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spectrometer with a single dispersing crystal with 
la,=O (i.e. a 'perfect' crystal) and a source of very 
small dimension in the plane of diffraction then a 
'film' profile with s = 0 has twice the angular disper- 
sion of the 'counter' profile (see Fig. 1 b). This suggests 
the possibility of increasing the numerical dispersion 
of the 'film' profile by using a non-standard 'inverse' 
scan mode with s = - l , - 2 ,  etc. to increase the 
effective dispersion relative to the 'counter' profile by 
3, 4, etc. 

We are most grateful to Dr S. L. Mair for allowing 
us to use her K2SnC16 specimen. One of us (AWS) 
acknowledges the financial support of a CSIRO Post- 
doctoral Award. 
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Abstract 

A general formula is obtained for the intensity distri- 
bution in the film behind a single crystal in the case 
of spherical-wave X-ray multiple diffraction. The 
theory takes into account the phase shift of the waves 
not only inside the crystal but also in the vacuum 
before and after the crystal along the wave path 
source-crystal-film of length L. The topographic 
images are calculated in the case of 
(220/242/044/244/202)  six-beam diffraction of 
Cu K a  radiation in a germanium crystal of thickness 
0.2 mm for different values of L The enhancement 
of the anomalous transmission effect is weakly dis- 
played on the topographs because of strong scattering 
of the radiation inside the crystal. The intensity distri- 
bution depends on L. The possibility is shown of 
focusing X-rays to a considerable extent. 

1. Introduction 

In recent years the scheme shown in Fig. 1 has been 
widely used for experimental investigations of X-ray 
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multiple diffraction in single crystals. The divergent 
radiation of the microbeam X-ray tube falls directly 
on a crystal in the form of a plate with thickness t. 
The intensity of diffracted beams is determined by 
the darkening of the film placed behind the crystal 
[see, for example, the papers by Balter, Fildman & 
Post (1971), Huang & Post (1973), Kshevetskii & 
Mihailyuk (1976), Mihailyuk, Kozmik & Kshevetskii 
(1977)]. To enlarge the section of the topographs 
corresponding to multiple-beam angles of incidence 
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Fig. 1. Scheme of the experiment for investigating X-ray multiple 
diffraction. 
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of radiation on the crystal, the distance L between 
the source and the film has been made as large as 
possible (up to two metres). The above authors all 
compared the topographs with patterns of angular 
dependence of intensity calculated with the conven- 
tional theory of plane-wave X-ray multiple diffrac- 
tion. Though such an approach provides a certain 
qualitative (mainly geometrical) correspondence 
between theory and experiment, more detailed analy- 
sis detects a difference between them. 

The principal inconsistency of this approach was 
pointed out by Afanas'ev & Kohn (1977a). They 
carded out a more correct calculation of topographic 
images for the experimental arrangement described 
above. The spherical-wave X-ray diffraction theory 
was developed and the two-beam case considered as 
an example. This theory takes into account the phase 
shift of the waves not only inside the crystal but also 
in the vacuum before and after the crystal. It was 
shown that the diffraction pattern depends consider- 
ably on the ratio L~ t. Further experimental investiga- 
tions (Aristov, Polovinkina, Shmyrko & Shulakov, 
1978; Kozmik & Mihailyuk, 1978; Aristov, Polovink- 
ina, Afanas'ev & Kohn 1980) verified completely all 
the effects predicted by the theory, in particular, the 
phenomenon of the focusing of the weakly absorbed 
field at a certain value of L/t. 

The general theory of spherical-wave X-ray multi- 
ple diffraction has been developed by Kohn (1977). 
The theory takes into account the distance L and the 
nonmonochromaticity of the radiation. However, the 
formula for the distribution of intensity in the film 
turned out to be a very difficult one for carrying out 
direct numerical calculations. 

The purpose of the present paper is to develop 
further the theory formulated by Kohn (1977). Here 
a simpler approximation is worked out which makes 
it possible to calculate the topographic images by the 
same methods as in the plane-wave case, but taking 
into account the curvature of the incident spherical- 
wave front. The latter factor, as well as the curvature 
of the dispersion surface, are included in computa- 
tions in the approximation of a stationary-phase 
method (Jeffreys & Swirles, 1966) extended for two- 
fold integrals. At those points of the topograph where 
the stationary-phase method is incorrect (the points 
of focusing), the computation was carded out more 
accurately. 

