occurring both 
inside the crystal and in vacuum along the source- 
crystal-film wave path L. In other words, the form 
of the diffraction pattern depends on the parameter 
t~ L, where t is the crystal thickness. To observe this 
dependence experimentally one has to use either 
monochromatic radiation (Aristov, Ishikawa, Kikuta 
& Polovinkina, 1981) or a special set-up in which 
polychromatic focusing is realized (Aristov, 
Polovinkina, Shmyt'ko & Shulakov, 1978; Kozmik & 
Mikhailyuk, 1978a, b; Aristov & Polovinkina, 1978; 
Aristov, Polovinkina, Afanas'ev & Kohn, 1980). In 

0108-7673/86/060426-10501.50 

the above papers all the new details of the diffraction 
pattern introduced by the theory have been obtained 
experimentally, namely, focusing of the radiation and 
the anomalous form of the Pendelliisung fringes. 

The effect of an entrance slit placed in front of the 
crystal on the diffraction pattern has been investigated 
in the papers by Aristov, Kohn & Polovinkina (1980) 
and Aristov, Kohn, Polovinkina & Snigirev (1982). 
The slit was shown to play the role of an incoherent 
source when its width 2a is much less than either the 
source dimensions or the 'spectral' width ds= 
(F/to)L~ tan Oa, where F is the half-width of the 
spectral line, to is the radiation frequency, L1 is the 
source-to-crystal distance and Oa is the Bragg angle. 
This case is realized in standard section topography 
of the experimental set-up with a narrow slit before 
the crystal, which is equivalent to the case of a point 
source on the entrance surface of a crystal (Kato, 
1961, 1968). 

The present paper is related to a further study of 
the role of the vacuum in X-ray-spherical-wave 
diffraction. The Laue diffraction in two perfect crys- 
tals has been considered. It is particularly interesting 
owing to strong focusing occurring in two-block crys- 
tals with equal block thickness and L = 0. This effect 
was first seen in the case of a small gap between two 
identical crystals (Kato, Usami & Katagawa, 1967; 
Authier, Milne & Sauvage, 1968) when direct and 
diffracted beams were not spatially separated. In the 
first paper the stacking fault was used as a gap. The 
next step was made by Indenbom, Slobodetsky & 
Truni (1974). The effect was shown to occur also with 
a large gap between the blocks in the twice-reflected 
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beam (//-shaped interferometer). This phenomenon 
has received further experimental study (Suvorov & 
Polovinkina, 1974; Indenbom & Suvorov, 1976; 
Indenbom, Suvorov & Slobodetsky, 1976). 

In § 2 a general theory for X-ray-spherical-wave 
diffraction in two perfect crystals is developed. The 
theory takes into account the path of waves in vacuum 
and the positioning of a slit before the first crystal as 
well as the nonmonochromaticity of the radiation and 
the source dimensions. As in previous papers 
(Afanas'ev & Kohn, 1977; Aristov, Polovinkina, 
Afanas'ev & Kohn, 1980), the method of Fourier 
transformation was applied. General formulae are 
analysed in § 3. Experimental results are presented 
in §4. 

2. Derivation of general formulae 

Let us consider the experimental set-up shown in 
Fig. 1. The incident radiation is formed by an incoher- 
ent source of finite dimensions and a finite spectral 
width. In the first stage of the problem we have to 
obtain the solution for a point source and a specific 
frequency and then sum the intensity over all frequen- 
cies and all coordinates of the atoms at the X-ray 
tube focus. It is convenient to introduce a coordinate 
system with origin at the slit-plane centre for all 
waves. We use a unit vector So in the Bragg direction 
for the frequency too corresponding to a maximum 
of intensity in the spectrum. Then the wave vector is 
~o = xoSo, where xo = tOo/c, c is the light velocity. We 
present the electric-field amplitude of the X-ray 
spherical wave in the slit plane as the Fourier integral 

E(oin)(r) = ~  As(tO)eos ~ dq(2"rr) -2 exp (iqr)¢(q), (1) 
$ 

where q is a vector perpendicular to Xo (see Fig. 1), 
eos are the unit vectors of polarization, s = w, cr. The 
function ~b(q) depends on the slit width, radiation 
frequency and position of the point source on the 
X-ray tube focus and will be described below. The 
parameters As(tO) are the coefficients of expansion 
of the electric field vector on the polarization vectors. 
They include the frequency dependence of the charac- 
teristic radiation within the spectral line. 

According to Maxwell's equation in vacuum, the 
amplitude of the field of frequency tO at the entrance 
surface of the first crystal is 

E<oi~)(r) = Y. as(tO)eos 
$ 

x ~ dq(2cr) 2 exp [iKo(q)r]~(q), (2) 

where 

Ko = q+  So(x 2 -  qZ)l/2 
=xo+q+(Ax-q2/2xo)So. (3) 

Here x=to/c=uo+A~.  The terms of order higher 

than (q/go) 2 in the expansion of the square root in 
(3) can be neglected, since q/uo,~ 1. The same holds 
for AX/Uo. 

The solution of the problem of scattering of a 
partial plane wave with wave vector Ko in a perfect 
crystal is well known (Pinsker, 1978). Using this sol- 
ution twice, we obtain the following expression for 
the amplitude of the field in a twice-diffracted beam: 

E~t )  (r) = E A,(to )e2, ~ dq(2 ~.)-2 ¢j(q) 
$ 

× R~)(q)R~2)(q) exp [i~(q,r)], (4) 

where e2s are polarization vectors for the twice- 
diffracted wave, R~°(q) is the amplitude of reflection 
of a plane wave by the perfect crystal [see, for 
example, formulae (3.10) and (3.11) in the paper by 
Aristov, Polovinkina, Afanas'ev & Kohn (1980)]. 

