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A method of analysis of curves for diffraction reflection from crystals with a disturbed surface 
layer is developed. It allows to determine, directly from experimental data, the integral character- 
istics of the disturbed layer, such as the thickness of the disturbed layer, L,ff, mean change in the 
interplanar spacings along the layer and so on. This method is illustrated by an example of 
analysis of curves of reflection from diffuse layers of silicon for different orders of reflection. 

Eine Analysenmethode fur Beugungsreflexion von Kristallen mit einer gestorten OberflL- 
chenschicht wird entwickelt. Sie erlaubt eine direkte Bestimmung der integralen Charakteristiken der 
gestorten Schicht, wie Dicke der gestorten Schicht Lee, mittlere Anderung der Abstiinde zwischen 
den Ebenen auf der Schicht a usw., direkt aus den experimentellen Daten. Diese Methode wird 
mit einem Beispiel von Reflexionskurven von diffusen Siliziumschichten fur verschiedene Refle- 
xionsordnungen illustriert. 

1. Introduction 
In  the last few years much attention has been paid to the problem of disturbances 

of the surface structure caused by diffusion, ionic implantation, and so on. The X-ray 
diffraction method possesses many advantages over the existing methods for studying 
the structure of a disturbed layer owing to its high sensitivity to small changes of 
the degree of perfection in a crystal. For the perfect crystal the diffraction reflection 
index has a sharp peak depending on the angle of X-ray incidence on the crystal. 
Here, the width of the Bragg reflecting maximum is of the order of several seconds; 
consequently, the relative changes in the interatomic distances in the near-surface 
layer by to should manifest themselves explicitly in the shape of the reflec- 
tion curve. 

The development of experimental technique makes it possible to measure the 
change in reflection intensities with an accuracy of a few tenths of per cent of the 
reflection intensity for a perfect crystal. 

In  addition, the use of the three-crystal technique [l, 21 provides a high angular 
resolution. However, despite the high sensitivity, the curves measured experimentally 
do not yield direct information on the structure of a disturbed layer. As a consequence, 
there arises the problem of developing theoretical methods that would allow one to 
reproduce, from experimental data, the characteristic features of the real structure 
of a surface layer. 

The present work is devoted to the solution of this problem. Por disturbed layers 
of thickness L < Lo (Lo is the extinction length) from our point of view a method 
analogous to the Patterson method in structure analysis is very effective, which 
allows to obtain directly from experimental curves (from their Fourier transform, 
to be more precise) the whole set of integral parameters of a disturbed layer, such 
as the effective thickness of the disturbed layer, J J e ~ ,  the mean change in the crystal 
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lattice parameters, AT, and so on. The detailed description of this method is given 
in Section 2. The results of experimental studies of diffuse layers illustrating the  
possibilities of the proposed method are presented in Section 3. 

2. Theoretical Analysis 
Let us consider a crystal of the shape of a plane-parallel plate with a disturbed 

surface layer of thickness L. The local distortions in the disturbed layer will be 
described by two parameters: the mean displacement of the atomic planes from their 
positions in the undisturbed layer, u ( z ) ,  as well as the parameter W(z)  reflecting the 
statical random displacements of atoms from their positions in the plane. For example, 
for a completely amorphous layer, exp (- W(z) )  = 0. I n  the present work we make 
the assumption that the mean atomic displacement u(z) depends only on one co- 
ordinate z, i.e. on the distance of the atoms from the entrance facet of the crystal, 
where x = 0 (Fig. 1). 

Let the crystal be oriented in such a way that there arises Bragg-type X-ray 
diffraction, i.e. that the diffraoted wave emerges from the entrance facet of the 
crystal. Let us introduce the reflection amplitude B(0) equal to  the ratio of the 
amplitudes of diffracted and incident waves. The experimentally measured value, 
i.e. the reflection intensity PR(0) ,  equals the square modulus of a(@. Let us assume 
that L < Lo. I n  the linear approximation with respect to the small parameter LIL, 
the reflection amplitude is defined by the following expression : 

m e )  = . w e )  + m o )  - RW) m e )  (2.1) 
where Ro(f3) is the amplitude of the X-ray reflection by a thick perfect crystal (reflec- 
tion from a substrate) and q ( 0 )  the amplitude of the reflection by the disturbed 
layer. The third term in (2.1) reflects the process of diffraction scattering in the 
following succession: The incident wave passes through the disturbed layer and is 
reflected from the perfect crystal ; then this reflected wave is scattered by the disturbed 
layer, and is reflected again by the perfect substrate. This process is schematically 
represented in Fig. 1. I n  the angular range far from the centre of the Darwin curve, 
the third term is small as compared with the second one, but within the range of 
total reflection the second and third terms have the same order of magnitude. 