The derivation of the formulae for describing the 
intensity distribution of the forward direct beam is 
given in § 2. Computational aspects are discussed in 
§ 3. We carded out the computation of topographic 
images for the case of (220/242/044/224/202) six- 
beam diffraction of Cu Ka radiation in a Ge plate 
with t = 0.2 mm for different values of L (§ 4). We 
note that the results presented constitute the first 
attempt to analyse the case of spherical-wave X-ray 
multiple diffraction on the basis of a physically realis- 

tic theory which takes into account the distance 
between the source and the film. A rather difficult 
case is considered as an example, because the greatest 
divergence occurs between the experimental results 
and theoretical predictions which do not take into 
account the phase shift of the waves (Huang, Tillinger 
& Post, 1973). 

2. General formulation 

2.1. Initial formulae 

Let the X-ray spherical wave with frequency oJ fall 
on a crystal plate of thickness t. The crystal is orien- 
tated so that the wave vector Ko, the magnitude of 
which is equal to K = co/c = 21r/A, satisfies the condi- 
tions of multiple diffraction. It is convenient to use 
the following integral form of the spherical wave in 
a half-space rKo> 0 (Kato, 1961): 

exp ( iKr) / i r  

= ~ (dq/27r) exp [ iqr+  iKor(1 _q2/K2)1/2] 

x ( g  2 -  q2)-1/2 (1) 

where integration is to be carded out over all values 
of the vector q in a plane perpendicular to Ko. Since 
the multiple diffraction takes place in a narrow cone 
near K0 (see Fig. 1), only vectors q of small magnitude 
q ~ K are of interest. That is why K can be substituted 
for (K 2 -  q2)~/2 in the denominator of the integrand, 
and the numerator may be given in the form of 
exp [iKo(q)r], where 

Ko(q) = Ko(1 - q2/2K2) + q. (2) 

Then it is necessary to solve the multiple diffraction 
problem for an incident plane wave with the wave 
vector Ko. The solution is given by Pinsker (1978, p. 
442). Details may be found in this reference; we give 
a final expression for the induction vector of the 
spherical-wave electromagnetic field beyond the crys- 
tal in the forward-transmitted beam (Kohn, 1977) (we 
use Pinsker's notation, but with difference in signs). 

O(oa)(r) ~/~/2E (a) ~,' = Do~ Foo(r)eos,. (3) 

Here eo, are polarization vectors (s = ~-, o-), ,--o,,nta), ,---o~n~") 
are the magnitudes of incident-wave induction-vector 
components which are parallel to eo~, eo~ respec- 
tively, ~/0 = K0n/K, n is an inner normal to a crystal 
surface, 

SSS Foo (r) = ~(dq/27rK ) exp [ iKor] 

x ~ t~u) t~u) • -,o, uo~, exp [-iK~O)t], (4) 
J 

B<o~)(q) and ~(J)(q) are the eigenvector and eigenvalue 
number j of the matrix for multiple diffraction of 
X-rays by a crystal (Pinsker, 1978): 

E $$, OnmBms,=SBns. (5) 
trl~ 
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Indexes n and m have values from 0 to 5 in a six-beam 
case and label the direct and diffracted beams respec- 
tively. 

Let x = (x~, x2) be a two-dimensional vector that 
defines some point on the film plane. This plane is 
perpendicular to an incident beam. The distance 
between a point source and the film is L. Then the 
intensity of nonpolarized radiation at a point x, nor- 
malized to the intensity in vacuum for L = 1 m, is 
defined by the expression 

L, t) ½ XlX s$, = F; (x, L, t)l 2, (6) 
$$t j 

where 

Fy(x, L, t) = ~(dq/27rK) fy(q, t) 
xexp[iq~j(q,x,t,L)], (7) 

S$ t 
f;  (q, t) = Bo0s)(q)Bo0s),(q) exp [-/~j(q)t/2]. (8) 

Here /~ j (q )=-2KIm[8° ) (q ) ]  is the absorption 
coefficient of the jth zone of the X-ray multiwave 
field (i.e. of the jth X-ray standing wave). Despite the 
fact that the matrix G is complex, it is sufficient to 
solve only for the real part of (5) corresponding to 
the case of a nonabsorbing crystal (Pinsker, 1978; 
Kohn, 1976). The absorption coefficient/~j is deter- 
mined by 

/zj = E #J)¢ ~ 3 $$' R~j) (9) 
nm 
$$~ 

where G~ is the imaginary part of G. We shall use 
below the notation 8 °) only for the real part of this 
quantity, which can be obtained from (5) in the case 
of a nonabsorbing crystal. The important role in 
understanding the diffraction pattern is played by the 
phase, determined by 

ej(q, x, t, L)=qx-q2L/2K-KSO)(q)t. (10) 

2.2. Stationary-phase method 
The most interesting situation arises when all three 

terms on the fight-hand side of (10) are of the same 
order of magnitude. The multiple diffraction of X-rays 
takes place in the angular region [01 <0.06 mrad, 
where 0 = q/K. Taking into consideration that the 
change of phase in this region due to the second term 
is of order 102 at typical values of parameters L = 1 m 
and ,~ =0.1 nm, we can use the stationary-phase 
method (Jeffreys & Swides, 1966) for finding the 
approximate value of the integral (7). 