The phase term exp (i~o) accounts for the phase 
shift of the plane wave with wave vector Ko between 
the slit and the first crystal, K~ between the first and 
second crystals and K2 after the second crystal. The 
wave vectors K1 and K2 are determined by the follow- 
ing relations: 

Kl(q) = Ko(q) + h~-  cq(q)n~/2 
(5) 

K2(q) = K~(q) + h2-  c~2(q)n2/2, 

where h~, h2 are the reciprocal-lattice vectors and 
nl, n2 are the inner normals to the entrance surfaces 
of the first and second crystals. The parameters t~(q) 
and c~2(q) are found from the condition that the 
scattering is elastic (the frequency is constant), i.e. 
K 2 = K 2 = K~, and are calculated in the Appendix. 

slit 

L o / "~',,~ 2d 

first crystal 

L2 

second crystal L 

Ls 

film 

Fig. 1. Experimental set-up. 
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Let us consider the function O(q). According to (1) 
it is the Fourier component of a scalar amplitude of 
the electric field in the slit plane, qJ(r). In its turn, 
q,(r) is the spherical wave moving from the point 
source on the focus of the X-ray tube. Without any 
loss of generality, instead of the real focus surface, 
we can consider its projection on a plane normal to 
~o (see Fig. 1). Let Lo be the source-to-slit distance; 
(x~, y~) are the coordinates in the slit plane, (Xo, Yo) 
are the coordinates in the plane of the focus projec- 
tion. It is obvious that 

~b(r)=[exp(i~R)/R]O(a-lx~[), (6) 

where 2a is the slit width, O(x) is the step function 
which is equal to one for x > 0 and is equal to zero 
f o r  x < 0, R = IRI, 

R = LoSo + (x~ - xo)eo= + (y~ -yo)eo~.  (7) 

Here and below the unit vectors of polarization are 
chosen as usual, namely, e,~ normal to the scattering 
plane (plane of Fig. 1), e,,r = [e,~ x S,],  where S,  = 
~,/Xo, n = 0, 1, 2 (see Appendix for ~,) .  From (6), 
(7) we have approximately 

~b(r) = [exp (iq~o)/Lo]0(a - Ix ,  I) 
x exp [ i(Xo/2 Lo)(X 2 - 2X,Xo) ] 

xexp[i(~o/2Lo)(y~-yo)2], (8) 

where the phase q~o depends on Ax but does not 
depend on the integration variables (x~, y~), and the 
corresponding phase factor has, therefore, no 
influence on the intensity. Below we shall omit such 
factors. The terms of type Axx2/2Lo are small and 
can be neglected. We represent the Fourier com- 
ponent of (8) in the following form: 

~,(q) = qJ,(qx) ~bE(qy), (9) 

where 

~ l ( q x )  = L - U 2  i dx~ exp (-iqxXO 
- - a  

x exp [ i(xo/2Lo)(X 2 - 2x, Xo)], (10) 

qJz(qy) = L -~/2 ~ dy, exp (-iqyyO 
--OO 

x exp [ i(xo/ZLo)(Yl - yo) 2] 

=(27ri/xo) 1/2 exp(-iqvYo-iq2yLo/Zno). (11) 

With (11) and the fact that R~ i) does not depend 
on qy, the integral over qy in (4) can be easily com- 
puted. Indeed, as is shown in the Appendix, the phase 
shift 

2 tp(q, r) = q~(qx) + qxX + qyy - qyL/Zxo, 
where x, y are the coordinates in the film plane along 
the e2= and E2o, directions, L is the slit-first-crystal- 
second-crystal-film distance (L = L~ + L2+ L3, see 

Fig. 1). Therefore, the integral over qy is 

co 

dqy(2"tr)-'(2 ~i/ xo) '/2 
- - 0 0  

x exp [ iqy (y - Yo)] exp [-  i(q2y/2Xo)(to + L) ] 

= (L + Lo) -1/2 exp { i[xo/E(L + Lo)](y - yo)2}. 

(12) 

Thus, the y dependence of the spherical wave is 
conserved in the diffraction process, but the decrease 
in intensity from this component is due to the total 
source-to-film distance. 

As a result, instead of (4), omitting the phase factors 
we obtain 

where 

E(h~Ut)(x) = ~ ". As(to)e2~(L+ Lo) - '/2 

x i dx, ~b,(x,)F(~)(x-x,), (13) 
- o  

(20 

=(~) ~ dqx(2rr)-'R~')(qx)R~2)(qx) ~ ( x )  = 
- - 0 0  

x exp[ iqxX + i~(qx)]. (14) 

Formulae (13) and (14) represent the solution of the 
problem, but are not suitable for practical calculation 
or qualitative analysis. 

Let us introduce the angle of misorientation 
between the crystals I],/h and proceed with (14) to a 
new integration variable 

q = qx - t a n  O ~ ) A x  - qo, (15) 

where 

qo=(er/A)[DOo, + ~bh], 

0~, = A~/x, (16) 

D - - s i n  (0(~)- 0(~))/cos 0(~ ) cos 0~ ). 

