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A general theory of multiple X-ray diffraction in the Bragg geometry is formulated. Special 
attention is paid to obtain simple and compact formulae which are convenient for computer 
programming. Two cases are considered: the incident beam is either a plane-wave or a spherical- 
wave, and the reflection occurs either a t  one surface or a t  several surfaces of the same crystal. 
The theory allows t o  calculate the angular and spectral characteristics of the many-beam X-ray 
monochromators and interferometers in a general case. Results of the numerical calculation of the 
reflection coefficients are described for the three-beam (11 1/1lI) case of the CuK,-radiation dif- 
fraction in silicon. 

Es wird eine allgemeine Theorie der Mehrfach-Rontgenbeugung in Bragg-Geometrie formuliert. 
Insbesondere wird eine einfache und geschlossene Formel erhalten, die eine bequeme Computer- 
programmierung gestattet. Zwei Falle werden betrachtet : der einfallende Strahl ist entweder eine 
ebene Welle oder eine Kugelwelle, und die Reflexion t r i t t  entweder an einer Oberflache oder a n  
einigen Oberflachen desselben Rristalls auf. Die Theorie erlaubt, die Winkel- und Spektralcharak- 
teristiken der Mehrstrahl-Rontgenmonochromatoren und Interferometer im allgemeinen Fall zu 
berechnen. Die Ergebnisse der numerischen Berechnung der Reflexionskoeffizienten werden fur 
den Dreistrahl ( l l l / ~ l i ) - F a I l  der CuK,-Strahlenbeugung in Sjlizium beschrieben. 

1. Introduction 

Since 1965 when Borrmann and Hartwig observed the enhancement of the anomalous 
transmission in the many-beam region of angles, the interest in the multiple X-ray 
diffraction has continuously increased. However, many papers which have been 
published during these years, both experimental and theoretical, have been devoted 
mainly to the case of the X-ray diffraction in the Laue geometry when all radiation 
passes through the crystal. Among the few investigations on the many-beam Bragg 
reflection we want to mention the papers on the Renninger effect and the possibility 
connected with i t  to measure precisely the lattice parameter of a crystal [l, 21. But 
in these works the knowledge of the exact character of the angular dependence of the 
many-beam reflection does not play an essential role. Therefore, the theoretical study 
of this phenomenon was not stiniulated by these works. 

Quite another situation arose in recent time when papers were published in which 
devices, using the many-beam Bragg reflection for obtaining a closed trajectory of 
X-rays were suggested. One can mention, for example, the three-beam X-ray inter- 
ferometer by Graeff and Bonse [3] and also the X-ray resonator [4]. It is essential 
that in the many-beam region of angles energy can be transferred from any beam to 
any other one of the many-beam set by choosing the corresponding reflection surface. 
On the one hand one can solve the problem of beam splitting and following recombina- 
tion and on the other hand, reduce the angular divergency and carry out the mono- 
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chromatization of the incident beam by choosing the proper transition with the use of 
the reflection a t  various surfaces of the same crystal. 

For finding the optimum variants solving these problems the theoretical investiga- 
tion of the phenomenon of the many-beam Bragg reflection becomes very important. 
The present paper is devoted just to this question. As it is known, the consecutive 
calculation and analysis of both the dispersion surface and the reflection coefficients 
in the many-beam region of angles can be carried out only by numerical methods. 
Therefore, such a formulation of the dynamical theory of many-bean1 scattering is 
necessary that is convenient for a computer program to be worked out. For the Laue 
case this question has been analysed in [5 ]  in which the scattering matrix has been 
determined and the problem has been reduced to  the eigenvalue problem of this matrix. 