The idea of the method is as follows. Let us assume 
that the function ~ ' ( q )  changes slowly compared 
with exp [i~oj(q)]. Then the main contribution to the 
integral is given by the integration region where the 
phase change is smallest. Let the point qo = (q~O), q~2O)) 
satisfy the conditions 

O%/c3qk=Xk--qkL/K--Kt[OS~)(q)/Oqk]=O (11) 

where k = 1, 2. The region near the point qo is of just 
that kind. In this region the expansion for the phase 
~j through terms of the order of the components of 
a two-dimensional vector u = (q-qo) has the form 

2 
~j(U)  = tpj(qo) ÷ I  ~ 0~ )  UkUl 

k,/=l 

2 
~ klm UkUlUm ÷ " "  (12) k,l,m= l 

where 

aO~ ) = (02~oj/Oqk Oq,)q=qo 

=-Sk~L/K-Kt[O280)(q)/Oqk Oql]q=qo, (13) 
(J) 

Substituting a constant fj(qo) for the function fj(q) 
and using only the first two terms of (12), we have 
the following approximation for the contribution of 
this region 

AF;."(x) --~ {fj(qo) exp [ iq~ (x, qo) ]/2 ¢rK } 

x~ duexp [(i/2) ~ a~)UkU,]. (14) 

The integral in (14) should strictly be calculated over 
some region of values ul and u2 near the zero point. 
However, since the large values of Uk give a small 
contribution to the integral due to the rapid oscilla- 
tions in the integrand, we may extend the integration 
over the entire range of coordinates. In this case the 
integral is calculated analytically. 

Let us turn the axes of the coordinate system on 
the plane of a two-dimensional vector u by some angle 

so that for the new variable t~k the matrix t ~  ) 
becomes a diagonal one, t ~  )= 8uA~ ), where Ski is 
Kronecker's symbol. The transition from old variables 
to the new ones is made with the matrix 

(cos 0 - s in  O) tanEO=2a12/(all_a22)" 
trk,,= \s in  O cos O ' 

(15) 

The diagonal elements of the matrix ~ = tr-xt~tr are 
then given by 

A1~)2 = ½{ all + a22 -4- sign (all  - a 2 2 )  

x[(a11-a22)2+4a2211/2}. (16) 

As a result, the integral in (14) is 

JiJ2 = ~d~l exp [ i(A~/2)~E]Jd~2 exp [ i(A2/2)~ 2] 
= (2 7ri/A1)~/2(2 zri/A2) ~/2. (17) 

The approximation described is used in the station- 
ary-phase method for estimating integrals when there 
are rapid oscillations in the integrand. This approxi- 
mation gives an overestimate for the result at those 
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values of the parameters where either At or A2 
becomes anomalously small. At the points where At = 
0 or A2 = 0, we obtain a divergent result. In our case, 
one knows that this divergence is connected with the 
effect of focusing the X-rays within some range of 
angles of incidence 0 = q/K. Actually, coordinates of 
the point on the topograph corresponding to the 
vector q in accordance with (11) are 

X k = q k L / K  + Kt[O6(J)(q)/aqk]. (18) 

It can be shown after the transition to a new coordi- 
nate system that the x coordinates do not change with 
change of coordinate Uk in the plane of the vectors 
q if the condition Ak = 0 is fulfilled. 

In order to estimate the integral in (7) for this case, 
it is necessary to take into account the next term in 
the expansion of the phase in powers of ~ (12). If, 
for example, the parameter At is anomalously small 
and another parameter has a value close to the 
average, then the corresponding integral is approxi- 
mately 

dul exp [i(A~/2)~ 2 + i(H1/6)~ 3] = J~(A1, Ha) (19) 

where 

Ha =/3111 =/~111C3 "~- ~222 $3 

-~- 3fl112C2S d- 3fl122CS 2. (20) 

The notation C - cos qJ, S - sin q~ is used in (20). The 
limits of integration in (19) cannot be extended to 
infinity at all values of At, because the main contribu- 
tion is given not only by the region with its centre at 
the point at = 0, but also by the region with the point 
at = 2A1/H1 as centre. That is why to estimate the 
magnitude of the integral we have used the following 
interpolation approximation: 

