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A theory is developed to explain the angular dependence of X-ray photoelectrons quantum yield 
under X-ray diffraction in an  ideal crystal with the surface layer disturbed due to diffusion or ion 
implantation. A procedure is suggested for the computation of photoemission curves for the most 
general relation between parameters characterizing both, the experimental conditions and the 
disturbed layer itself. A particular example of Bragg diffraction of non-polarized Cu&-radiation 
on a silicon crystal with a model disturbed layer of about 3 pm is considered. The distortions 
correspond to a gradual lattice compression when approaching the surface. “Proper” X-ray and 
photoemission curves (without convolution) are shown to be more informative than those obtained 
by a double-crystal spectrometer. 

Es wird eine Theorie entwickelt, urn die Winkelabhiingigkeit der Rontgenphotoelektronenquanten- 
ausbeute bei Rontgenbeugung in einem idealen Kristall mit einer durch Diffusion oder Ionen- 
implantation gestorten Oberf liichenschicht zu erklilren. Ein Verfahren wird vorgeschlagen fiir 
die Berechnung der Photoemissionskurven fi i r  die allgemeinste Beziehung zwischen den Para- 
metern, die sowohl die experimentellen Bedingungen als auch die gestorte Schicht selbst charak- 
terisieren. Ein spezielles Beispiel einer Braggbeugung von nichtpolarisierter CuK,-Strahlung an 
einem Siliziumkristall mit einer gestorten Modellschicht von etwa 3 pm wird betrachtet. Die 
Storungen entsprechen einer graduellen Gitterkompression bis zur Oberfliiche. Es wird gezeigt, 
daB korrekte Rontgen- und Phohemissionskurven mehr Informationen liefern, als die mit einem 
Doppelkristallspektrometer erhaltenen. 

1. Introduction 

I n  recent years there has been an increasing interest in studying the structure of 
surface layers of single crystals exposed to different effects, diffusion and ion irradia- 
tion in particular. One of the most perspective methods of investigation of the disturbed 
surface layer structure is X-ray diffraction with simultaneous registration of the 
angular dependence of the secondary emission. 

Foundations of this approach were laid already in [l] (fluorescence), [2 to 41 (ex- 
ternal and internal photoemission), [5] (Compton scattering) [5, 61 (thermal diffused 
scattering), [7] (X-ray-voltaic effect). Recently, experimental works have been done 
clearly demonstrating the high sensitivity of photoemission to weak disturbances of 
the crystal lattice in near-surface layers [8, 91. 

The general theory of secondary processes, photoemission in particular, in an ideal 
crystal with disturbed surface layer was developed in [lo]. I n  this paper attention was 
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also paid to the reconstruction of the disturbed layer characteristics directly from 
experimental data. This problem was found to be solved relatively simply only in the 
case L,, < L, <I;,,, where L,, is the extinction length, Le1 the depth of photoelectron 
detachment, and L, the disturbed layer depth. 

However, some other situations are frequently encountered. For instance, the 
condition L, 2 L,, takes place when the disturbed layer results from impurity diffusion 
and X-rays are reflected from low-index planes. On the contrary, in the case of im- 
planted layers formed by hard radiation a situation may occur where L,, = L,. 

Theoretical calculation of the angular dependence of X-ray reflection and external 
photoeffect for all these cases is a rather complicated problem and may be solved 
only numerically. I n  this respect it is necessary to develop the theory further for 
describing adequately the most general experimental situation. This paper is devoted 
to the solution of this problem. 

General formulae describing the angular dependence of the external photoeffect 
are presented in Section 2, while the derivation of calculation formulae and the compu- 
tation method are presented in Section 3. Section 4 presents computation results for 
a specific model of the disturbed layer. 

2. Formulation of the Problem 

Since the interaction between X-rays and crystal atoms is weak it is convenient to 
characterize the disturbed layer by averaged parameters such as the mean displace- 
ment of atomic planes from their positions in an ideal crystal, u ( z ) ,  and also by the 
static Debye-Waller factor, W(z), accounting for random atom displacements from 
their positions in the plane [ll]. We shall consider only the situations where disturb- 
ances are uniform in the sample surface, that is they depend only on the single co- 
ordinate z measured along the inner normal to the surface. 