In  Section 2 the results of [5] are generalized for the Bragg-reflectlion case. The 
results of the numerical calculation of both reflection and transmission coefficients 
for the three-beam (111/111)  case are described in Section 3. I n  Section 4 a general 
formula is obtained which describes the case of reflection a t  several surfaces of the 
same crystal. This formula is a basic one for the calculation of many-beam mono- 
chromators. The incident-spherical-wave approach was shown [6, 71 to  be a basis for 
the calculation of the diffraction pattern when investigating the coherent phenomena 
which arise in X-ray diffraction with fixing the diffraction pattern on a film. The 
spherical-wave theory of the Bragg reflection is developed in Section 5. 

2. Reflection of a Plane Wave at One Crystal Surface 

Let a monochromatic plane wave with the wave vector It, and the frequency (I) fall 
on a crystal plate of thickness t .  Let n be the normal to  the plate surface directed 
towards the plate. It is necessary for observing multiple diffraction that the vector k, 
is approximately equal to the vector xo with the length xo = wo/c (c is the light veloc- 
it,y) and direction satisfying the Bragg condition for any set of reciprocal lattice 
vectors h,, siniultaneously, namely 

xnL = xo + h ,  , x i A  = x i  . (2.1) 
We assume that the incident radiation is slightly nonmonochroniatic and has some 

angular divergence. Then ol0 is the frequency corresponding to the intensity niaximuni 
of the radiation spectrum and the vector Fro can be expressed in the form 

k0 = xo + q0 , yo = xo(8,e, + %e, + Omso) . (2 .2 )  
Here so is the unit vector directed along xo, el and e2 are the mutually perpendicular 
unit vectors lying in the plane perpendicular to so. The parameters 19, and 8, charac- 
terize the angular deviation of the wave vector of the incident beam from the Bragg 
direction so, and 8, = (w - wo)/wo characterizes the relative frequency shift. 

To describe the electromagnetic field of X-rays inside a crystal, we use Maxwell's 
equations for Fourier components of an electrical field vector E ( k ,  0). As usual, 
expressing the current density induced by the electromagnetic wave through the 
electric field vector and preserving only strong waves, we obtain a set of linear homo- 
geneous equations for scalar amplitudes of the strong wave (for more detail see [5 ] ) .  
The coniplete X-ray radiation field can be written in the form 

,- 

Here z = (T - v1) n, r, is the coordinate of a point lying on the entrance surface of 
the crystal, ym = s,n, s ,  is a unit vector along x,. The quantities Bms(j) and are 
the eigenvectors and eigenvalues of the scattering matrix G;&, 
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S G g k B , d j )  = CjBrns( j )  . (2.4) 
121 ' 

A,(&) is the amplitude of the incident plane-polarized wave in the polarization state s 
(x = x ,  a), ems are the unit vectors lying in the plane perpendicular to s ,  and deter- 
mining the polarization state for the wave nb. 

The polarization vectors ems can be chosen in an arbitrary way. We are interested 
in the systematic multiple diffraction [8] when all the reciprocal lattice vectors lie in 
the same plane. I n  this case the vectors em8 suggested in [9] are most convenient, 
namely, all the vectors emo lie in the same plane as the vectors h ,  and enhn are deter- 
mined from the condition that the vectors enlx, emo, and s ,  form a right-handed system 
of orthogonal directions. 

The scattering matrix G is determined through the Fourier components of a com- 
plex polarizability tensor X.The expression for x with account of all possible inter- 
actions between the X-rays and the crystal, has been obtained in [lo]. Taking into 
consideration only the main contributions to X ,  namely, Thoinson scattering and the 
dipole part of a photoelectric absorption, we have [5 ,  71, according to (2.3) 

where 

is a parameter characterizing the deviat'ion from t'he Bragg condition for the beam m. 
I n  the present work, we consider the cases in which a t  least one of the quant>ities 

:INL is negative, i.e. the plane-wave with the wave vector k, goes out of the crystal 
through the entrance surface (reflect.ion). It is natural t o  refer all these cases to the 
Bragg reflection even if several of the diffracting waves pass t,hrough the crystal. 
Indeed, due to  the presence of a niultiplier (ymyn)-1/2 the matrix Gr describing the 
scattering in a nonabsorbing crystal becomes nonhermitian. Therefore, it, can have 
a complex eigenvalue for which the field diminishes exponent'ially when i t  penetrates. 
into tjhe cryst'al. This phenomenon is known in the two-wave case and arises just in 
the case of Bragg reflection. 