IJI(A1,/-/1)1 = [IJI(A~, 0)1-1 +l J1(0, H1)[-1] -l,  (21) 

where 

IJl(Al, 0)I-'=IA1/27rI1/z=O'39891A,I ~/2, (22) 

l J1(0, H1)1-1 -1Hd611/331/2//'(½) 
=0,3558 IH, I 1/3. (23) 

In (23) F(x)  is the gamma function. 
These considerations are obviously true where A2 

is anomalously small and A t is large enough. Here 
we get the same formulae (19)-(23) for J2 (A2, H2) 
after permutation of the indexes 1 and 2 and the 
substitution of -q~ for qJ. The case where At = 0 and 
A2 = 0 in one and the same topograph point requires 
special treatment, because the integral does not equal 
Jl(0, HOJ2(O, HE). Nevertheless, this product is finite 
and the error caused by its use instead of a more 
correct value is small. It should be noted that such 
situations arise extremely infrequently. 

In general, several angular regions can contribute 
to one point on the topograph, depending on the 

structure of the dispersion surface (DS) and the dis- 
tance L. In this case we must add the contributions 
from all these regions. The intensity then involves the 
terms which correspond to an interference of different 
zones of the DS (the terms with j ¢ j '  in the sum over 
j and j ' )  and of different angular regions within any 
zone. We note that the interference terms in the 
intensity oscillate strongly with a change of x coordi- 
nate in the small region. Only a mean pattern without 
interference terms is fixed in the experiment shown 
in Fig. 1. 

If the above approximations are taken into account, 
it is easy to transform the initial expression (6) to the 
following: 

pw 2 2 I~od)(x, t, L) E[Ioj (q/j, t)/ ~-- Dlj(qij)D2j(qij)], (24) 
q 

where 

IgT(q, t)=½ [B°s)(q)] 2 e x p [ - ~ j ( q ) t ]  (25) 

Dmi(q, t, L) = I L -  C~)(q)tl '/2 
+0.89187Ka/21H~)( q, t)[ 1/3 (26) 

CUm)(q) =[KA~)(q)+ L]t  -~, m= 1,2. (27) 

Here the coefficient C~)(q) does not depend on t and 
L. According to (24), the intensity of radiation at the 
point x on the topograph is determined by all the 
points in the q plane which satisfy (11) for each zone 
of the DS. The index j, as before, refers to zones of 
the DS, and index i numbers the different solutions 
of (11) for each zone. Since we consider only the real 
roots of (11), the number of terms in the sum over i 
is in general different for the different zones of DS. 
Despite its apparent simplicity, (24) describes a com- 
plicated intensity distribution on the topograph due 
to the dependence of qij on x, t and L, which reflects 
the intricate form of the DS. 

2.3. Limiting cases 

We consider now the limiting cases. Let L i t  be 
very large. Then Dm ~-L 1/2 and the q0, according to 
(11), are equal approximately to K x / L .  Therefore, 
the intensity distribution on the topographs is 
described by a simpler expression, 

I(oa)(x) = (1/L2)• Ig~(Kx/L,  t). (28) 
J 

According to (28), the topographs show the angular 
dependence of the intensity in the incident-plane- 
wave case on x / L  rather than on an angular variable. 
In the real experiment, where L <~ 2 m, the case men- 
tioned does not occur (see below). 

If L = 0, we obtain the opposite limiting case (the 
source is placed on the entrance surface and the film 
is placed on the exit surface of a crystal). We note 
that the well known theory by Kato (1961, 1968) of 
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two-beam X-ray spherical-wave diffraction corre- 
sponds to just this case. From (18), the dimensions 
of the diffraction pattern are now proportional to t 
and its form is determined by the form of the DS. In 
the two-beam case, as is well known (Kato, 1968), 
all the radiation is concentrated inside a triangle (the 
Borrmann fan). In the six-beam case the radiation is 
concentrated inside a pyramid with its base in the 
form of a hexagon of reciprocal-lattice vectors and 
with its top at the source point (see Fig. 2). The 
pyramid is limited by the scattering planes in the 
two-beam cases. 