It should be emphasized that the reflection amplitude 
R~ i) depends on the parameter yl s) only [see formulae 
(3.10), (3.11) in the paper by Aristov, Polovinkina, 
Afanas'ev & Kohn (1980)]. Using a new variable we 
obtain for symmetrical scattering in both crystals 
(h_Ln) 

Y~S)=A~S)(q+qo),y(2~)=A(2S)(-q+qo), (17) 

where 

A~ s) (h/27r) sin'~a(i)/I- (i)lc~O" 
" -  ~ V B  I l A [ r h  I 

Here and above 0n is the Bragg angle, grh is the 
Fourier component of the real part of the polarizabil- 
ity, cs is equal to unity for s = (r and cos 20e for s = 7r, 
index i is the crystal number and A is the wavelength 
of radiation. 
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It follows from (17) that the parameter q is an 
angle variable when the radiation has frequency too 
and there is no misorientation between the crystals 
(O,o=~Oh=O). If  0 ~ # 0 ,  but D = 0  (0~)=0~)), then 
yx and Y2 do not depend on 0,o, and parameter q is 
the same for all frequencies. It can be shown that 
(see Appendix) 

~(q) = A~ + x~q-(AL/47r)q 2 

+ q(ti sin 0~ ) -  t2 sin 0~ )) 

- oq(q)h/2- a2(q)t2/2. (18) 

Here A~p denotes all the terms that are independent 
of q; q and t2 are the crystal thicknesses. The last 
four terms are cancelled out by the corresponding 
terms in the phases of the amplitudes R(°(y]$)). The 
value of x~ is 

xc =--½L~h + ALO,o, (19) 

where 

AL= tan 0~)(L2-  L, - La) -½D(L,  + L 2 -  3 L3). 

(20) 

The topography fixes the intensity of radiation, 
which is equal to the squared modulus of the electric- 
field amplitude (13). Since the spectrum of incident 
radiation has, as a rule, finite width and the source 
has finite dimensions, the intensity integrated over 
the source dimensions 2d is of interest as well as that 
integrated over the spectral width of radiation. We 
must also average the intensity over the polarization 
state of the incident waves, i.e. parameters ]A$(to)[ 2. 
The corresponding value ~:(0,o) = 21A~ (to)] 2 character- 
izes the form of the spectral line of the source. As a 
result, we obtain 

o o  

[hh(X)=[2Lo(Lo+L)]-' Z ~ d0~:(0,o) 
$ --OO 

x I dxo dx, O~)(x-x,)  
- d  

x exp [ i (~ /hLo)(X~-  2xlx2)] . (21) 

Here the explicit form of the function d/a(qx) follow- 
ing from (10) was used and x2=xo+LoOo,(tan 0~)+ 
l l iD)+iLo~bh, while the function GL~)(x) differs from 
F~*)(x) only by the phase factors. 

Taking into account the expression for R(y), we 
obtain 

o2)(x) = (8=)- '  (xk')xk~)/x?)x?)) '/~ 2 zjz; 
j , j '  

x f. dq exp[iqx+iq~,'(q)-f.~,(q)], 
- - 0 0  

(22) 

where 

~o~, ( q) = xcq - ( XL/ 4.n.)q 2 

+ z~B,(q)(sin O~)/AOtl 

+ z~,B2(q)(sin O~)/A2)t2, (23) 

f~,~(q) = tz~)(q)h + tz~2)(q)tE+ln [Bl(q)B2(q)] 
(24) 

B,(q)=[l  + y2(q)] '/2 , i =  1,2, (25) 

/z ~j)(q) = [/Z(o0/2 cos 0~)][ 1 - zjIX~)IC~')/X~)B,(q) ]. 
(26) 

Here indexes j , j ' = l , 2  are the numbers of the 
dispersion surface branch,/Z(o i) is the normal absorp- 
tion coefficient for the ith crystal, zj is +1 for j = 1 
(a weakly absorbing branch) and - 1  for j = 2, X~ ), 
X~ ) are the imaginary parts of the Fourier transforms 
of the polarizability of the ith crystal. 

It is obvious that if two crystals are identical (0~) = 
0~)), then the function G~)(x) does not depend on 
frequency under certain conditions, but if the crystals 
are different the dependence is preserved under any 
condition. 

The case when the distance Lo is relatively small 
while the source dimensions exceed the slit width 
considerably is of particular interest. With reasonable 
accuracy one may use here the approximation 

d 

dxo exp [ i(2¢r/ALo)(X,- x~)xo] -~ ALo6 ( x , -  x~). 
- d  

(27) 

As a result, instead of (21) (cf Aristov et al., 1982) 
we obtain 

ihh(X)=[X/2(L+ Lo) 2] 

d x ,  u , ~  , - -  x,)] 2. (28) 
$ --OO - - a  

It follows from (28) that the x dependence of the 
intensity is determined as if the slit itself were an 
'incoherent'  source. Except for the trivial factor there 
is no dependence on Lo here. 

3. Interference effects and focusing the spherical wave 

According to (28) the space dependence of intensity 
in the twice-reflected beam is determined by the 
squared modulus of the function G(x). The integra- 
tion with respect to the slit width and frequency plays 
only a destructive role changing the interference con- 
trast for the worse. Let us consider first the simplest 
case when the slit may be regarded as rather narrow, 
and the first and second crystals are identical without 
any misorientation between them (~h = 0, A1-" A2-- 
A, B , = B 2 = B  etc.). Since the dependence on 
frequency occurs in (25)only through the coordinate 
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xc [see (19)] it is easy to understand that the integra- 
tion with respect to the frequency leads to blurring 
of the interference pattern in the same manner as the 
integration over the slit width. However, the degree 
of blurring depends on the parameters of the experi- 
mental set-up. When L2=L~+L3 polychromatic 
focusing exists, and the nonmonochromaticity of the 
radiation does not influence the interference pattern. 
We shall consider this condition as fulfilled. 