The quant,ities&(j, t )  determine the value of an excitation of t>he j-th mode of Bloch 
waves. They are defined by boundary conditions on both entrance and exit, cryst.al 
surfaces. After averaging over a region wit,h linear dimensions much great,er than an 
interatomic distance a,  we obtain, as usual, t'he boundary conditions for each ni,-t>h 
beam in the superposibion (2.3) separately. Then the amplitude of the Bragg-reflected 
beanis has to  vanish on the exit surface of the crystal plate = t and the amplitude 
of Laue diffracted beanis has to  be equal to zero on the entrance surface 2 = 0. These 
condit>ions are convenienbly written in the form 

C c m ( j ,  t )  B,dj) U j ,  t )  = Bmoaas, ( 2 . 7 )  
.i 

where 

The set (2.4) does not define the length of the vectors B,,, but the general field 
(2.3) according to (2 .7 )  does not depend on the choice of the length of the vectors. The 
vectors are conveniently normalized to unity. The eigenvalue problem (2.4) in the 
many-beam case with any value of the vector qo can be solved only by numerical 
met.hods using a computer. We note that, cont,rary to the Laue case, the methods 
of diagonalization of nonhermitian matrices have to be used here. 



If the crystal has an inversion centre in the point eo then i t  is easy to  verify directly 
that the substitution B,, = B,, exp (--ih,eo) gives the symmetrical complex matrix 
b. For the numerical diagonalization of this matrix the method of complex rot,ations 
was found to  be very convenient, because it provides an  acceptable calculation time 
and also stability and simplicity of the computer procedure. This method is a direct 
generalization of the rotation method (or Jakobi method) [ll] for real syninietrical 
matrices in complex arithmetics. The eigenvectors of the complex syninietrical 
matrix are mutually orthogonal 

- 

(2.9) 

But unlike the Laue case, equation (2.9) does not give the possibility to  determine 
t>he quantities Aj in an analytical form because of the complicated characber of the set 
(2.7). Therefore, the set (2.7) has also to  be solved numerically. Here, following t,he 
two-beam case, it) is natural to consider separately the case of an infinitely thick 
plate (practically t > L,,, where L,, is the extinction length). 

Indeed, the imaginary part of the quanbity q, can have any sign and a value as 
largc as l/Lex in the complete reflection region. Therefore, some of the quantities c,(j) 
are exponentially large a t  t > Lex. I n  bhe two-beam case such modes were known to 
be not excited in a crystal. The analogous sibuation arises also in the case of multiple 
diffraction. In  the thick crystal only such modes are excit'ed for which cy > 0 ( F  = 
= P' + ie") .  The corresponding coefficients A ( j )  are defined from the truncated set 
( 2 . 7 )  which consists of t'he equation with multipliers c ,  = 1. As can be shown, the 
number of eigenvalues F~ wit'h negative imaginary part is exactly equal to the double 
number of Bragg ref1ect)ing beams. Consequently, t'he t'runcated set has only one solu- 
tion. 

From t>he experimental point of view the amplitude of t>he X-ray elect'ric field 
leaving the crystal is of interest. Let us consider the radiation part going out of the 
crystal along the li., direction. If the polarization state of the radiation is s' and one 
of t,he incident wave is s, t.hen the field amplitude of this part reads 

(2.10) 

(2.11) 

(2.12) 

The parameter cy, in (2.12) is determined by (2.6). It arises in hhe expression for the 
vacuum wave vector because of the dispersion law kg  = kg. Formula (2.10) is valid 
for the Bragg-reflecbed beams in the space outside the entrance crystal surface and for 
the Laue-diffracted beams in that out'side the exit surface. 