If L # 0, then two-beam stripes arise on the topo- 
graph which correspond to the two-beam stripes on 
the q plane, in accordance with (18). These stripes 
are perpendicular to the corresponding reciprocal- 
lattice vectors if the film plane is parallel to the plane 
of reciprocal-lattice vectors. It follows from the cal- 
culations that a maximum of intensity inside the 
hexagon lies near the top of a hexagon corresponding 
to a forward direct beam. The sum of two patterns, 
corresponding to multiple diffraction and two-beam 
diffraction for the strong reflections 220 and 202, gives 
rise to the peculiarity on the topographs (semicircular 
arcs at one side of the intersection of 220 and 202 
stripes) found by Umeno (1970, 1972). 

2.4. Focusing 

From (26), for each stationary-phase point qu it is 
possible to focus X-rays if Cm > 0 and t = Cm~L. For 
finding the stationary-phase points qo and coefficients 
C m the derivatives (08/Oqk) and (028/Oqk Oq~) have 
to be known. In the general case, the solution of the 
eigenvalue problem (5) is obtained only by means of 
numerical methods. Hence, the following expression 
for the derivatives, corresponding to the first and 
second orders of the perturbation series in a small 
parameter dq, becomes very useful (Kohn, 1976): 

08(J)/Oqk -- ~. B ~ (  q)[OG/Oqk] ss' R('Onm~ms'x,,l/(n~ 
giffi 
$$s 

= ( j I o G / O q k ) l J ) ,  ( 29 ) 

028U)/Oqk Oql = 2 E (J'lOG/OqklJ)(J'[OG/Oqt[J) 
j ~ j '  

× (a o ) -  ao')) - '  (30) 

Taking into account the explicit form of the matrix 
G [see Pinsker (1978), p. 442] and (29) and (30), one 
may easily obtain (aS/aq)-.-K -1 and (a28/aq2) = 

2 1 0) 0) K -  A - ,  where A = min (8 " - 8  "' ). The magnitude 
of the parameter A can be evaluated as g]Xh[, where 
Xh is the Fourier transform of the crystal polarizability 
for the reciprocal-lattice vector h with a maximum 
magnitude ([Xhl "" 10-5) and g is a numerical factor 
( g < l ) .  Then from (13), (16) and (27) we obtain 
C m > JXh[ -~ = 10 s. The denominator of (24) can be 
changed for L only if L~, Ct, where C =max  (C1, 

C2). For example, the distance L should exceed 50 m 
for a crystal of 0.2 mm thickness. This distance is very 
difficult to achieve in the experiment. We note that 
the evaluation obtained is correct only for the multi- 
pie-diffraction angular region. In the one-beam region 
the coefficients Cm fall to zero. In the two-beam 
an~ular regions more detailed analysis has been car- 
ded out by Afanas'ev & Kohn (1977a) and Aristov 
et al. (1980). 

The physical reason for the existence of two focus- 
ing distances for any angular region (in contrast with 
the two-beam case, where only one focusing distance 
exists) arises from the more complicated form of the 
dispersion surface. In the two-beam case the disper- 
sion surface is cylindrical. If two or more cylinders 
intersect, there is a region with nonzero curvature in 
two directions. The curvature radii are different for 
different directions in the general case. The existence 
of two different radii of curvature is sufficient to give 
rise to the two focusing distances. Focusing takes 
place if the DS curvature is compensated by the 
curvature of the constant-phase surface of the Fourier 
transform of the spherical wave. 

3. Computational aspects 

Although .the computation of the intensity by means 
of (13), '(18), (20) and (24)-(27) is simpler than a 
computation using the rigorous expressions (6)-(8), 
it requires a certain amount of effort. The roots of 
(18), i.e. the points qu, are difficult to determine 
numerically at every point x because they have 
different values for the different zones of the DS. On 
the other hand, the methods of matrix diagonalization 
give all the zones of the DS at once. In order to solve 
the problem by computer, we use the following 
algorithm. 

In the first stage, the eigensolution problem (5) is 
solved and the values of I~7(q, t), (aSU)/Oqk) and 
(028U)/aqkaq~) are calculated for some fixed value of 
t and some set of q, which are chosen, for example, 
as nodes of the rectangular lattice in the q plane. In 
the second stage, the points x, are calculated which 
correspond directly to q, via (18) for some fixed value 
of L. The points x, are the nodes of a curvilinear 

242 ~ -  - - -  

000  ~ ..... ~ ~ ~ ~ 

~24  ,~02 

Fig. 2. Six-beam pyramid and its projection on the film plane. 
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lattice in a general case. Moreover, the correspon- 
dence q ~ x may not be single valued, so that different 
regions in the q plane may give the same region in 
the x plane. 

