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Abstract. The time dependence of delayed radiation is investigated when a pulse of synchro- 
tron radiation undergoes resonance Bragg scattering by the nuclei in a crystal that have an 
isomeric level with a Mossbauer transition. Instead of the usual exponential law exp( - ~ / T J  
characteristic of an isolated nucleus, a time dependence in the form (ro/ t )2  exp( - t /7J  was 
discovered at small deviations a from the Bragg angle. The acceleration of the decay is 
connected with the collective nature of the excitation of the nuclei in the crystal-the nuclear 
exciton formation. The exponential law remains at large a but the intensity decreases as 
l/az. In the case of large divergence of the incident beam the law (T&) exp( - t / z , )  is obeyed. 
The frequency distribution of the reflected pulse and the possibility of formation of a reson- 
ance structure with sufficient resolution are analysed in detail. The problem of time evolution 
of the synchrotron radiation pulse in transmission through two crystals-the Bragg reflector 
and resonance absorber-is solved. It is found that the requirements for the maximum 
intensity of the delayed radiation and the necessary frequency distribution contradict one 
another. For example, when a or the delay time are small the resonance structure vanishes. 
Therefore, for Mossbauer-type experiments it is expedient to measure the intensity inte- 
grated over time with the exception of an appreciable initial time interval after the pulse, and 
with effective use of the reflection corresponding to a deviation from the Bragg angle by the 
value characteristic for the angle interval of the Bragg scattering. 

1. Introduction 

Recently, there has been a great interest in direct excitation of low-lying isomeric nuclear 
levels in the synchrotron radiation field with realisation of the Mossbauer effect (Ruby 
1974, Kulipanov and Skrinskii 1977). Paradoxical as it might seem at first sight, the 
problem of selecting a resonance line of about IO-' eV in width from the continuous 
radiation spectrum of about tens of kilovolts in width may actually be put forward in 
view of the unique possibility of combining the features of synchrotron radiation pro- 
duced by the existing devices and specific properties of the isomeric levels in question 
as well as the resonance scattering by the nuclei in the crystal. 

This relates first of all to the time characteristics. The duration T of the synchrotron 
radiation pulse is at least two orders of magnitude shorter than the time interval T, 
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between the pulses. Therefore, using isomeric states having the lifetime zo for which the 
condition 

T $ z o < T ,  (1 .1)  

is fulfilled, we have the possibility of separating in time the pulses of the potentially 
scattered radiation (actually with the same duration T )  from the resonance Mossbauer 
radiation travelling with a time delay of about zo. 

Another important feature of the synchrotron radiation is a small angular divergence 
in a plane normal to the electron orbit which, as a rule, does not exceed a few tens of 
seconds of arc. This enables us to use efficiently the Bragg resonance scattering by the 
single crystal containing the appropriate isotope with the isomeric level. As has been 
shown (Afanas’ev and Kagan 1965a, Kagan et a/ 1968, Kagan and Afanas’ev 1973) the 
coherence is completely preserved in the resonance scattering by the system of nuclei 
with long-lived excited levels and the suppression effect of nuclear reaction inelastic 
channels (conversion) arises in the single crystal. In particular, a complete reflection 
(Kagan et a1 1968) can be realised in resonance scattering even by a very strongly absorb- 
ing crystal within the range of angles of tens of seconds or seconds (depending on the 
values of the medium nucleus parameters). The existence of only one polarisatior, of the 
synchrotron radiation makes easier the choice of appropriate experimental conditions. 

From the purely experimental point of view, the time delay of radiation within the 
resonance range of frequencies can be effectively used only if there is a simultaneous 
sharp decrease in the total number of scattered quanta reaching the detector. Use of the 
Bragg diffraction reflection by the magnetically ordered single crystal in which a purely 
nuclear resonance scattering is allowed and electron scattering is forbidden seems to  be 
the most expedient in this case (Belyakov and Aivazyan 1968, Smirnov et a1 1969, 
Stepanov et al 1974). Note that this version is to  be used in the joint experiment of 
Kurchatov Institute of Atomic Energy and Novosibirsk Institute of Nuclear Physics, 
which is under preparation now (Artem’ev et a1 1978). The theoretical analysis of the 
problem of direct excitation of isomeric nuclear states by synchrotron radiation must 
include at least the following questions: 

(i) Investigation of the time dependence of the Bragg-reflected radiation. 
(ii) Determination of the optimal conditions for maintaining intensity within the 

resonance range of frequencies and simultaneously suppressing the far wings of the 
frequency distribution. 