For usual values of L, ti and t2, phase (23) is rather 
large and integral (22) can be evaluated by the method 
of stationary phase (Jeffreys & Swirles, 1966). As a 
result 

Ihh(x)=lG(x)l ~ 

- "  ¼ 1 x h / x a l 2  z j z j  , 

[ iqx + i,p¢( q ) - f#,( q ) ] l : exp 
x (d2¢u,/dq2),/e I ' (29) 

where q is found from the condition 

x=(AL/E1r )q - s in  OBA[q/B(q)]t. (30) 

Here and below t = zjtl + zj, t2. A second derivative of 
the phase has the following form: 

d2tp#,/dq 2 = - d x /  dq = - A L / 2  7r + sin OaAt/ B3( q). 

(31) 

From the condition that the above derivative equals 
zero we find the locus of the focuses 

x=+t[1-( tJ t )2/3]3/2sin  OB. (32) 

These formulae coincide precisely with the formulae 
obtained by Aristov, Polovinkina, Afanas'ev & Kohn 
(1980), and the parameter t~ has the same sense. It 
represents the focusing thickness for one crystal and 
is given by 

t, = AL/2r: sin OeA, (33) 

while the parameter t has a new meaning and only 
t > 0 should be considered in (32). 

The value of the angle variable q, which determines 
the focusing region of angles, is also an important 
characteristic: 

q = -i-A-i[( tl is) 2/3- I] I/2. (34) 

It follows from (34) that the strongest focusing occurs 
at t = t, corresponding to the point q = 0. Let us, as 
in the works by Aristov, Kohn & Polovinkina (1980) 
and by Kohn (1979a, b), call the fields corresponding 
to a weakly absorbing and a strongly absorbing mode 
the B field ( j  = 1) and the A field (j  = 2), respectively. 

The following combinations for the crystal thick- 
nesses are possible: 

I. h+t2=t, 
2. ti = t2 + t, 
3. t1= t2- t, 

the focusing of the BB field 
the focusing of the BA field 
the focusing of the AB field. 

It should be noted that in the short report by 
Levonyan (1981) only the first and the third cases 
were shown while considering an analogous problem. 
The first is trivial in the sense that two crystals act as 
a single one of total thickness. The second and third 
possibilities are new. It is easily seen that these two 
possibilities are also realized for L = 0 (ts = 0). In this 
case two of the four fields (BA and AB) are brought 
into focus for the same relationship between the crys- 
tal thicknesses: tl = t2, and the decrease of the total 
intensity occurs with the normal absorption factor. A 
fascinating property of focusing at L = 0 is that not 
only the second derivative of the phase becomes zero, 
but also the whole phase equals zero. For weakly 
absorbing crystals the intensity at the focus is very 
high in this case. Such focusing was first predicted 
by Indenbom, Slobodetsky & Truni (1974) using the 
influence function. 

With increasing distance L the relationship 
between the crystal thicknesses for BA and AB fields 
becomes different. If the first crystal has a variable 
thickness (when cut as a wedge) and t2 > t,, there are 
two focuses, t~= t2+ts, on the plane (x, h). Fig. 2 
shows the intensity Ihh (X, t~) calculated using (29) for 
two silicon crystals, Au La radiation (A = 1-276 A), 

• reflection 220, t2 = 124 I~m, L= 1 cm (t~ -~0, Fig. 2a) 
and L =  140cm (t~ =42.1 I~m, Fig. 2b). It should be 
noted that Fig. 2 presents only the central part of the 

20 iLrn 

o 

180 

240 

(a) (b) 

t l  l.~m 

Fig. 2. Theoretical topographs of  Si-Si crystals in twice-reflected 
beam. Reflections 220/220; Au Lot radiation (A = 1.276 A). The 
first crystal is cut as a wedge, thickness of  the second crystal 
t 2 = 124 I~m, source-to-film distance L -- 1 cm (a) and L = 140 cm 

(~ .  t B A  ~ , A B  __  
(b). (a)  t ~ - y ,  -if - , t f  - t 2 - - 1 2 4  p.m. (b) t, =41-2 I~m; tza~ = 
166.1 t~m; t~'ff =82.9  Ixm. 
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topographs. The real width of the topographs depends 
on q and is wider than in Fig. 2. These figures indicate 
that the effect of focusing is accompanied by a rather 
complicated structure of interference fringes, the 
interference pattern getting much more diversified 
with increasing source-to-film distance L due to the 
foci splitting. 

To gain a better insight into the structure of the 
pictures shown in Fig. 2 let us consider conditions 
'for focusing of the non-central part of the angles 
(q # 0). According to (34) this condition is t > t~. On 
conversion to the thickness of the first crystal it means: 

1. tx > t~ - t2 BB field 
2. ta > t2 + t~ BA  field 
3. t~ < t2 -  t~ A B  field. 

Thus, in the first and second instances caustics x~u(q) 
are directed toward the acute part of the wedge 
(toward the smaller thicknesses), while in the third 
instance they are in the opposite direction. 