In the third stage, the values of (24) are calculated 
by linear interpolation of the quantities lgT( q, t) and 
(02~u)/Oq~Oq~) at the nodes of some fixed rectangular 
lattice in the x plane. The values of the third derivative 
of ~J) are calculated approximately. The interpola- 
tion is carded out in the following way. All the 
triangles of the lattice in the q plane are examined 
for a fixed point in the x plane. The triangle in the 
x plane is found which corresponds to each triangle 
in the q plane and has arbitrary shape in the general 
case. If the given x point lies inside the triangle, the 
interpolation is made, otherwise the next triangle is 
considered. If after the examination of all the triangles 
this condition is not fulfilled, zero intensity is 
attributed to this point. If the condition is fulfilled 
repeatedly, the results are added. The results from 
different zones of the DS are added similarly. 

The algorithm described above is still not con- 
venient because it is necessary to remember the results 
of the computation for a very great number of points 
in the first stage. Actually, one can avoid this difficulty 
by taking fixed values of L and t as well as the 
rectangular lattice in the x plane in the first stage and 
then considering the q plane step by step. 

4. Numerical results 

The computation has been carded out for the case 
of six-beam (220/242/044/224/202) diffraction of 
Cu K a  radiation (A = 0.154 nm) in a Ge crystal. This 
case was first analysed theoretically by Joko & 
Fukuhara (1967). They pointed out that a strong 
reduction of the absorption coefficient takes place in 
the case of exact multiple diffraction, where all the 
Bragg conditions are satisfied strictly. This has been 
shown more correctly by Afanas'ev & Kohn (1977b). 

Huang, Tillinger & Post (1973) have investigated 
this case both experimentally and theoretically. In 
the experiment the effect of enhancement of the 
anomalous transmission has not been found. As for 
theoretical calculations, the plane-incident-wave 
angular dependence of the transmission coefficient 
(ADTC) is incorrect. Indeed, the ADTC calculated 
by Huang et al. (1973) is symmetrical both in the 
direction lying in the scattering plane for the 044 
reflexion (the eo,, direction) and in the normal direc- 
tion (the eo~ direction). But, as is well known, the 
ADTC is asymmetrical in an absorbing crystal even 
in the two-beam case (see e.g., Pinsker, 1978, p. 110). 

The correct pattern of ADTC was first obtained by 
Kohn (1976) and then by Mihailyuk, Kshevetskii, 
Ostapovich & Kozmik (1978). Kohn (1976) has 
pointed out that the ADTC calculated by Huang et 
al. (1973) is incorrect because the ADTC has been 

found to be strongly asymmetrical in the eo,, direction. 
This asymmetry, in particular, is revealed in the asym- 
metrical intensity distribution on the topographs in 
the case where L = 0, which is the reason for the effect 
observed by Umeno (1970, 1972). However, a recent 
publication by Chang (1982) again contains the incor- 
rect results for the ADTC in this case. 

In the present work the angular dependence of 
quantities which enter the computational formulae is 
accounted for in the region shown in Fig. 3. The 
two-beam stripes are long enough for computing the 
topographs for all the L values considered. The 
dimensions of the central rectangle are determined 
by the inequalities 10~[-< 0-23, 1021-< 0-05 mrad. The 
angle 0~ changes along the vector eo,, (horizontal line) 
and 02 changes along eo~, (vertical line). The distances 
between the points in the angular plane are different. 
The smallest distance is ---0.001 mrad in the central 
part. In the two-beam stripes the points form a lattice 
with a parallelepiped as a unit cell and with a variable 
step. The total number of points in which the 

Fig. 3. The central part of the angular region taken into account 
in computations. 
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Fig. 4. The forward direct-beam topograph computed in the case 
of six-beam (220/242/044/224/202) diffraction of Cu Ka radi- 
ation in a Ge crystal of thickness 0-2 mm. The distance between 
the source and the film L = 105 m. 
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eigensolution problem (5) was solved is approxi- 
mately 2500. The data for calculations were taken 
from the paper  by Kohn (1976). 

Figs. 4-8 show the computed topographs for t = 
0.2 mm and L = 10 ~ m (Fig. 4), 6 m (Fig. 5), 2 m (Fig. 
6), 1 m (Fig. 7) and 0.5 m (Fig. 8). The origin in Figs. 
5-8 is chosen at the centre of  the hexagon on the 
topograph for L = 0 (see Fig. 2). Fig. 4 corresponds 
to the anomalously large distance between source and 
film. It actually shows the ADTC in the central 
angular region. The asymmetry in the horizontal 
direction of  the multiple-diffraction angular region 
and the two-beam stripes is seen quite well. It should 
be mentioned that the maximum of intensity turns 
out to be at the left side of  the intersection of  the 
two-beam stripes. This result was formerly obtained 
by Kohn (1976) and Mihailyuk et at (1978). The 
width of  the two-beam stripes is proport ional  to 
Ix,sO/sin 20~, where X,h is the Fourier transform of  
the real part of  the crystal polarizability and 0~ is the 
Bragg angle for two-beam diffraction. Consequently,  
the 220 stripe is noticeably wider than the 224 stripe, 
and the 224 stripe in turn is wider than the 044 stripe. 