(iii) Study of the time and frequency dependences of the intensity of the radiation 
passing through the Mossbauer absorber after the reflector. 

(iv) Analysis of the possibility of forming scattered radiation of a definite frequency 
dependence in the resonance range of frequencies. 

(v) Study of the possibility of direct detection of collective excitations in the nuclear 
subsystem of the crystal, in particular, the nuclear exciton. 

All these questions are discussed in the present paper. It will be assumed that the 
standard procedure of preliminary scattering by ordinary single crystals narrows the 
energy distribution of the synchrotron radiation near the resonance frequency to about 
1 eV (Artem’ev et al 1978) and this radiation by the basic crystal undergoes the purely 
nuclear Bragg diffraction. 

We shall also assume that the hyperfine structure (HFS) of the resonance transition is 
well resolved and the measurement procedure suggests integration over a time interval 
greatly exceeding the inverse of the distance between the HFS components. In this case 
the time beats due to scattering interference in different HFS components, which are of 
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no importance for us, can be neglected and considered as an independent resonance 
scattering corresponding to the individual HFS components. 

2. Reflected intensity 

Let radiation with a frequency 6 fall on the crystal for a time Ta t  a definite angle. The 
amplitude of the electric field can then be written as 

~ , ( t )  = b,e-'"+(t) (2.1) 

where $(t)  is a function representing the time form of the radiation pulse, which we 
assume to have the form of a rectangle of unit height and length T. 

Introduce the amplitude R(o) of crystal reflection of the monochromatic wave 
having a frequency w. Then 

E(w)  = R(w)E(w) (2.2) 
where the primed symbol indicates the amplitude of the scattered wavefield. Then for 
the time dependence of the reflected wavefield we find 

73 

= g6 [-m dt'G(t - t')e-iaf'$(tf). 

Here 

G(t) = -R(w)e-'"'. I:,, 2 

(2.3) 

(2.4) 

The reflection amplitude R(o) being extended to the complex plane, 01 is an analytical 
function in the upper half-plane. As a consequence G(t) is different from zero only for 
t > 0 and actually is the delay function of the crystal response to the instantaneous pulse. 

Suppose the quanta are incident on the crystal within the frequency range A 6  near 
the resonance frequency wo corresponding to isomeric level energy and 

AOT 9 1. (2.5) 
Proceeding from the amplitude (2.3) to the intensity and summing over the whole 
frequency range of incident radiation A 6  we find for the intensity of the reflected radia- 
tion, taking into account (2.5), 

N, 1 
Z,(t) = 2 ~ - -  dt'IG,(t - t')I2. 

A 6  T 5, 
Here we have introduced explicitly the subscript a characterising the angle of radiation 
incidence on the crystal. Keeping in mind that only the case of Bragg diffraction will be 
considered below, U must be understood as the deviation from the angle satisfying the 
Bragg condition in the scattering plane: 

U = K ( K  + 2K)/K2 (2.7) 

where K is the wavevector of incident photons, and K is the reciprocal lattice vector 
corresponding to the chosen reflection. 
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Let us assume that the geometry is chosen so that the distribution of incident quanta 
with respect to a is determined by a comparatively small vertical divergence of the 
synchrotron radiation, with the scattering depending very weakly on the angle in the 
plane of the electron orbit. As a result R and G depend practically only on a. The quantity 
N, in (2.6) is defined so that 

r 
N,da = No 

where N o  is the total number of quanta incident on the crystal per pulse of synchrotron 
radiation. 

Equation (2.6) represents the differential time distribution of the reflected radiation. 
For t 9 T we have roughly instead of (2.6): 

3. Calculation of the response function 

As follows from the above relations, it is sufficient to know the response function G(t) 
for the analysis ofthe time dependence of the scattering. In a number of cases this function 
can be found in an analytical form. 

3.1. Passage through the crystal 

Suppose the radiation passes through the crystal of thickness I at an arbitrary angle 
(far from the angle meeting the Bragg condition). Let us consider the frequency range in 
the vicinity of a separate resonance transition having frequency wo and width r. Then 
for the radiation at the crystal outlet we have (see, for example Afanas’ev and Kagan 
1965a, Kagan et a1 1968): 

RA@) = eXP(iw),1/2yo), (3.1) 

(3.2) 

Here 8, is the angle between K and the vector of the inner normal to the entrance surface 
of the crystal, go is a dimensionless quantity, related to the total cross section li,,, of 
the resonance nuclear absorption for w = coo by the rigidly fixed nucleus by the rela- 
tionship: 

90 = (1/4cresn’ exp{-Z(d) (3 .3)  
where exp{ - Z ( K ) }  is the probability of the Mossbauer effect, K is the wavevector of the 
incident radiation, n’ is the density of the nuclei with the transition considered. The value 
xo  is coupled with the amplitude f, of elastic scattering by electrons corresponding to 
one cell with the volume no by the relationship 

Substituting (3.1) into (2.4) and separating the resonance part, we obtain : 

R‘(w) = RA(w) - R*(.o). (3.5) 
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Then the integration of RA(co) gives the time b-function and corresponds to the in- 
stantaneous reflection of the non-resonance part of the incident pulse. 