The electrical field vector of X-rays in the angular region corresponding to the 
Bragg diffraction is known to be a superposition of two plane waves with the wave 
vectors k, and kh = k, + h where h is a reciprocal-lattice vector of the ideal crystal. 
I n  the disturbed layer the amplitudes E, and Eh of these waves become weakly 
depending on z and satisfy the Takagi differential equations. 

The external photoeffect experiments give us the total number of electrons knocked 
out from the crystal atoms in a vacuum through the sample surface as a result of 
X-ray absorption. This process proceeds in two stages: at  first the electrons are 
knocked out in the crystal volume and then several of them come out of the crystal. 

The number of primary X-ray electrons dN@) knocked out from the layer with 
a thickness of dz at  a depth of z per unit area and per unit time is equal to the number 
of absorbed X-ray quanta in a polarization state s, which in turn is equal to the ratio 
of the absorbed electromagnetic energy AW to the quantum energy hw. The quantity 
AW is equal to the difference between incident and leaving fluxes for the layer dz 
and may be calculated directly from the Takagi equations. A corresponding formula 
was obtained in [lo]. This formula is convenient because it enables the electrons to 
be divided in a natural way into groups detached from different atomic shells and 
having different kinetic energy. Let the probability of m-group electrons to reach the 
surface of a crystal be Pm(z). Then integrating over z we obtain the following expres- 
sion : 
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where 

Here 8 is the variable angle between the incident wave direction ko and reflection 
plane, p(z) = hu(x), c is the light velocity. The quantities xi0 and x$’(m) are the contri- 
butions to  the imaginary part of Fourier components of crystal polarizability from 
the processes in which the absorption of the X-ray quanta in a polarization &ate s is 
accompanied by the detachment of m-group photoelectrons. porn = (2nlA) xio(m) is 
the contribution of these processes to the total X-ray absorption coefficient. In the 
case of non-polarized radiation (2.1) should be summed over the polarization states. 

I n  experiment, secondary electrons arising from the transition of atoms from an 
excited to the ground state are also detected. These secondary electrons are Auger 
electrons and electrons detached due to the absorption of fluorescent radiation [12]. 
The number of electrons arising from the excitation of the m-th shell is proportional 
to dN2). Thus, they may also be accounted for in (2.1) by using an appropriate defini- 
tion of the function P,(z). 

It should, however, be noted that at present the problem is at a stage when the 
theoretical account of such “fine” effects as the influence of Auger effect and contri- 
bution of all the excited atomic shells, except for the very first one, on the angular 
dependence of photoelectron yield is obviously exceeding the experimental accuracy, 
since the information on the disturbed layer structure, that is on the quantities 
~ ( z )  and W ( z ) ,  is practically absent, and it is the main problem to determine, though 
qualitatively, these quantities from experimental data. 

That is why in the sum over m in (2.1) we shall take into account only the first term 
corresponding to the excitation either of the K or L shell depending on the incident 
quanta energy. In  this case P(x) is equal to (1 - z/L,1)/2 at  z 5 Lel and zero at  
z > L,, where L,, is the depth of electron detachment to the crystal surface [El. 

For the same reason we neglect the dispersion corrections in the real part of the 
polarizability xr, and the quadrupole contribution to xi. In this approximation xt) = 
= xhC where C is the ordinary polarization factor. 

3. Calculation Formulae an.d Computation Method 

Let us consider the case where the reflected wave leaves the crystal through the 
“entering” surface (diffraction in Bragg geometry). I n  this case in the region of total 
reflection the field is known to penetrate a thick ideal crystal only to  a depth of the 
order of the extinction length 

where A is the wavelength of radiation, yo and yh are the cosines of the angles between 
the vectors k, and kh and the inner normal to the crystal surface. 

On the other hand, to obtain the reflection with the ratio of reflected and incident 
intensities of the order of unity, a layer with fixed parameters and the thickness of 
the order of L,, must exist in the crystal. Therefore, it is clear that the angular 
dependence of the photoelectron yield depends significantly on the relation between 
such parameters as Lei, L,,, and L, (the depth of the disturbed layer). 
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I n  this paper we shall consider the general case where the relation between the 
parameters L,,, Ld, and hex may be arbitrary. I n  this case a specific calculation of the 
angular dependence of the photoelectron yield may be performed only numerically 
(by using a computer) for a certain model of the disturbed layer. 