The amplitude of reflection by the perfect crystal is determined by the known 
expression (see, for example, [3]) 

where 

2 7 3  

Fig. 1. Schematic representation of diffraction in the perfect 
layer-crystal structure 
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Here xo and x h  are the Fourier components of polarizability a t  scattering angles 0 
and 265, 8 ,  is the Bragg angle, 8, the angle corresponding to  the middle of the reflec- 
tion maximum, 1 the X-ray wavelength, yo and yh are the cosines of the angles between 
the wave vectors of the incident and diffracted waves and the intrinsic normal to the 
entrance facet of the crystal, c = 0.485 x rad/s is the conversion factor; all 
the angles are measured in seconds. We shall rest,rict the discussion to crystals with 
a centre of symmetry, where xs; = xh, in order not to make the analysis more compli- 
cated. We shall also disregard absorption and shall consider the incident radiation 
normally polarized. In  the case 1aJ > a. from (2.2) we have a simple formula: 

U 
(2.5) B0(a) = - -. 

a0 

For the amplitude of the reflect,ion by the disturbed layer the following expression 
can be obtained: 

L 
. n  

El(&) = - - dz exp {- W(z)  + ia(L - Z )  - iu(z)} , 
LO "J 

0 

where u(z) = hu(z) (h is the reciprocal lattice vector). Later on, we shall take interest 
in such physical situations in which the presence of the disturbed layer is responsible 
for t,he appearance of a marked intensity in the angular range la1 > a0. I n  this case, 
the third term in formula (2.1) can be neglected, and formula (2.5) can be used for 
Ro(a). As a result, we have 
PR(a) =z IB(a)I2 = lAl(a)12 + Re (&(a) E$(a)) + IAO(a)12  = 

L L  

= 1 s dz s dz' exp { - W(z)  - W(z')  - ia(z - z ' )  - iu(z) + it@')] - 
L: 

0 0 

The reflection amplitude Rl(a) of the disturbed layer contains information on the 
distortion character. I n  fact, the knowledge of &(a) would allow to obtain by means 
of a simple Fourier transformation the explicit values of both parameters: u ( z )  and 
W(z) .  However, the values measured experimentally contain the square modulus 
of the scattering amplitude; in other words, in this case we are in face with a problem 
of reconstructing the structure in the classical X-ray analysis [4]. The above-mentioned 
analogy points to one of the possible ways of solving the present problem, namely, 
to  the Patterson function method [5]. 

Let us consider the Fourier transform of the function PR(u), 

I(%) =- da e-iax PR(a) = Il(z) + I&) + & ( x )  . 

27 physica (a) 4112 
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Here we have separated out three terms in accordance with the structure of formula 
(2.7). The first term Il(x) can be easily calculated. Actually, the integral over a is 
equal to 2n@ + x - 2’). Calculating the integral over z’, we obtain 

(2.9) 
L - x  

0 
I,(x) = J dx exp [- W ( z  + x) - W(z)  + iu(z + x) - i u ( z ) ]  . 

Here we made use of the relationship .,,Lo = 1 in accordance with (2.4). The cal- 
culation of 12(x) is carried out using the tabulated integrals 

m m 

sin ba 
da ~ = x sign (a) . s a  (2.10) 

As a result we obtain 

One can easily see that the second term in (2.11) is simply an extension of the integral 
in (2.9) to  the integration range L - x < z < L. Actually, in this region the argument 
in u(z + x) and W(z + x) becomes larger than L and, consequently, they are equal 
to zero according to  the determination of the value L as the thickness of the disturbed 
layer. I 

As is seen from these expressions, the sum of two terms, I(x) = I,(z) + Iz(x), a t  
a given value x gives information about the correlation of the displacements of the 
atomic planes in the disturbed layer a t  a distance x. I n  this case, the value of the 
function f ( x )  and its derivatives at the point x = 0 is connected directly with the 
integral characteristics of the disturbed layer. It should be noted, however, that to  
solve the reverse problem we can construct, on the basis of experimental data, only 
the function I(x), and not j(x). I n  reality, we have the experimental values of the 
reflection intensity in a limited angular range. The upper limit is defined by the 
maximum resolution. On the other hand, when constructing the function Ie*p(x) we 
have to  exclude the range of small angles for which la( < ul, where al is a value 
partitioning the central maximum of the curve. Neglecting the range of large angles 
leads to  a specific problem which will be considered later. The error involved in ruling 
out small angles depends on the concrete circumstances and in each case requires 
a special analysis. It should also be reminded that the calculation of 13(x)  makes it 
simple to take into account the lower limit of a, in its explicit form. Thus, 