Considering the integral of R'(o) we proceed to the complex plane w and close the 
integration contour with a semicircle of an infinite radius in the lower half-plane, where 
R'(C0) + 0. 

Replacing the variables 

z = o - oo + i/2z0 

which is equivalent to displacing the horizontal part of the contour by i/22, to the lower 
half-plane (rounding the point z = 0 from above) we have: 

= exp(-io,t + icp - t/2z0) - 13 (3.6) 

(3.7) 

The integral in (3.6) is determined by the singularity of the integrand at the point 
z = 0. Expanding the exponent within the square brackets in powers of 1/z and cal- 
culating each term of the series by means of the residue theorem we obtain a power 
series equivalent to the Bessel function J ,  (cf Lynch et al 1960). The final expression of 
the response function GA(t) is 

where 

t > O  t z = -. {b t < O '  70 
e(t) = 

As follows from (3.8), in the thin crystal for which the condition 4 < 1 is valid, the 
relation J1(2J(4z))/,/(&) is close to unity when 0 < t 5 zo, and the time dependence 
of the delayed radiation is equivalent to the decay of the isomeric state with lifetime 7,. 

In the case of the thick crystal when the condition cz % 1 is met we have 
1 51/4 

Jrc 2 , ~ ~ ' ~  
GA(t) z exp(icp - io,t - z/2)- - cos(2,/(5z) - zrc). (3.9) 

The increase of the response amplitude with increasing crystal thickness is connected 
with the role of the frequency wings of the resonance in the thick crystal case. This is also 
the cause of the decrease in the effective delay time. Note that it is assumed implicitly 
that the interval A 6  is large enough so that 

s' < A&,. (3.10) 

(Here it is reasonable to note that the expression 6 ( t  = 0) appearing in calculating the 
intensity should be understood as d6/2n.) 

On the contrary, the total number of quanta accounted for by the energy range -r 
decreases because of a strong absorption. 
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3.2. Bragg reflection 

Let us consider a magnetically ordered single crystal with a structure permitting the 
purely nuclear Bragg reflection (the electron scattering amplitude is equal to zero). 
Assume again that HFS of the resonance line is well resolved and the scattering in each 
individual transition can be considered independently (see Introduction). 

Suppose the radiation is incident on the crystal at an angle close to such a reflection. 
Generally speaking the field arising inside the crystal has a complicated structure which 
is a superposition of four waves (Kagan and Afanas’ev 1973). In most cases, however, 
this superposition is divided into two independent subsystems for two-wave polarisa- 
tion (for more details see Kagan and Afanas’ev 1973). Then the reflection amplitude 
corresponding to the individual HFS component and definite polarisation can be repre- 
sented as follows: 

(3.1 1 )  

E ( 1 , 2 )  = I 2 
0 ,{a + 900 - 911 * [ ( E  - 900  - 911) - 490,g,,11’2~> (3.12) 

z21 = K(Eh2’ - @)/yo. 

Here goo and g l l  have the same form as (3.2). In the second case go is replaced by g1 
which is determined by (3.3) with K -+ icl, where icl = K + K is the wavevector of the 
reflected radiation, 

(3.13) 

and the value of J is complex in the general case. 
In the case of the thick crystal when the condition Im zZ1I 9 1 is satisfied, expression 

(3.1 1) is simplified. Making use of the explicit expressions for eo and g a p  we have after 
simple transformations : 

B g v  1 
R,(a)) = --- 

g T o  0 - zo + [(a) - z0l2 - (rl/T0)21”2 
(3.14) 

where 

(3.1 5) 

Note that p ,< 1 with p = 1 corresponding to the condition of the complete suppression 
effect. 