It is known that the Takagi equations should be solved, for Bragg geometry under 
the boundary conditions of a given Eo at z = 0 and zero E h  at z = t where t is the 
plate thickness. Since the boundary conditions are rather complicated it is convenient 
to use a new quantity 

and a new coordinate z’ = Ld - z. The equation for R(z‘) will be written in the form 

dR 
dx 

iLex,  = 2[y - iy,, - Y(z’)] R(z’) + c“ e-W(Z’) [l + R2(z’)] . (3.3) 

Here we use the following notations : 

where OB is the Bragg angle, 8, corresponds to the reflection maximum, d is the distance 
between the reflecting planes. 

Equation (3.3) is convenient since its boundary condition may be given in the point 
z’ = 0, because in the region Z’ < 0 the crystal is ideal. For a thick ideal crystal 
( t  > Lex) the reflection coefficient is known to be independent of the thickness. 
Therefore, the boundary condition for R(z‘) may be found in a very simple way 
from (3.3) if we assume (dR/dz’) = Y = W = 0. 

As a result we obtain 
1 
C 

4 0 )  = - [y - iy, + i (y  - iyo)2 - da],  (3.7) 

Here the branch with the positive imaginary part should be used for the square root. 
The X-ray reflection coefficient P R  is related to R(z‘) by a simple formula 

(3.8) X h  PR(Y, 2’) = - (R(y, 2’)12. LiI 
Let us note that the calculation procedure considered enables one to evaluate in a 
relatively simple way the reflection coefficient when accounting both for the total 
disturbed layer (2‘ = Ld) and for its part (0 & z‘ Ld). Thus, there is a possibility 
of simultaneously obtaining (in a single computation) a family of curves corresponding 
to the experimental situation that .the disturbed layer is gradually removed by etching. 

The angular dependence of the photoelectron yield is usually characterized by a 
dimensionless quantity x(y) = N ( y ) / N (  00). Allowing for the above approximations 
and quantities introduced above let us  rewrite (2.1), (2.2) in the following form: 
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L A  

where 

The dependence of Eo(z’, y) on R(z‘) has the following form: 

lo(z’ ,  y) = IEo(z’, y)I2 = e-@(Ld) es(z’) , 
where 
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(3.9) 

(3.10j 

(3.11) 

(3.12) 

The coordinate zo has an arbitrary value of the interval 0 5 zo 2 Ld - Lei. 
It follows from (3.9), (3.12) that to calculate the curve x(y) one should perform 

a double integration together with the solution of differential equation (3.3) ; the 
calculation procedure may be as follows. Let us divide the whole disturbed layer 
into thin layers of thickness h and number the layer boundaries by the index k. Then, 
assuming that within two thin layers the right-hand side, F(z’), of (3.3) depends 
linearly on z’ we obtain a recurrence formula 

(3.13) 

Along with determining the R value in the chosen points we calculate the exponent 
@(z’) in the same points using the trapezoidal rule for integration over the layer 
thickness h. I n  (3.9) integration is performed by the same technique. The value of 
@(&) is determined only after “passing” the total disturbed layer, so the correspond- 
ing exponential should be taken out of the integral sign and used at  the end of the 
calculation. We note that the procedure suggested may be easily modified for the 
simultaneous calculation of x(y) curves both for the total disturbed layer and for its 
part, as well as for simultaneous calculations a t  several Le1 values. 

At present, experiments measuring photoemission curves have been performed by 
a double-crystal technique using the so-called non-dispersive geometry where the two 
crystals are identical and their reflecting planes are parallel. In  this case for the 
comparison with the experimental curves one has to calculate the convolution of 
the theoretical curve for the reference crystal with the angular distribution curve of 
the intensity for X-rays diffracted by the first crystal. We present here the formula 
in the most general case where asymmetrical reflection is used in both crystals, 

(3.14) 
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In this formula the first argument is the crystal number. The value of y is determined 
in this case by the angle y between the reflecting planes of the first and second crystals 

The formula for PR(2, y )  is obtained from (3.14) by substituting PQ) for d8). Ac- 
cording to (3.15), the smaller the parameters PI and PZ are, the closer are the averaged 
values to the proper curves, since the widt,h of the total reflection region depends 
weakly on /? (in t.he y scale). 

4. Specific Example 
The calculation procedure considered in the previous section was used as a basis for 
a computation program in “FORTRAN”. 