The coefficients of transmission Ro and reflection R,, m $. 0, are defined simply 
in terms of t'he amplitude 2'2. Let the incident radiation he plane-polarized, for exam- 
ple synchrotron radiation. If q is the angle between the polarization plane and the 
vector eon then 

(2.13) 
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(2.11) 

I n  t'he case of unpolarized radiation we have to average (2.13) over bhe angle y. As  
a result, R ,  = R,. 

The dependence of the vector q, on t'he three parameter project'ions is of most 
interest. These parameters define direction and frequency of the incident beam. How- 
ever, in the case of the systeiiiat'ic diffraction, the quantities R, depend effectively 
on only two paraniet,ers. Indeed, due to  a nonresonance interaction between X-rays 
and crystal, we can neglect the slight frequency dependence of the quantities xrn (see 
equation (2.5)) in the frequency region corresponding to the Bragg diffraction. Then 
the matrix C depends on qo only t.hrough t.he paramet,er am. Let us int,roduce t,he 
unit vector nOR [7] along the direction connecting the centre of a circle described hy 
the reciprocal-lattice-vector polygon and the point' 0. Aft'er choosing the vector ez in 
( 2 . 2 )  in the reciprocal-lattice-vector plane e2 = eOor we have 

- 

where 8, is the angle between so and the unit vector n, of a normal to the reciprocal- 
lattice-vector plane. 

According to (2.16) the change of the incident radiation frequency is compensated 
by a corresponding change of the beam direction. At small scattering angles (8, < n/4) 
realized in the Laue case, the necessary angular shift does not exceed, as  a rule, the 
relative frequency change. On the contrary, a coplanar diffraction (when 8, = n/2) 
is realized easily and is of more interest in the cases of Bragg reflection. In  the coplanar 
case the parameter 8 describes purely a frequency dependence, and the dependence 
on the angle in the plane perpendicular to the reciprocal-lattice-vector plane vanishes 
in an approximation linear in qo. 

3. Concrete Example: The Bragg Reflection of CuK, Radiation 
in the Three-Beam (111/111) Case in Silicon 

We worked out the FORTRAN computer program for the calculation of the coeffi- 
cient R,(B, e2, t ,  q) along a scheme describedin theprevious section. As an example, we 
consider the three-beam ( l l l j l l l )  case of CuK, radiation diffraction (A = 1.54 A) in 
a silicon crystal plate with the entrance surface perpendicular to the [lIO] direction. 
This case is of interest because it permits an analytical solution of the problem on the 
e2 = 0 line that is situated in the symmetry plane. The solution for the Laue geom- 
etry was obtained for the first time in [12, 131. A generalization to  the Bragg reflec- 
tion case for an infinitely thick crystal is trivial, therefore, we write the final result 
only. Let the polarization state of the incident beam be standard ( x  or a), then 
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Fig. 1.  The coefficient 
three-beam (111/11I) case. The entrance surface is perpendicular to  (110) 

Fig. 2 .  The transmission coefficient 
conditions as in Fig. 1 

of a reflection of nonpolarized radiation from a thick silicon plate in 

for a plate with a t  thickness 2 pm and the same experimental 

where 

Formula (3.1) differs from the corresponding expression for the two-bean1 reflection 
coefficient' (see, for example, [14]) only by a factor 0.5 and the polarization factor C,. 
The real part of the quantit,y 1 9 ~ ~  is easily seen t o  determine the angular region of 
total reflect.ion, with OIs being proportional to  C,. I n  the present case Ci 2, contrary 
to the two-beam ease where C," < 1. Therefore, the three-bean1 angular region of 
total reflection along the line 0, = 0 is broader than the two-bean] one, but the value 
of the niaxiinuni is only 1/2 because of the energy conservation law. 