Substitute (3.14) into (2.4) and again close the integration contour with a semicircle 
of infinite radius in the lower half-plane, with the integral along the semicircle being 
equal to zero (contour CO). Transforming the expression (3.14) to the form with the 
square root in the numerator we have 

(3.16) 

where z1,2 = zo T q/eo (the integral along the closed contour of the expression con- 
taining no square root is equal to zero). The analytical continuation of the integrand 
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suggests the existence of a cut along the segment [zl, zz], so that we can reduce the inte- 
gration contour to that in figure 1. The integrals over small circles around zl, and z2  
make zero contribution while the integrand in (3.16) on both sides of the cut has the 
opposite sign. As a result the integral in (3.16) is reduced to the tabulated one (see, for 

Figure 1. The contour in a complex plane w along which the integral i n  the formula (3.16) 
is carried. 

example, Gradshtein and Ryzhik 1971) and we have finally 

dx 
GE(t) = i 9 1 e-izot 1; - J(l - x2) exp( - ixyz) 

4 7 0  1 7 1  

(3.17) 

Here J ,  is again the Bessel function and z is the dimensionless time defined in (3.8). 

4. Time dependence of the Bragg reflection intensity 

4.1. Fixed incident beam 

The expression for GB(t) obtained in the previous section allows us to determine the time 
evolution of the radiation delayed in the Bragg reflection. Considering the time t long 
compared with T we can use the expression (2.9). Then, according to (3.17), we have: 

Here and below v] = v]’ + iv]” and similarly for other complex values. 

which satisfy the conditions 
I t  is seen from this expression that two new characteristic times appear in the problem, 

lYll71 = 1, V”?, = 1. 

Taking into account (3.15) we have 

where 

(4.2) 

(4.3) 
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Usually the relation y o  < 1 is valid for the crystal enriched in a resonance isotope. In 
this case at finitey the values oft ,  and t, (> tl) are found to be very different except for a 
very narrow angle range IyI 5 2y. 

For t < t ,  the time dependence of the intensity of the delayed radiation in reflection 
remains close to the ordinary exponential law with the lifetime of the excited nucleus. 
However, when t > t ,  the time dependence changes drastically and we have the following 
expression for intensity within the range t, > t > t ,  

(4.4) 

The principal change in the decay law is connected with the collective nature of absorption 
of each photon by the system of resonance nuclei in the reflector, with the nuclear exciton 
formed in the intermediate state. Such a collective excited state, as has been noted in the 
analysis of the nature of the suppression effect of nuclear reaction in the crystal, should 
decay through the elastic channel, i.e. with y-quantum emission, essentially faster than 
in the case of the isolated nucleus. In this sense the result (4.4) is very instructive. 

If lyl 5 1, i.e. it lies in the angle range which is the most characteristic of the Bragg 
reflection, then z2 9 zo and the time dependence (4.4) remains practically valid for all 
times t > t,. Absorption by electrons is of no importance since reflection goes efficiently 
on a small thickness of the crystal, determined by the characteristic length of the reson- 
ance scattering of y-quanta by nuclei. 

With decreasing lyl the value of t ,  is continuously decreasing. Due to this the major 
part of the reflected intensity corresponds to short times. It is seen from (4.4) that the 
scale of the corresponding characteristic time is determined by the same value t,. 
For yo 6 /y1 < 1 the time-integrated flux of reflected quanta is: 

The number of quanta in the incident radiation corresponding to the resonance range of 
the energy r is close to NJ(A&zo). Increase in Q," with decreasing lyl is due to the increas- 
ing role of the scattering in comparatively distant energy wings of the resonance. In this 
case the decrease in the scattering amplitude when deviating from the resonance is com- 
pensated to a considerable extent by an increase in the thickness of the crystal in which 
the effective reflection occurs. The increase in the relative contribution of reflection in the 
wings is accompanied by a decrease in the characteristic time of quanta delay in the 
scattering crystal for an essential part of the reflected intensity; this time becomes shorter 
as lyl is smaller. 

With decreasing Iy( ,  not only t,, but also t, decreases, and both parameters become 
closer to each other, When lyl < Jy,, the parameter t, < zo and knowledge of the time 
dependence for the reflected intensity for t > t, becomes of interest. In this time region 
the imaginary part q can not be neglected in the Bessel function argument in (4.1), and 
we obtain an asymptote other than (4.4) for the reflection intensity: 

Comparing (4.6) and (4.4) one can draw the conclusion that when p = I ,  i.e. in 
realisation of the complete suppression effect, both asymptotes are close and the picture 
given by (4.4) actually covers the whole time range t > t,. In the absence of the suppres- 
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sion effect, when p < 1, the reflected intensity decreases sharply for t > t,, which is due 
to an additional absorption by electrons in the crystal in the scattering. This circumstance 
appears to be very important when I yl tends to zero ( I  yl < yo). In this case z1 and z2  
are close and (4.6) becomes valid for all z > zl. 