As an example, we shall consider the most characteristic-experimental situation : 
Bragg diffraction of non-polarized CuK, radiation ( A  = 1.54 A) on a silicon crystal for 
(111) reflection. I n  this case L,, = 1.54pm, The calculation was performed for the 
disturbance distribution profile shown in Fig. 1. The profile corresponds to the gradual 
decrease of the inter-plane distance in the layer, i.e. to lattice compression. This 
case arises as a result of diffusion of impurity atoms with small size. For simplicity, 
the parameter W ( z )  is assumed to be zero. 

Fig. 2 shows the curves PR(y) and x(y) under the condition of a plane mono- 
chromatic wave incident on the crystal studied. Fig. 3 shows the curves P R ( y )  and 
x(y )  calculated with account of the angular divergence of the incident beam. The 
calculation corresponds to a non-dispersive double-crystal spectrometer with sym- 
metric Bragg reflection for both crystals (,!Ii = P2 = 1). 

A method based on measuring X-ray diffraction curves at gradual etching of the 
disturbed layer [8, 91 (for instance, by anodic oxidation [13]) is commonly used to 
obtain a more detailed information on the structure of the layer. Such a situation is 
shown in Fig. 2 and 3. 

The first curve in each figure corresponds to an ideal crystal. Let us note that the 
maximum of the reflection curve PYAd) (Fig. 3a) is 71%, and the maximum and mini- 
mum of the photoemisson curve 1.70 and 0.78, respectively. These data coincide, 
within the given accuracy, with the results of [14]. As the disturbed layer thickness 
increases (2’ grows) the curve P<(y) at the init,ial stage changes slightly its shape 
and only broadens a little. When the disturbed layer thickness reaches its maximum 
the reflection curve exhibits an additional, rather intensive maximum located near 
the angles corresponding to a compressed lattice. 

At the same time, the photoemission curves change their shape more appreciably. 

I I I I 

Fig. 1. Disturbance profile Ad/d along the layer 
depth z 
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Fig. 2. a) X-ray reflection P,(y) and b) photoemission x(y) curves calculated for silicon crystal 
((111) reflection) and CuK, radiation under the condition of a plane monochromatic wave incident 
on the crystal 

As the disturbed layer thickness increases the curve is gradually smoothed, and 
then it exhibits two maxima. 

Comparing Fig. 2 and 3 one can easily see that these curves are significantly distorted 
due to the angular divergence (convolution) of the incident beam. (The curves - in 
Fig. 2 and 3 are plotted in the same scale.) However, the reflection curves P R ( ~ )  
differ from the “proper” curves P R ( y )  only quantitatively, contrasting with the curves 
x(y) which differ from the “proper” curves x(y) qualitatively. 

As was shown in [lo], in the case of Ld < L,, the wave field amplitude changes 
slightly and the variation of the photoemission curves is mainly determined by an 
additional phase factor exp (iq) appearing in the interference term (see (2 .2) ) .  Since 
in our case the phase q ( z )  < 0 (lattice compression) the character of the photoemission 
curve variation, a t  small layer thickness z‘ < L,,, is evident. However, as the layer 
thickness increases, the variation of the incident and reflected X-ray amplitudes 
becomes appreciable and the shape of the x(y) curve becomes more complicated. 

- 

0 

Fig. 3. a) X-ray reflection P,(y) and b) photoemission x(y) curves as in Fig. 2 with the account 
of the incident beam divergence 
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The results of calculation clearly demonstrate that it is most convenient to measure 
“proper” photoemission curves either by a double-crystal spectrometer with asym- 
metrical reflection for the monochromator crystal (PI < l), or, which is better, by 
a three-crystal spectrometer using polarized and collimated radiation [15, 161. 

6. Conclusion 
The results presented in the previous section demonstrate the effectiveness of the 
approach lying in the simultaneous automatic calculation of X-ray and photoemission 
curves for an arbitrary model of the disturbed layer. If the information on the disturbed 
layer structure is available from some indirect sources, the direct comparison between 
the calculated and experimental curves enables the disturbed layer model to be 
checked and in some cases to improve it. 

If the disturbed layer parameters are unknown, then they may be reconstructed 
directly from the experimental data by comparison of the curves calculated for dif- 
ferent disturbed layer models with the experiment. In  this respect the use of experi- 
mental data both on diffraction and photoemission is very promising and guarantees 
the reliability of the results obtained. 

We may also note that the experimental measurement of “proper” curves is very 
important for this problem since they contain rather valuable information which is 
frequently lost in experiments with divergent beam. 
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