It is easy to understand, t'aking into account the symmetry of the considered case 
t'hat the relation g2(0, 8,) = q ( 0 ,  -8,) holds. Consequently it is sufficient to consider 
one of the diffraction beams only. Fig. 1 shows t,he reflection coefficient %,(0, 0,) for 
nonpolarized radiation in the angular region 0 5 0 5 lo", -7" 5 O2 5 7" in t'he 
thick crystal. The calculations have been carried out wit>h account of the true ab- 
sorpt,ion of X-rays in t>he crystal, this fact being the reason for a maximum asymmetry 
in the two-beam region. As can be seen from the figure, the analytical solution (3.1) 
on the O2 = 0 line does not give the right sense of t>he three-beam tot'al reflection 
region which is a gentle pass with a smooth minimum along t>he two-beam line and 
wibh a smooth maximum in bhe perpendicular direct>ion. 

Fig. 2 shows the bransmission coefficient g,,(0, 0,) for the same angular region and 
for a plate with thickness t = 3 pm. It follows from the calculation that the extinction 
length is reduced when penetrating in the many-beam region. The reflection coeffi- 
cient R, for t'he plate of such a thickness differs slight'ly from that presented on Fig. 1. 

4. Reflection of a Plane Wave at Several Surfaces of the Same Crystal 

The calculation of the coefficient of many-beam reflection at several surfaces of the 
same crystal in the general case is a somewhat niore complicated problem. In  the pres- 
ent section we restrict our treatment to  the general forniulation of this problem in 
a form which is convenient for working out the computer program. 
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Let the plane wave with the wave vector k, fall on the tirst surface of a crystal 
with the inner normal vector nl. Several beams can go out of the crystal. Let us con- 
sider the beam with the wave vector k, falling on the second surface of the crystal 
with the inner normal n2 from which, in particular, the beam with the wave vector k, 
goes out, and so on. Aftern reflections the amplitude of the electric field can be written 
in the form 

Here h,  = x ,  - x,-1, ro is the point on the source surface, rn+l = r the detection 
point, rm the point on the m-th surface of the crystal. 

The vector qm determines the degree of difference between the vectors k, and x,, 
i.e. in fact the extent to which the Bragg conditions in the na-th reflection is not satis- 
fied. It is essential that only the vector y o  is independent among the vectors qm. The 
remaining vectors are determined by qo through (4.3). From the physical point of 
view formula (4.3) describes the angular divergence change of the incident beam, 
which arises from the condition of X-ray frequency conservation at  reflection. I n  the 
approximation linear in q/x this condition is reduced to the equality x w b ~ l q m - l  = 

role as  the vectors x,, q, play at the first reflection, i.e. one many-beam set of vec- 
tors is numbered differently at every reflection. 

The amplitude PSI’, according to (2.15)’ depends only on the two parameters 8 
and 8,. In  the case of several reflections, the formulae describing the direct transition 
from fP- l ) ,  0(2n?-l) to OctR), OLm) are thought to  be useful besides (4.3). Let us introduce 
the orthonormalized basis r G 2 R ,  emo, nh tied with point m and mark them for the sake 
of brevity through a(,1”), s = 1, 2, 3. Then 

- - x m q m .  We note that the vectors x m - l ,  qm-l a t  the m-th reflection play the same 

where 

The matrix D, is three-dimensional, but we are interested only in the two-dinien- 
sional part with s, s‘ = 1,  2. In  this case, (4.7) gives the necessary connection because 

= 8, 5, = 8,. Thus the two-dimensional transition matrices can be calculated easily 
in every concrete case by (4.8). This matrix makes it possible to calculate the two- 
beam regions of total reflection for all surfaces and to write the diagram analogous 
t o  the Du Mond diagram of the theory of two-beam spectrometers [14]. 
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5. Reflection of the Spherical Wave 

As it is known, an atom is the source of X-ray radiation, and coherence is preserved 
only for the radiation of a separate atom. Therefore, the incident-spherical-wave 
approach is the most natural one for the calculation of interference phenomena. The 
theory of multiple spherical-wave X-ray diffraction in the Laue case has been for- 
mulated in [ 7 ] .  I n  this section we present the generalization of this theory to  the 
Bragg reflection case. 