Let us consider now the case of strict satisfaction of the Bragg condition y = 0. 
Then / ? I  = q" = l / yo  and the transition from (4.6) to the integrated intensity at p = 1 
gives (4.5) with y replaced by yo.  The major part ofthe intensity is now concentrated in a 
very narrow time interval 

7 6 Z l m i n  = yo = 2xy9 .  (4.7) 

If we make xi formally tend to zero, then the dependence of ZB on t becomes of 6- 
functional character. Indeed, at any finite t,(4.6) or (4.1) vanishes and when t = 0 (4.1) 
becomes CO. Thus, ifthe Bragg condition is accurately fulfilled and the electron absorption 
is neglected, the delay effect is completely lacking and instantaneous reflection of the 
incident pulse occurs. This is because the decrease in the amplitude of scattering by an 
individual nucleus deviating from the resonance for y = 0 is fully compensated by the 
increasing thickness of the layer where reflection occurs and, as a consequence, R(o) 
in the thick crystal does not depend on frequency (see (3.14)). This is found to occur both 
in the presence of the suppression effect ( R  = 1) and for p < 1 (R  < 1, cf. Kagan et al 
1968). 

Note that when y = x: = 0 divergence also occurs in the time-integrated intensity. 
This divergence, however, is of fictitious character and can be easily eliminated if one 
takes into account the finiteness of the frequency range A 5  of the incident radiation. 
At  the same time in accordance with the condition R = constant the whole spectrum of 
incident radiation is uniformly reflected. The resonance region is not chosen and prac- 
tically all radiation comes to the detector. 

Finally, when considering large IyI we have z 1  B 1 and for the entire region of 

4 
I 

0 1 
f /To 

2 

Figure 2.The time dependence of the intensity of the radiation Bragg-reflected from the thick 
crystal with the dependence on the deviation parameter y from the Bragg condition. The 
values of y are stated next to curves. 
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interest z < z1 we find from (4.I.), 

The time delay is of classical character since the collective effects play a minor role in 
excitation of the resonance level in this region. 

The described picture of change in the time dependence of the reflected intensity 
depending on the deflection angle y from the Bragg direction is readily seen in figure 2. 
A sharp reduction of the time delay occurs already for 1 y 1 < 0.3. For I y I 1,  at least 
for t < 2r0, the time dependence begins to follow the time dependence of decay of an 
isolated excited nucleus (broken curve). 

4.2. Divergent incident beam 

If, nevertheless, the specifically collimated synchrotron radiation has an angular diver- 
gence Act large compared with g (as it seems actually to be), then in the absence of an 
additional collimation we have to average (4.1) to obtain the actual time dependence of 
the reflection intensity. The same averaging also arises effectively in the case of a mosaic 
crystal if the crystallites are appropriately aligned only in the plane of the crystal specimen 
remaining perfect in thickness. 

We shall confine ourselves to considering times z > T ~ ~ ~ ~ ,  (see (4.7)). Then we can 
neglect the imaginary part in integration of (4.1) over a. As a result we find 

Here 

(4.9) 

(4.10) 

is the number of incident quanta corresponding to the resonance energy range x, = 
2z/Ay. If Ay B 1,  then the second term within the round brackets may be neglected. 

It follows from (4.9) that in the case of a wide beam the effective time of delay in the 
reflector is also appreciably reduced compared with the lifetime of the excited nuclear 
state. A very peculiar law of decay was found, with increase in the intensity at small z 
as 1/r. Acceleration of the decay is again due to the collective effects in excitation of the 
resonance level by quanta incident within the angle range I y 1 < 1. The radiation incident 
at angles I y 1 > I. is reflected very weakly. The effect of the resonance wings is here essen- 
tially weakened since the range of angles of the effective reflection is narrowed when 
deviating from the resonance. However, the logarithmic rise of the time-integrated 
intensity still remains as t decreases (but t > t ,  mir,) which is a consequence of the law 

/R(0)I2 - 1/10 - W O / ,  10 - W O /  % 1/22, 

found in Kagan et a1 (1968) for the case of the Bragg reflection of the wide beam. 
The appearance of the factor ] / A y  in (4.9), which actually can decrease the intensity 

of the delayed radiation very sharply, is also indicative of non-effectiveness in the 
reflection of angles lyJ > 1. 
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5. Spectral properties of the Bragg-reflected radiation 

Now we proceed to the analysis of the spectral properties of the delayed pulse accom- 
panying the Bragg resonance reflection by the nuclei in the crystal. As follows from the 
results discussed in the previous section, the collective nature of excitation of the system 
of nuclei in the reflector makes the intermediate state decay more rapidly and decreases 
the delay time, which should result in widening of the frequency distribution compared 
with the case of decay of the isolated excited nuclei. Using this radiation in experiments 
ofthe Mossbauer type we are faced with an extremely serious problem ofloss ofresolution. 
Therefore the question of the type of spectral distribution, the possibility of its formation 
and attainment of resolution of the scale of the excited level width of the individual 
nucleus is of great importance for the whole problem considered. 