By analysing phase diagrams as for one crystal 
(Aristov, Polovinkina, Afanas'ev & Kohn, 1980) it is 
possible to show that the points of the stationary 
phase in the central portion of the angles (q = 0) exist 
only for the values of x that satisfy the condition 
[x[ < [x~u[. Therefore, the intensity of any of the four 
fields in the region of thickness tl, where caustics 
exist, is concentrated only between them. This condi- 
tion permits the classification of the form of the 
fringes observed. Bright interference fringes in the 
upper part of Fig. 2(a) (the region of small thick- 
nesses) correspond to the intereference of BB and 
A B  fields and those in the lower part to the interfer- 
ence of BA and AA fields. The interference fringes 
of low contrast in the region Ix[ > Ix. l are due to the 
interaction between BB and AA fields because A B  
and BA fields make practically no contribution to 
this region. These fringes have a form that corre- 
sponds to a 'virtual' focus of the BB field in the region 
of negative thicknesses of the first crystal. 

The fringes in Fig. 2(b) may be classified in the 
same way. In this case the virtual focus is situated 
closer to the point tx = 0, and the caustics of the BB 
field are easily seen in the upper part of the topo- 
graphs. On the contrary, the caustics corresponding 
to the focusing of the BA field show themselves 
weakly. The splitting of the foci corresponding to BA 
and A B  fields is also visible. 

Let us consider now a more complicated situation 
when two crystals are different but have similar struc- 
tures, using the reflection from the same set of planes. 
From the experimental point of view it is convenient 
to use germanium as the first crystal and silicon as 
the second one. Since the difference between the 
lattice constants of these crystals is small, the value 
of sin 0~ ) is close to sin 0~ ). Therefore, the parameter 
D is not equal to zero but is small, and the dependence 
on frequency appearing in Green's function (22) 

proved to be weak within the spectral line width, and 
the nonmonochromaticity does not influence the con- 
trast very much. It should be emphasized that for this 
reason it is impossible to realize experimentally the 
focusing of X-rays on two crystals when using reflec- 
tions from different sets of planes without pre-mono- 
chromatization of the radiation. 

In the case under consideration, (29) remains 
unchanged, but instead of (30) and (31) we obtain, 
respectively 

x + xc = ( X L / 2 ~ r ) q -  z jq[Al(q  + qo)/Bl(q)] sin O~ ) 

- z j ,  t2[A2(q-qo) /B2(q)]s in  O~ ) (35) 

d2 ~pjj,/ dq 2 = - d x  / dq 

= -AL/EIr  + zjq[A1/B](q)]  sin 0~ ) 

+ zj, t2[A2/B~(q)] sin 0~ ). (36) 

The caustics x~u(q)  can be determined from the 
condition that (36) equals zero. To do this, it is 
necessary to find from (36) the appropriate value of 
q, which depends on L, tl, t2, and substitute it into 
(35). 

However, this problem has no analytical solution 
for any value of q. Therefore, from now on we shall 
restrict ourselves to monochromatic radiation (0~, = 0) 
and small values of q. As before, we assume that 
~h=0.  In the region [ql,~A -1 we obtain 

q2 2 ( zjTl + zj, T2 - 1 )  t, 
=~  A2+z~,T2(A2_A2) ,  T~-  ts ~')' (37) 

where the parameter t~ i) is determined by (33) and 
refers to the ith crystal. In the vicinity of the diffrac- 
tion-pattern centre we obtain 

x~u(q) = +(2)3/2t~ D sin 0~ ) 

x {1 + zj, T2[(a2/al )  2 -1]}  -1/2 

x ( zjTl + zj, T 2 - 1 )  3/2. (38) 

With identical crystals (37) and (38) correspond to 
the first terms in the expansion of (32) and (34) into 
a power series of a small parameter (t/ts - 1). 

According to the expressions obtained, the focusing 
of the central region occurs under the condition tl = 

L / ts  does not depend zjt~ 1)-  zjzj, t2K12, where K12--  (1) (2) 
on L. From the expression for q and with (38) we 
obtain for individual fields: 

1. tl >- t~ 1)-  t2Ka2 the focusing of the BB field 
2. t l - t2Ka2+ t~ 1) the focusing of the BA field 
3. q <-t2K12-t~ 1) the focusing of the A B  field. 

The presence of K12 in the inequalities results in 
essential differences compared to the above case of 
two identical crystals. Even at L =  0 the focusing 
occurs with different crystal thicknesses. For the 
Ge/Si combination (reflection 111, Au La spectral 
line), Klz = 2.50 for or polarization. This results in a 
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considerable enhancement of the focusing thickness 
t ~  t for the BA field and many anomalous Pendel- 

SA liJsung fringes are observed in the region h < t~f 
(Aristov, Polovinkina, Afanas 'ev & Kohn, 1980). The 
second crystal plays the same role as the source-to- 
film distance. Fig. 3 (a)  shows the interference pattern 
calculated from (29), (35) and (36) for or polariza- 

BA tion and t2 = 50 ~m, L = 40 era. Here t]f = 191 I~m, 
.(1) 65 .81~m and the extinction length while z, = 

L~ )= ~A~sin 0~ )= 10.2 I~m (Aristov, Polovinkina, 
Afanas'ev & Kohn, 1980). The anomalous Pendel- 
16sung fringes, which are due to the interference of 
BA and AA fields, can be seen in the figure (in the 
region of small values of  h). The caustics of the BB 
field are also easily seen. Fig. 3(b) is the same but for 
unpolarized radiation. As illustrated, the superposi- 
tion of different polarizations leads to a deterioration 
of the contrast. The main cause of this is the difference 
in the extinction lengths and in the focusing thick- 
nesses for the two polarizations. 

4. Experimental results 

Experimental studies were carded out according to 
the scheme of Fig. 1. A microfocus X-ray generator 
Microflex (Rigaku Denki) with a focus size not greater 
than 10x 10 I~m served as a radiation source. The slit 

100 

200 

10 ~ m  

, t T.,~;.. 