00 

C O S ~ , X  x J’ si;t 1 x  
na1 x dt = - - - -+fxz 7ta1 2 2n + 0 ( ~ 4 ) .  (2.12) I&) =;: -__-_ __ 

a1x 

Let us denote the real part of the function I(x) by I,, and the imaginary part by 
I,. As it follows from (3.8) to (2.12), the values of Ic  and I s  as well as their derivatives 
a t  the point x = 0 are determined by the following relations: 

I,(O) - __ = dz (e-2w(z) - e-Wtz) cos ~ ( z ) )  = L,ff ,  (2.23) 
na1 l S  0 

(2.14) 
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(2.15) 

Formulae (2.13) to (2.16) allow us to get some useful information on the structure of 
the disturbed layer. Equation (2.13) defines directly the effeotive thickness of the 
disturbed layer. It is of interest to note that the structure of the formula enables us to 
shift the upper limit automatically to infinity; since u(z) = W(z)  = 0 at z > L, this 
region gives no contribution. One should bear in mind, however, that the slightly 
disturbed layers as well as the layers with a large degree of amorphization (when 
e-w(z) is close to zero) are represented with small weight. 

Formula (2.14) gives information about the mean value of change in the crystal 
lattice parameter in the disturbed layer, since 

(2.17) 

where a, and a(z)  are the distances between the reflecting planes in substrate and 
layer in z-direction. 

Similarly, formula (2.15) contains data on the mean square of the value (2.17), 
whereas t,he right,-hand part of (2.16) is essentially equal to the cube of this value. 
Let us note that when calculating the derivatives, we disregarded the derivatives of 
W(z)  compared to those of u(z), since they are, as a rule, two or three orders of magni- 
tude smaller. 

It is also easyto calculateoddderivativesof1,andeven onesof I,,e.g.,(al,(x)/ax),=o= 
=- i .  These derivatives, however, me of less practical importance. One has to raise 
appreciably the accuracy of the experiment in order to det,ermine them reliably. 

3. Concrete Examples 
In this section we shall consider some examples as illustrations to the method 

developed in the previous section. 
We shall analyze the results of X-ray diffraction studies of diffused silicon layers 

on the basis of the above described method. Experimental curves are given in Fig. 2a 
and 3a. 

The measurements were carried out on the three-crystal spectrometer [ S ,  71 in 
the (3, -nJ +n) position of symmetrical Bragg diffraction with CuK, radiation. 
The (111) surfaces of silicon plates, about 200 pm thick, were used. After mechanical 
grinding and polishing the disturbed layer was removed by chemical etching. Diffusion 
was carried out in the prediffusion stage at  1200 "C for 120 h. The concentration of 
the doping element was zz lozo atoms/cms. 

The diffract,ion reflection curves display, in addition to a smooth peak, additional 
maxima caused by diffraction of X-rays by the diffusion layer and by their inter- 
ference with the rays diffracted on the substrate (Fig. 1). The Fourier transforms of 
the curves in Fig. 2a and 3a calculated within the limits al la] az, where u1 = 
= 6.05a0, a2 = 6 0 . 5 ~ ~ ~  for the (111) reflection and a1 = 32a0, az = 672u0 for the 
(333) reflection, are shown in Fig. 2b and 3b, respectively. The data of Fig. 2b and 3b 
may he used for an estimation of the lattice parameter distortion of the layer, in 
accordance with formulae (2.13) to (2.15). 
27' 
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aho - 
Fig. 2. a) Measured reflection intensity P ,  as a function of a/%. b) Calculated Fourier transform, 

Is and I,, as a function of ./Lo for the (111) reflection of a silicon layer 

I n  this case, it is convenient to  use t,he first Kewton interpolation formulae (see, 

The n-th order derivative of a function f ( x ) ,  defined by the t,able of values f i  at 
for example, [S]) for calculating the derivatives a t  the point 2 = 0. 