To analyse the problem let us consider directly the case when the synchrotron radia- 
tion pulse subjected to the Bragg nuclear reflection by the first crystal then passes through 
the crystal absorber containing the same nuclei but with a shift of Amo in the resonance 
frequency. The time dependence of the intensity of the radiation passed through the 
absorber will be determined by (2.4) and (2.9) with the function R which is the product of 
(3.1) and (3.1 1 ) :  

(5.1) 

Here and below we count o off the resonance frequency value of the reflector. (The 
formula (5.1) suggests that all coherently scattered radiation passes through the 
absorber.) 

Proceeding from the reflection amplitudes to the response functions we have 

G,AB(t, Am,) dt’ G;,o(t - t’)Gf(t’). (5.2) 

Let us consider for simplicity the case of a thin absorber and an infinitely thick reflector. 
Then, using (3.8) within the limit (7, 6 1 and (3.1 8) we have from (5.2) 

4 
GtB(t) = [Gt( t )  - 5&,(t)]eip (5.3) 

where 
i i j  

7 0  g 
&,(t) = exp( - iAoot) - - exp( - 2/2) exp[i(Awozo + v]/p)z‘] (5.4) 

Consider the case of a small deviation from the Bragg condition but when the electron 
absorption can be still neglected yo 4 I y 1 < 1. Then the integral in (5.4) can be reduced to 

where 

P = t-1 + Ao,zoYPI/P, z = z/y. ( 5 . 5 )  

In the analysis of the times t comparable with zo the parameter z B 1 and replacing the 
upper limit of integration by 00 we find (Gradshtein and Ryzhik 1971): 

exp( - 2/2) exp( - iAoot). 
8 1  1 

&,(t) = - -- 
9 e o P  + J(BZ - 1) 
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It should be noted that the problem for the case of an absorber of arbitrary thickness is 
also solved directly within this y limit. Then 

It follows from (5.5) and (5.6) that within a comparably wide range 

/Ao,zI  < 1/1YPI (5.7) 

and dependence on 4w, appears to be very weak, i.e. the resonance structure is actually 
lacking in the reflected pulse. In addition 4, depends very weakly on y and for y --f 0 
remains finite. 

If we compare this result with the behaviour of G:(t) in (3.1.7) then we can easily sue 
that when 

(5 .8)  

(5.9) 

z = t/z, 9 y 113 

the relationship take place: 

I4&)l 9 1 G:(t) 1 .  
Thus, at  the times considered and for < - 1 the intensity is really connected only with the 
radiation delayed in the absorber; that is very important for many possible experi- 
ments (see 5 6 ) .  It  should be pointed out that an anomalous increase in the reflection 
intensity, including the integrated one (see (4.5)) at small y does not practically affect 
the scale &,, i.e. the major part of the radiation passes through the absorber almost 
without interaction. 

When lyl 9 1. 

Substituting (5.10) into (5.3) and proceeding to the intensity we find 

ZtB(t) z I:(t) - CAZ,(t), 

(5.10) 

(5.1 1 )  

(5.12) 

It follows from (5.5) and (5.12) that in this case with t comparable to zo, the absorber 
distinctly shows the resonance structure of the reflected radiation, which become con- 
tinuously worse with decreasing t. However AZ, is small, proportional to 1/y2 Cjust as 
I,-see (4.8)). 

In the case when the divergence of the incident beam is sufficiently large or the 
crystal is noticeably mosaic, the expression (5.1 1) must be averaged over the angle range 
4 y ~  1 near the Bragg value y = 0 (cf. the previous section). We shall again neglect the 
imaginary part of xo in (3.15) and pass to the new variable x = z /y  in the integral over y. 
The integral of the first term in (5.1 1) is given by the formula (4.9) so that only the second 
term must be integrated. Rearranging the integrals over z’ and x and proceeding to the 
new variable U = 1 - t’/z in the integral over z’ we have 

(5.13) 
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where we introduced a new variable z = A w , ~ ,  while 

(5.14) 

Using the integral representation of the Bessel function (cf. (3.1 8)) 

we may transform (5.14) for ~ ( u )  to a form more suitable for calculations: the expression 

(5.15) 

where 

$(U, x )  = u / p  + (1 - u)x 

and e(t) is the step function (see (3.8)). Note that the function ~ ( u )  is different from zero 
only for U < uo = 2p/(l + p )  6 1 due to the existence of the theta function in (5.1 5 ) .  