,, ;~ -i.. ,: 

(a) (/,) 
t I ~ . m  

Fig. 3. Theoretical topographs of two crystals in twice-reflected 
220/220 beam. Au La radiation (A = 1.276 A). The first crystal 
(Ge) is cut as a wedge. The second is Si with thickness t 2 = 5 0  p , m .  

The source-to-film distance L=40cm; t(,])=65.81zm; t ~ =  
191 tzm; t ~  = 59-2 izm. (a) (r polarization; (b) unpolarized radi- 
ation. 

placed before the first crystal had a width of more 
than 100 gm and served simply for the separation of 
the Au Lal  spectral line with A = 1.276A. Thus, 
approximation (27) is inapplicable to these experi- 
mental conditions and instead of (28) it is necessary 
to use formula (21) in which the limits + a  can be 
replaced by +oo. Taking into account the explicit 
expression for Green's function (22), one can easily 
show that (28) is valid again, if a is replaced by d 
(Fig. 1), L1 by Lo+L1 and Lo=0.  

The parameters of the experimental set-up were as 
follows: Lo+ LI = 19,/.,2 = 20, L3 = 1 cm. The film was 
placed just behind the second crystal to permit the 
reflected-transmitted beam to be recorded simul- 
taneously with the twice-reflected one. The shape and 
position of  the crystals relative to the X-ray beam are 
shown in Fig. 4. The employment of wedge-shaped 
crystals made it possible, on the one hand, to observe 
the diffraction images corresponding to various thick- 
nesses of the first crystal in a topograph and, on the 
other, to vary the thickness of the second crystal by 
moving it. Since the wedge angle of the second crystal 
was small (---2°), the latter might be regarded as plane 
parallel within the beam range. For obtaining the 
topographs we use nuclear emulsion plates. The 
exposure time varied from some tens of minutes up 
to several hours. Steps have been taken to ensure the 
stability of the experimental set-up including the 
mechanical stability during exposure. 

The following combinations of crystals and reflec- 
tions were studied: Si/Si 111, Si/Si 220, Ge /Ge  111, 
Ge/Si  111. We have also obtained images of two 
silicon crystals using 220 and 111 reflections for the 
first and second crystals, respectively. In this case, in 
full accordance with theoretical results, we observed 
integral patterns that were highly blurred owing to 
the nonmonochromatici ty  of the radiation. In other 
cases the patterns observed turned out to be very 
sensitive to crystal misorientation. 

di f f ract ing planes 

Fig. 4. Position of crystals and reflection planes in the experiment. 
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The deviation of the second crystal from the exact 
Bragg position by several seconds results in the recon- 
struction of the whole pattern, i.e. the topograph 
shows two images in the direct beam as well as in the 
reflected one. One of these images formed, for 
example, by the first crystal is transmitted by the 
second one with small distortions. The topograph 
shown in Fig. 5 for the Ge /Ge  combination of crystals 
in the 111 reflection at t2 = 100 Izm is a typical 
example. 

The best pattern to observe focusing was obtained 
for the combination Ge/Si  111 at t2 = 50 Izm. As has 
been noted above, the focusing of A B  and BA fields 
occurs in this case at the thicknesses of the first crystal 

B A  t~  s = 59 and t l f  = 191 ~m. Fig. 6 shows a series of 
fragments of a diffraction pattern in the twice- 
reflected beam. The decrease in the pattern width is 
easily seen in the region of thicknesses close to hr. 
In the region between focuses the diffraction line is 
split into two. This phenomenon is also in good 
agreement with the theory (see Fig. 3). Unfortunately, 
the fine structure of the pattern (the anomalous Pen- 
delli~sung fringes, in particular) is not seen in the 
photograph. This can be explained by the finite 
dimensions of the X-ray tube focus and possibly by 
some residual misorientation of the crystals. 

100 IJ.m 

5. Concluding remarks 
The theoretical and experimental results obtained 
indicate a significant eilect of the phase shift in 
vacuum on the formation of interference patterns 
under conditions of X-ray spherical-wave diiiraction 
in two crystals. The diffraction pattern has in this case 
rather a complicated structure with a wide set of 
caustics and interference fringes which are due to the 
interference of various fields in crystals. The lattice 
distortions will evidently exert different effects on 
individual fragments of the topograph, and the nature 
of the defects can be defined by this influence. Thus, 
the effect of diffraction in two crystals can be used 
as a new method of control over crystal structure 
perfection. 

It might be well to point out the important advan- 
tage of the scheme considered over the H-shaped 
interferometer (Bonse, 1975; Bauspiess, Bonse & 
Graeff, 1976; lndenbom et al., 1974; Suvorov & 

50 IJ, m 
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e L  

v 

100 

° 

T R 
Fig. 5. Experimental topographs for the case of misoriented Ge 

crystals, R is the twice-reflected beam, T is the beam reflected 
by the first crystal and then transmitted by the second one. 

12~ 

E -tl 
Fig. 6. Set of fragments of experimental topograph corresponding 

to the case of Fig. 3. 
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Polovinkina, 1974; Indenbom & Suvorov, 1976; 
Indenbom et al., 1976). If two arms in this inter- 
ferometer are in fact parts of the same crystal, the 
two crystals in our scheme are spatially separated 
and, moreover, may differ in atomic composition. In 
doing so, it is appropriate to use the first crystal as a 
standard and the second one as a specimen under 
study. To observe the focusing, of great importance 
also is the scheme stability which is better than that 
of a / /-shaped interferometer, where even a small 
variation in the thickness of the arms reduces the 
effect sharply. 