Let the radiation of a source placed a t  the point ro fall on a crystal. We present 
the electric field amplitude asa twofold Fourier integral and consider the little angular 
region near the Bragg direction.Within this angular region the amplitude in the space 
before the crystal can be written in the form 

where 

Here we preserve, as in [ 7 ] ,  the term quadratic in qol in the wave vector expression, 
and assume that the amplitude A,  and the polarization vectors eos do not depend on 
qoi. Although the characteristic values of the angles 8, and 0, are small (= 
the phase connected with the second-order term is of order x0O2L ,where L is the source- 
crystal distance. Consequently, i t  may he essential when L enlarges. As it has been 
shown in [6] this term becomes essential when L is equal to  = 1 in, a situat,ion that 
is experimentally achievable. 

As a result of the reflection a t  the first crystal surface the vector Qo is replaced by 
Q,. With account of terms to second power in q/x ,  we have 

where the vector k, is determined by (4.2), (4.3) and the quantity a?) is determined by 
formula (8) in [7] which can be written in another form as 

(5.4) 

Considering 22 reflections consistently, we obtain easily the following expression for Qla : 

in which the quantity ag) is defined by the recurrence formula 
m-1 

L - I  ymnz 
',;;) = c, - C & ( 2 )  k z!!? . (5.6) 

We note that the second-order corrections must be considered only where the cor- 
responding vector is multiplied by a long distance of the order of 1 m. Because all 
the reflecting surfaces belong in our case to  the same crystal, the distances between 
them are small. Therefore, we can replace all Qni, m = 1, ... , n - 1 by k, with 
a good accuracy. We can also neglect the second-order terms in am when calculating 
the reflection amplitude and use the formulae (4.3)) (4.5). However, these terms must 
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be considered in Qo, if the source-crystal distance is long, and also in Qn, if there 
is a long crystal-film distance. Although the formula for Qm is a rather cumbersome 
one, in concrete exaniples considerable simplifications arise. 

Considering the above, we can writ,e the amplitude of a field passed through the 
crystal in the form 

(5 .7 )  

where 
n-1 

m=l  
~ ( Q O -  r )  = &o(ri - ro) + 3 f i m ( r n i + ~  - r n i )  + Q n ( r  - rn) . (5.8) 

If the crystal is cut in such a way that the last surface reflects into the same direction 
two or more beams which pass on differrent ways (interferometer), then the term 
r e ’ q  P has to  be replaced by the sum of several t,ernis of bhe same type. 

I n  accordance with the method of geometrical optics, the trajectory of rays is 
defined from the condition of equality to  zero of the ternis linear in qol in the phase 
(5.8). Because the component of qm parallel x ,  does not depend on qol, this condition 
is satisfied when the vectors (rmtl - r,) are parallel x,. The diffraction pattern 
arises on the plane perpendicular x,. I n  the nonpolarized radiation case the intensity 
of the n-th beam is equal to 

(5.9) 

(5.10) 

Here we also take into account the nonnionochroniaticity of the radiation which is 
of order of the natural width of a characteristic line of a X-ray tube spectrum: y is 
a relative half-width of the line. 

According to (2.15), the amplitude Pss’ depends on 8, and 8, only through a definite 
combination 8. In  the nonplanar case we can proceed to a new variable 8 instead 0, 
in (5.10), then the role of 0, reduces only to the shift of the whole pattern by some 
vector proportional 0, [ 7 ] .  I n  the cases close to coplanar, however, the shift vector 
becomes very long leading to a strong averaging of the diffraction pattern along tlhe 
direction of the shift. I n  the coplanar case, the dependence on the distance along this 
direction vanishes (in an approximation linear in 0), and the integration over 6 ,  needs 
to  be carried out independently. I n  this case the spectrum characteristics of the reflect- 
ed radiation, in particular, the coherence length, are determined completely by the 
diffraction process, not by the source. 
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