The spectral structure of radiation is defined in the general case by two parameters 
z = Awoz0 and z = t/z,. As follows from (5.13), at small z, the dependence on Am,, 
practically vanishes, i.e. at the times which correspond to the maximum intensity the 
resonance structure in the reflected radiation is weakly manifested. However it manifests 
itself distinctly with increasing z. This is readily seen in figure 3 where the relative intensity 

Figure 3. Relative intensity ofradiation 'iB which is transmitted after reflection through the 
thin abaorber wi th  the resonance frequency displaced by Au0 in various time moments f 
after the pulse transmission. The values of tiro are stated next to curves. The angular diver- 
gence of radiation Ay + 1, p = 1. 

_ -  
of absorbed radiation A l / l B  is given as a function of z for various values of z. As can be 
seen from this picture, the spectral distribution for z < 0.25 still remains very wide, but 
for z 0.5 the spectral line appears to be sufficiently narrowed, oscillating noticeably, 
however, in the tails. 

The results obtained allow us to draw the conclusion that the reflected intensity, 
integrated over time excluding the finite interval [0, t l ]  just after the pulse of synchro- 
tron radiation, must be used as the source of the resonance radiation. Considering again 
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the same system-a thick reflector and thin absorber-we readily find: 

(5.16) 

where z1 = t l / z 0  and Ei(x) is the integral exponential function. Figure 4 shows the 
dependences of AQ/Q” on z = Ao,r,  for various values of z1 and p = 1. It is seen that 
the weak frequency dependence of the intensity integral over time at small z1 is replaced 
by a striking resonance structure with increasing zl. Naturally with an increase in zl, 

Figure 4. Integral over time of the relative intensity a / p  with the exception of the finite 
time interval [0, r , ]  for the system of a reflector and a thin absorber with the resonance fre- 
quency displaced by Amo. The values of t l / ~ O  are stated next to curves. The angular divergence 
of radiation Ay $ 1, p = 1.  

the integral reflected intensity decreases. However, when z1 = 0.5, for example, the 
function -Ei(-zl) x 0.56, and moreover, as follows from (5.16), the total number 
of reflected quanta exceeds the number of quanta in the synchrotron pulse corres- 
ponding to the resonance energy interval (with allowance for y )  for this value of 7. 

Actually, the decrease in the intensity with increasing z1 is due, first of all, to ‘illegal’ 
quanta reflected in comparatively far resonance wings and is, therefore, inefficient for the 
resonance experiments. 

In figure 5 the same curves are given but for p = 0.7. It is seen that violation of the 
suppression effect in the reflector ( p  < 1) results in a sharp widening of the frequency 
distribution of reflected quanta. With further decrease in p the resonance structure is 
widened still more. Thus, it is evident that the optimum effect occurs close to the condi- 
tion of full realisation of the suppression effect. 

Comparison of figure 3 with figures 4 and 5 shows that intensity oscillations in the 
frequency tails, observed in the first case, are significantly averaged and noticeably 
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Figure 5.The same curves as in the figure 4 but for the case of incomplete suppression effect 
in the reilector, p = 0.7. 

suppressed, which, of course, improves the spectral properties. The fact of appearance 
of the frequency and time regions, where the intensity of radiation having passed through 
the absorber exceeds the incident one, results from the change of the spectral character- 
istics of the reflected radiation when passing through the absorber and is actually of the 
same nature as the known result described in Lynch et a1 (1960). Note that with increase 
in the thickness of the crystal-absorber the amplitude of the oscillations increase. More- 
over there arise oscillations with the change of the thickness l .  Use of the intensity 
integral over time, excluding the noticeable initial time interval CO, t l ] ,  become still 
more important for formation of the spectral structure. 

Since we use the ‘thin absorber’ approximation in this section, it is necessary to make 
a note. The real parameter of expansion in (5.3) and (5.4) is 47 and not 5:. Therefore, with 
increase in z the thickness range narrows in principle, when the absorber can be con- 
sidered as thin. However, the existence of the exponential factor makes large values of z 
inefficient and the condition 5: < 1 remains actually sufficient. 