The necessity to adjust the second crystal precisely 
with respect to the first one seems to be the weakest 
point of the new scheme. But this difficulty is not a 
matter of principle and can be solved in the course 
of further improvements in the set-up. Overall, we 
conclude that the phenomena discussed are worthy 
of notice from the standpoints of science and practical 
considerations. 

APPENDIX 

For finding the parameters al(q) and a2(q) in (5) and 
the phase shift ~(q,r)  in (4) we use three sets of 
vectors: x,,, Q ,  and f , ,  n = 0, 1, 2. The vectors Xo, Xl 
and x2 satisfy exactly the Bragg condition for the 
incident, diffracted and twice-diffracted plane wave 
with frequency tOo, ~22 = u2 = ~2. The vectors Q,  and 
f, are the linear and square terms in the expansion 
for a small difference between K,, and x,  through 
terms of order q / u o .  For the corresponding terms in 
the expansion for a.(q) u) the notations a .  (q) and 
a(.Z)(q) are used. We obtain the following recurrent 
relations: 

Qo = q+ A x S o ,  fo = - ( q 2 / 2 u o ) S o ,  

~t, = ~to+h,, Q l = Q o - a ~ l ) n l / 2 ,  

c~ 1)=2(hlQo)/(zlnl),  fl = f o - a ~ 2 ) n l / 2 ,  

a~2)= [ Q2_ Q2 + 2(hi fo)]/(urn,), 
(A.1) 

gE=Zlq-h 0, hE=h(2°)-kAh2, 

Q2=Ql+AhE-C~(21)n2/2, f2=fl-a(22)n2/2, 

a(2 l) = 2[ (h(2°)Q1) + (x2A hE)]/(zEn2), 

a (22) = [ Q2 _ Q2 + 2(h(2O)f~) ]/(xEn2). 

We have introduced here vector h~ °), which corre- 
sponds to the exact Bragg position of the second 
crystal with respect to the first one. The second crystal 
can be removed from this position by simple rotation 
and, as a result, vector hE cannot be coincident with 
h(2 °). But only of interest is the case when the angle 
of rotation is rather small and the ratio IAhEI/go is, 
thus, of the same order of magnitude as the ratio 
(q /uo) .  Formulae (A.1) are convenient because they 
are easily generalized to three or more crystals (Kohn, 
1979a). 

The phase shift ~o(q, r) is determined by the follow- 
ing expression: 

q~(q,r) =Ko(q)rl +Kl (q) ( r2 - r l )+K2(q) ( r - r2 ) ,  (A.2) 

where the vectors K, can be written in the form 

K, (q) = )t, + Q,(q) + f,(q). (A.3) 

If we take (see Fig. 1) 

rl = L1So, r2= r l+n lh+L2S1 ,  

r = r2 q- nEt2 -k L3S 2 d- xe2~ -4- ye2~, 

and use (A.1) and (A.2), then we obtain 

q~(q, r) = xL + (Sofo)L~ + (s~f~)L2 + (s2f2)L3 

+ (Kin) tl + (K2n2) t2 + Q2e2,, )x + (Q2e2~)y. 

(A.4) 

It is easy to see that Q2e2~,=qy and ( S , f , ) =  
F,,(qx) 2 - q y / 2 X o .  Therefore, qy dependence has the 
same form as given in the text. The direct calculation 
in the symmetrical case (h£n) gives (QEe2~r)= 
qx -2DA~,  where D is determined by (16). Formulae 
(17) and (18) can be obtained in the same way. It 
should also be noted that 

y~S)(qx) ot~l)(q x (,) (i) = ) (u ,n i ) /2 lXrh lC ~ , 

Ah2 = ih~O>ln2q, h. (A.5) 

References 
AFANAS'EV, A. M. & KOHN, V. G. (1977). Fiz. Tverd. Tela, 19, 

1775-1783. 
ARISTOV, V. V., ISHIKAWA, T., KIKUTA, S. & POLOVINKINA, V. 

I. (1981). Jpn. ]. Appl. Phys. 20, 1947-1953. 
ARISTOV, V. V., KOHN, V. G. & POLOVINKINA, V. ]. (1980). Phys. 

Status Solidi A, 62, 431-440. 
ARISTOV, g. g., KOHN, V. G., POLOVINKINA, V. I. & SNIGIREV, 

A. A. (1982). Phys. Status Solidi A, 72, 483-491. 
ARISTOV, V. V. & POI.OV1NKINA, V. I. (1978). Acta C~st. A34, 

$227. 
ARISTOV, V. V., POLOVINKINA, V. I., AFANAS'EV, A. M. & KOHN, 

V. G. (1980). Acta Cryst. A36, 1002-1013. 
ARISTOV, V. V., POLOVINKINA, V. I., SHMYT'KO, I. M. & 

SHULAKOV, E. V. (1978). Pis'ma Zh. Eksp. Teor. Fiz. 28, 6-9. 
AUTHIER, A., MILNE, A. D. & SAUVAGE, N. (1968). Phys. Status 

Solidi, 26, 469-484. 
BAUSPIESS, W., BONSE, U. & GRAEFF, W. (1976). J. Appl. Cryst. 

9, 68-72. 
BONSE, U. (1975). International Summer School on X-ray 

Dynamical Theory and Topography, Limoges, France, Abstract 
A9. 

INDENBOM, V. L., SLOBODETSKY, I. S. & TRUNI, K. G. (1974). 
Zh. Eksp. Teor. Fiz. 66, 1110-1120. 