equidistant points xi with a step h, can be determined from the formula 

where Vmfo is the partitioned difference rn calculated from the recurrence formulae 
Ofn f n + l -  f n  7 Vmf'fn = Vmf%+l - O"fn * (3.2) 

The coefficients C,, are given in Table 1. When using formula (3.1), we choose the 
step h not too small to enable a t  least the first few partitioned differences to  differ 
from zero by a value exceeding the absolute error in the calulations. At the same time, 
the step h should not be too large in order to allow sufficiently rapid convergence of 
the series (3.1). The errors in calculations lead to  the fact that the values Omfo a t  
first decrease with increasing m, and then increase again. Therefore, the series (3.1) 
should be cut off a t  the minimum-value term analogous to what is done in the theory 
of asymptotic series. It is clear that the smaller the minimum term is, the more accu- 
rate is the value for a derivative. The value of the minimurn term depends on the 
choice of the step h. 

b 

ah, -+ 

Fig. 3. a) Measured reflection intensity PR as a function of &/ao. b) Calculated Fourier transform, 
I ,  and I,, as a function of ./Lo for the (333) reflection of a silicon layer 
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1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

C1, 

1 .oooo 
-0.5000 

0.3333 
-0.2500 

0.2000 
-0.1667 

0.1429 
-0.1250 

0.1111 
-0.1000 

0.0909 
-0.0833 

0.0769 

0.0667 
-0.0714 

i 
I 

c29n 

0.0000 
1.0000 

- 1.0000 
0.9167 

-0.8333 
0.7611 

-0.7000 
0.6482 

-0.6040 
0.5658 

0.5033 

0.4543 

-0.5325 

-0.4774 

-0.4335 

CSWk 

0.0000 
0.0000 
1.0000 

- 1.5000 
1.7500 

1.9333 

1.9531 

1.9170 

1.8611 

1.7993 

- 1.8750 

- 1.9542 

- 1.9390 

-1.8904 

-1.8305 

o.oo00 
0.0000 
0.0000 
1 .oooo 

-2.0000 
2.8333 

-3.5000 
4.0292 

4.7862 

5.2739 
-5.4498 

5.5923 
-5.7076 

-4.4500 

-5.0562 

The derivatives calculated from the data of Rig. 2b and 3b with the steps h = 
= 3 x lO+L, and h = 4 x 10-4L0 are given in Table 2. In  the calculations it was 
assumed that Lo = 1.54 pm for the (111) reflection and Lo = 8.3 pm for the (333) 
reflection. 

It must be noted that in the case of diffusion layers, while passing from the (111) 
reflection to the (333) reflection, the values of the derivatives, with subtraction of 
3n arising on account of vector differences in the reciprocal lattices, do not differ 
very much. 

However, the values of the thickness of the disturbed layer, Leg, are found to 
change; on passing to the (333) reflection L,ff increases. This is accountedfor by the 
fact that the (333) curves are more sensitive to weak distortions in a crystal than the 
(111) ones. 

Table 2 
Integral parameters characterizing the distortions in a diffused 

layer (Fourier analysis) 

parameters 1 (111) 1 (333) 
reflection reflection 

*) It should be noted that 
- - - 

Aa Aa 2 s, % (--) L , c, = (--) L , s3 = ($)” L . 
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a c r I  4.5 

' -200 0 ZOO 400 600 
aho - 

Fig. 4. (333) reflection of a silicon crystal irradiated by a) 
boron ions and b) phosphorus ions O -700 0 100 

a/a, - 
We havc also observed diffraction curves with oscillations analogous to  the curves 

of Fig. 2a  and 3a in the case of diffraction by a crystal in which the disturbed surface 
layer is formed by ion implantation of boron or phosphorus [9]. 

Fig. 4a  shows the curve of the (333) reflection of a silicon crystal irradiated by 
boron ions with an ion energy of 125 keV and a dose of 6 x lo1§ ions/cm2. 

Fig. 4 b  shows the curve of the (333) reflection of asicrystal pre-irradiated by phos- 
phorus ions with the energy of 40 keV and a dose of 6 x 1015 ions/cm2. After implan- 
tation, the crystal was annealed a t  high temperature (1075 "C) in an oxygen atmos- 
phere for 50 min to produce a diffusion layer of N 4 pm thickness. The curves of 
Fig. 4a, b were measured using a three-crystal spectrometer under the same conditions 
as demonstrabed by the curves in Fig. 2a and 3a. 
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