The theoretical topograph for a relatively large 
distance L = 6 m is shown in Fig. 5. It is easy to see 
that the structure of  the multiple-diffraction region 
changes sharply. The two-beam stripes are shown 
only in the central part of  the topograph where they 
are distorted to a considerable extent by the multiple- 
diffraction effect. In particular,  the 220 and 224 stripes 
have not arisen on the fight of the topograph. 
However, it is easily seen at the left part of  the 
topograph that the 224 stripe has a narrow core of  
great intensity. This is due to the focusing effect 
predicted by Afanas 'ev & Kohn (1977a) and seen 
experimentally by Aristov et al. (1978), Kozmik & 

Table 1. Focusing distances for the two-beam stripes 
in a six-beam geometry for a crystal of  O.2 mm thickness 

hid 220 220 224 044 044 224 
$ O" I t  

Lfo~(m) 3"67 5"22 10"°'14 I I'0"47 61Y32 92Y62 

Mihailyuk (1978) and Aristov et aL (1980) in the 
simpler two-beam case. 

In this case the coefficients C~  ~ of (27) are positive 
only for the slightly absorbing zones of  the DS. 
According to Afanas 'ev & Kohn (1977a), they are 
determined by 

CU)=(sin~2Os)/2yolx~llP~l (31) 

if the  Bragg condition is satisfied exactly. Here j 
stands for a polarization index (t~ or ~r) and P~ is a 
polarization factor which has the value 1 for or 
polarization and cos20a  for ~r polarization. The 
values of  distance Lfo~, corresponding to focusing the 
divergent radiation by a crystal plate of t = 0.2 mm, 
can easily be calculated with (31) and are shown in 
Table 1. 

Anomalously small dimensions of  the central spot 
are another effect of  focusing the considerable num- 
ber of zones of  the multiple-diffraction DS. Indeed, 
if L =  O, the radiation is concentrated in a crystal 
inside the six-beam pyramid (see Fig. 2). This leads 
to topograph dimensions of approximately 0 .3x  
0.4 mm. In the case of  L = 6 m we supposed that the 
dimensions of  the multiple-diffraction region would 
increase but it follows from a computation that the 
dimensions of  the central spot are 0.15 x0.15 mm. A 
large region of  low intensity on the right of  the topo- 
graph also arises from this cause. 
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Fig. 5. Computed topograph for the same conditions as in Fig. 4, 
but with L = 6 m. 
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Fig. 6. Computed topograph for the same conditions as in Fig. 4, 
but with L = 2 m. 
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From the above discussion, it is not difficult to 
understand the peculiarities of the topograph shown 
in Fig. 6. We note that in papers by Kshevetskii & 
Mihailyuk (1976) and Mihailyuk et aL (1978) the 
experimental (positive) topographs were obtained for 
the same parameters. In the experiment non- 
monochromatic radiation was used. The wavelength 
band was of the order of the natural width of the 
Cu Ka spectral line. As a result, the patterns were 
averaged within a region ---0.5 mm in a horizontal 
direction according to Kohn (1976). Nevertheless, the 
region with low intensity on the right of the topo- 
graphs was obtained, but the central multiple- 
diffraction region was seen as a narrow horizontal 
bright stripe. The authors connected this result with 
the anomalous transmission enhancement effect. 
However, it follows from our calculation that they 
have seen the effect of three-beam (220/2.02) focus- 
ing on the background of theparticularly strongly 
focusing two-beam 220 and 202 stripes. The 242 
and 044 stripes in Fig. 6 are wider than the 220 
stripe. 

The topograph in Fig. 7 corresponds to L = 1 m. 
As follows from the computations, in this case all the 
two-beam stripes become fainter and wider (defocus- 
ing). The central intensity distribution corresponding 
to the multiple diffraction acquires little by little the 
form of a projection of the base of a six-beam pyramid 
(see Fig. 2) as L is decreased. The intensity maximum 
on the left of the topograph arises, as before, from 
focusing the two-beam lines of ADTC, but in a longi- 
tudinal direction. In other words, they are attracted 
to the centre of the topograph. As for the small 
angular region corresponding to the pure multiple- 
diffraction effect, we note that the corresponding 
plane waves are strongly scattered inside the six-beam 
pyramid. This is why the strong reduction of the 

absorption coefficients does not show up on the topo- 
graphs. 