INDENBOM, V. L. & SUVOROV, E. V. (1976). Pis'ma Zh. Eksp. 
Teor. Fiz. 23, 485-489. 

INDENBOM, V. U, SUVOROV, E. V. & SLOBODETSKY, I. S. (1976). 
Zh. Eksp. Teor. Fiz. 71,359-369. 

Jl') FRI:YS, H. & SWIRLES, B. (1966). Methods of Mathematical 
Physics. Cambridge Univ. Press. 

KATO, N. (1961). Acta Cryst. 14, 526-533, 627-636. 
KATO, N. (1968). J. Appl. Phys. 39, 2225-2230, 2231-2237. 
KATO, N., USAM1, K. & KATAGAWA, T. (1967). Adv. X-ray Anal 

10, 46. 
KOHN, V. G. (1979a). Phys. Status Solidi A, 54, 375-384. 



V. V. ARISTOV etal. 435 

KOHN, V. G. (1979b). KristaUografiya, 24, 712-719. 
KOZMIK, V. D. & MIKHAILYUK, I. P. (1978a). Ukr. Fiz. Zh. ( Ukr. 

Ed.) 23, 1570-1571. 
KOZMIK, V. D. & MIKHAiLYUK, I. P. (1978b). Pis'ma Zh. Eksp. 

Teor. Fiz. 28, 673-674. 

LEVONYAN, L; V. (1981). Pis'ma Zh. Tech. Fiz. 7, 269-272. 
PINSKER, Z. G. (1978). Dynamical Scattering of X-rays in Crystals. 

Heidelberg, New York: Springer-Vedag. 
SUVOROV, E. V. & POLO~NIONA, V. I. (1974). Pis'ma Zh. Eksp. 

Teor. Fiz. 20, 328-329. 

Acta Cryst. (1986). A42, 435-441 

The Intercomparison of Bragg X-ray Reflections from a Small Single 
Crystal- Zero-Wavelength-Dispersion Profile Measurement 

BY A. McL. MATHIESON* AND A. W. STEVENSON 

Division of Chemical Physics, CSIRO, PO Box 160, Clayton, Victoria, Australia 3168 

(Received 10 December 1985; accepted 21 February 1986) 

Abstract 

In conventional one-dimensional profile measure- 
ment procedures, either by diffractometry ('counter' 
profile) or by photography ('film' profile), intercom- 
parison of Bragg reflections from a small single crys- 
tal, c, in a given experiment is rendered difficult, or 
impossible, by their wide variation in size with 0c. 
Using synthetic I(Ato, A20) distributions, obtained 
by convolution of four components, the mosaic 
spread of the specimen crystal,/z, the emissivity distri- 
bution of the source, or, its wavelength distribution, 
A, and the detector aperture, 8, analysis shows how 
the 'counter' and 'film' profiles change with scan 
mode. In particular, it is shown that the 'film' profile 
obtained using an a~/20 (s = 2) scan mode does not 
involve wavelength dispersion, so that the profile 
distribution can yield information about/z for each 
reflection and therefore about small differences in 
mosaic spread (and hence reflectivity) between reflec- 
tions. Possible means of obtaining this profile using 
film or counter procedures are outlined. 

Introduction 

The intrinsic two-dimensional nature of the Ao~, d20 
measurement procedure (Mathieson, 1982) and the 
detailed information which, with adequate resolution, 
it can yield, establishes it as a powerful means of 
investigating Bragg X-ray reflections from small 
single crystals. The 2D distribution can allow one to 
diagnose and estimate the individual linear distribu- 
tions associated with the major components of the 
experiment, such as the mosaic-spread distribution 
of the specimen crystal,/z, the emissivity distribution 
of the X-ray source, or, and its wavelength distribu- 
tion, A. With a minor experimental modification 

* Present address: Department of Chemistry, La Trobe Univer- 
sity, Bundoora, Victoria, Australia 3083. 

(Mathieson & Stevenson, 1984), the main components 
can be reduced to two,/z and A, which can then be 
defined more precisely (Mathieson & Stevenson, 
1985) so that variation of mosaic spread /z (alias 
reflectivity distribution, r - see Mathieson, 1984a) 
across a 60 ~m crystal could be estimated (Mathieson 
& Stevenson, 1986). 

Because the data are recorded in two dimensions, 
the Ato, A20 measurement procedure is necessarily 
slower than one-dimensional procedures. It is, there- 
fore, likely that, for reasons of convenience and speed, 
essentially one-dimensional procedures will continue 
to be used for routine data-collection tasks. 

There is, however, no reason to assume, merely 
because of long-established usage, that the 1D pro- 
cedures which are in current use necessarily supply 
either the best information or the available informa- 
tion in the best form. In this paper, we re-examine, 
from the Ato, A20 viewpoint, the possibilities of 1D 
measurement - (a) to determine if there is any variant 
which would improve the quality of the 1D measure- 
ment and (b) to indicate possible advantageous ways 
of using position-sensitive detectors (p.s.d.'s) for 1D 
measurement when such detectors become available 
with sufficient spatial (angular) resolution. 

Current one-dimensional procedures 

In the currently conventional 1D measurement of 
Bragg X-ray reflections from a small single crystal, c, 
two main procedures are used. One involves a counter 
diffractometer using a wide aperture in front of the 
detector, the other uses photographic film. In attempt- 
ing to compare reflections within a given experiment 
by either procedure, a basic difficulty results from the 
wide variation in the size of reflections. Inter alia, 
this feature complicates intrinsic problems in 
measurement, such as the distinction of what is peak 
and what is background, correction for thermal 
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