6. Possibility of detection of the nuclear exciton 

As has beennoted, the unusual character of the time dependence of the quanta delayed 
in the Bragg reflection from the crystal is accounted for by the character of decay of the 
collective nuclear excitation arising in the crystal (see $4). In this sense, finding the 
time dependence (4.6) or (4.9) would be indirect evidence of formation of such a state. 

At the present time the possibility of direct detection of such a nuclear exciton in the 
Mossbauer-type experiments with breaking of the initial beam coming from the source 
is being intensively discussed. The use of synchrotron radiation opens up, in principle, 
interesting possibilities for the realisation of such an experiment. 

Indeed, considering the two-crystal geometry described in the previous section and 
selecting a small angle range ly( << 1 near the Bragg value y = 0, we have the relation- 
ship (5.9) for the delay times (5.8). At times one can experimentally verify that the in- 
tensity of the pulse reflected by the first crystal is small compared with that due to decay 
in the second crystal, but this is just the condition (which is equivalent to breaking off 
the radiation) that is required for experiments which permit the behaviour of excited 
states to be observed. 
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Now measurement of the angular dependence of the gamma quanta emitted with 
the delay time (5.8) should show a sharp angular asymmetry when scattered forward as 
well as by the Bragg angle (when the crystal is appropriately oriented) if in absorption of 
the gamma quanta nuclear excitons are formed in the crystal (Afanas’ev and Kagan 
1965b), or, otherwise, the uniform angular distribution. 

In the time range where (5.9) is valid 

Note, first of all, that the delayed intensity (6.1) is found to be proportional to the square 
of the absorber thickness 1’ (see (3.7)). This is a typically coherent effect which is due to 
the collective nature of the nuclear excitation in the crystal. The most interesting 
circumstance is that at any small ratio of the elastic width of the resonance level, rl, to 
the inelastic conversion width r2 (in (3.7) go - T,/(T, + r2)) condition ( - 1 can be 
always reached by increasing I ((6.1) is valid only at < 6 l ) ,  the gamma decay inrensity 
will be proportional to the total width r and not to rl, with the probability of the con- 
version decay remaining standard. Measuring (6.1) and the yield of the conversion 
electrons, one can find that the ratio of probabilities of gamma decay and conversion 
decay becomes comparable though rl  < r2. This effect, depending just on the character 
of the nuclear exciton decay, was predicted in Afanas’ev and Kagan (1965b) and Kagan 
and Afanas’ev (1 966). 

Thus, combination of the pulse nature of the synchrotron radiation with the time 
behaviour of the pulse delayed in the Bragg reflection permits us to solve, in principle, 
the problem of ‘shutter’ and investigate the appearance of the nuclear excitons in the 
crystal. The difficulty of this experiment is that a very high collimation and a sufficiently 
perfect reflecting crystal are required. 

7. Conclusions 

The results obtained in the previous sections answer actually all the questions stated in 
the Introduction and enable us to make some remarks about the experimental aspects 
of the problem. 

Measurement of the anomalous time dependence for the delayed Bragg-reflected 
pulse, i.e. the law ( t / ~ , ) - ~  exp(-t/z,) in small deviation from the Bragg angle or 
(r,’zo) exp( - t / zo )  in the case of a wide incident beam or mosaic crystal in the specimen 
plane (see 0 4), seems to be most effective for the detection of the direct excitation of the 
isomeric nuclear states. 

Also important is the circumstance that the delayed flash-light contains, due to the 
effect of the frequency wings, an essentially larger number of quanta than that corres- 
ponding to the resonance energy range NI,, (or N,,JAy in the case of a wide beam, see 
(4.10)). These ‘excess’ quanta can not be used if, as in the case of the Mossbauer experi- 
ments, a distinctly manifested resonance structure in the spectrum incident to the 
specimen is required: on the contrary, they must be suppressed. 

Formation of the effective resonance structure, with the number of the quanta 
corresponding to the resonance range saved, may be achieved, as it seems, in two ways. 
One way is time ‘mask’ excluding the noticeable time range and measurement of the 
intensity, integrated over the remaining part of the time, after transmission through the 
reflector-specimen system. As is seen from the results given in 5 5, a significant part of 
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the quanta from N,,, and N,,,/Ay can be used. The other way is to reduce the thickness 
of the crystal intended for the Bragg reflection. This problem will be treated elsewhere. 

Finally, it should be noted that the direct excitation of nuclei by the pulse synchrotron 
radiation enables to realise experiments on the detection and study of collective nuclear 
excitations in the crystal-nuclear excitons. To the results given in the previous section 
we would add that for the first time the possibility opens for studying the anomalous 
time delay of the gamma-quanta transmitted through the crystal under conditions 
close to realisation of the suppression effect. 
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