Indeed, the zones of the DS corresponding to the 
anomalous transmission have a very great curvature. 
As has been shown by Kohn (1976), there are few 
zones of this kind and the distances between them 
[8 0 ) -  8 °')] are very small. Then, according to (30), 
the denominator of (24) has a large value which leads 
to a decrease in the intensity. The other consequence 
of the DS curvature is the relatively small value of 
the derivative (dqu/dx) in (24). Therefore, the energy 
flow in a narrow cone with angular sizes of order 
0.005 mrad near Ko, corresponding to these zones, is 
highly scattered in the crystal, filling almost the whole 
six-beam pyramid (Fig. 2). 

In the topograph of Fig. 8 ( L = 0 . S m )  the 
peculiarities pointed out above are still clearer. For 
smaller values of L the intensity maximum corre- 
sponding to the multiple diffraction passes to the right 
of the intersection of the two-beam lines. These lines 
become still more intense and hide the multiple- 
diffraction region. This is because of the absence of 
angular dependence of the intensity along the two- 
beam lines. As a result, the intensity of two-beam 
lines increases as L- '  with a decrease in L, but the 
intensity of multiple-diffracted X-rays does not 
depend on L. Then the six-beam diffraction effect is 
revealed on the topographs very peculiarly by arcs to 
the right of the 220 and 202 two-beam lines. Just the 
same pattern has been obtained by Umeno (1970, 
1972). Despite the fact that this peculiarity can be 
seen even in Fig. 8, the smaller value of L is necessary 
for experimental studies. Only for small values of L 
does the averaging of the topograph owing to the 
nonmonochromaticity of radiation become small. 
This case will be considered in more detail in a 
separate paper. 
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Fig. 7. C o m p u t e d  topograph for  the same condi t ions as in Fig. 4, 
but  with L = 1 m. 
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Fig. 8. C o m p u t e d  topograph for  the same condit ions as in Fig. 4, 
but  with L -- 0.5 m. 



V. G. K O H N  AND A. H. T O N E Y A N  449 

5. Concluding remarks 

The investigation we have carried out demonstrates 
that the multiple diffraction of X-ray spherical waves 
(six-beam in particular) is a very complicated 
phenomenon.  More systematic studies, both theoreti- 
cal and experimental, are necessary. The intensity 
distribution on the topograph depends to a great 
extent on the distance between the source and the 
film. Since nonmonochromatic  radiation has been 
used in the experiments it is impossible to compare 
the topographs in the forward-transmitted beam with 
the experimental topographs. Nevertheless, there is 
qualitative agreement. In order to reveal the fine 
structure of the experimental topographs it is desir- 
able to use monochromatic radiation. 
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Abstract 

The previously developed first-order modification of 
two-beam diffraction near a third reciprocal-lattice 
point [Juretschke (1984). Acta Cryst. A40, 379-389] 
is extended to second order. To this order a modified 
two-beam description is still retainable, and the nor- 
mal modes persist in their original polarization, but 
now with respect to two-beam asymptotes rotated and 
with a Bragg angle altered relative to the original 
two-beam case. Integrated intensities are evaluated 
for modified strong and weak primary two-beam sym- 
metric Bragg reflections, in the Bragg-Bragg and 
Bragg-Laue configurations, and some implications of 
the results are discussed. 

1. Introduction 

A compact analytical description of X-ray modes and 
intensities in the neighborhood of multiple-interac- 

0108-7673/86/060449-08501.50 

tion regions would have practical as well as theoreti- 
cal uses. Among other things, it would allow the 
evaluation of the influence of additional nearby 
reflections on a particular reflection of interest 
without having to invoke the computer machinery of 
a full n-beam solution. Equally well, it would lead 
to easy identification of particular features of diffrac- 
tion, such as the traditional Aufhellung, or Umwegan- 
regung, using relatively simple rules. 

The first-order formulation of such a description 
(Juretschke, 1982, 1984; H¢ier & Marthinsen, 1983), 
based on a systematic perturbation treatment of the 
n-beam equations, has already been applied success- 
fully to clarify some old problems (Juretschke & 
Barnea, 1986; Juretschke & Wagenfeld, 1986), as well 
as to predict additional results (Juretschke, 1986a, b). 
In the course of these investigations, however, a num- 
ber of instances emerged in which this first-order 
formulation led to null results, or where it applied in 
only a very limited domain, so that the dominant  
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