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The dispersion equation for the four-wave case of X-ray diffraction is obtained in a compact form. 
The intermediate region between two-wave and arbitrary many-wave cases of diffraction is examined. 

1. Introduction 

In a recent paper by the present authors (Afanas'ev & 
Kohn, 1975) a simple method was suggested for the 
derivation of the dispersion equation in the three-wave 
case of X-ray diffraction. The method uses the obvious 
fact that the coefficients of the dispersion equation do 
not depend on the choice of the polarization vectors, 
but only on the angles between the wave vectors of 
incident and diffracting waves. In the present paper the 
dispersion equation for four-wave diffraction is 
derived in a compact form. Only a small modification 
of the method is necessary. The corresponding deriva- 
tion is given in §2. 

In § 3 the intermediate region between two-wave and 
many-wave diffraction is examined, when all diffracting 
waves except one can be considered by perturbation 
theory. The dispersion equation is obtained in the 
form of a power series in the deviation from the Bragg 
conditions. The first terms of this series are determined 
by the dispersion determinants of the three-wave and 
four-wave cases. The possibility of the enhancement of 
the two-wave Borrmann effect in the simultaneous case 
is examined also. 

2. Dispersion equation for four-wave diffraction 

Let a monochromatic plane wave with the wave vector 
K fall on a crystal having the form of a plate. The 
orientation of the crystal is such that three systems of 
planes (with vectors K1, K2 and K3, 2z~ times the 
reciprocal-lattice vectors) are near the Bragg position. 
Inside the crystal the space dependence of the electrical 
field vector E(r, co) is determined by the wave vector 
ko=r+tceon/yo,  where x =  Irl, n is the unit vector of the 
inner normal to the entrance surface, ~o =kon/Ik01. The 
wave field is the superposition of the four plane waves 
with wave vectors ko and kh = k0 + Kh, h = 1,2, 3. 

The amplitudes of these waves Eh satisfy the trans- 
verse condition khEh = 0 and the next set of four vector 
equations 

z0Eo +g01E1 +Zo2E2 + Xo3E3 ---- 0 

z10E0 + zlE1 +z12E2 +zt3E3 = 0 

)(20Eo + z21E1 + l"2E 2 + x23E3 --- 0 

,Z3oEo + zalE1 +,z32E2 + z'3E3 = 0 (2" 1) 

where Zhh,=x(kh,--kh) a r e  the space Fourier com- 
ponents of 4n times the polarizability of a crystal, 

~o 
rh = Zoo - 2eh , eh =-}~h + ~h , flh = YolYh , 

(K+Kh)2--K 2 
O~h = K2 , Yh = s,,n, Sh = kh/ikh[ • 

(2.2) 

According to the transverse conditions every vector 
Eh has two independent components only. Let eh,, eh. 
and sh be mutually perpendicular unit vectors. We 
write E,,=Eh,#h,~+Eh,eh,. Then (2.1) becomes a set of 
eight linear homogeneous equations for the scalar field 
amplitudes, which has the form 

( ghh'eh,eh',~ ghh'eh~eh',] [Eh,,~]=(TE= 0 (2.3) 
ghh'ehoeh',, ghh'e,~eh'M \ E h ' J  

where gnh' = rh6hh' +Xhh'(1 --6ha'), and 6hh, is the Kron- 
ecker delta. 

From the condition for the existence of a non- 
trivial solution of the set (2.3), we can deduce the eight- 
fold equation for e0, 

A(eo) = det ( (~)=0,  (2.4) 

which is usually called the dispersion equation. To 
obtain the relevant form of equation (2.4), we must 
expand the determinant of the eighth-order matrix 
determined for some set of the polarization vectors ehs. 
However it is obvious that the determinant ,4(e0) does 
not depend on the specific choice of the polarization 
vectors. 

First of all we note that the determinant A(eo), 
owing to the invariance, can contain only certain com- 
binations of the quantities Shh, •ShSh,. Moreover, it is 
easy to understand from the form of (2.3) that the 
every vector sh must enter these combinations twice. 
The number of vectors can be no more than eight. To 
find all invariants satisfying these conditions, it is 
enough to expand the determinant of the fourth- 
power matrix {Shh'}. Then we can determine the coef- 
ficients of the invariants from the consideration of a 
set of simple particular cases, where it is easy to cal- 
culate the determinant A(e0) directly. 

The method described above was used by Afanas'ev 
& Kohn (1975) to obtain the dispersion equation in 
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the three-wave case. In the four-wave case we have a 
large number of independent invariants and this 
method leads to a cumbersome expression. Never- 
theless the compact form of the dispersion equation 
can be obtained in this case also. 

Consider first the coplanar case in which all vectors 
s~ lie in the same plane. In this case, we choose all 
eh~ perpendicular to this plane and ea~ in the plane. We 
can easily obtain from (2.3) 

where 
zl(eo) =/f4/f,, 

A4=det (ghh'), A4~ =det (ghh'Shh'). 

(2.5) 

In the general case the determinant A(e0) contains 
some terms additional to that in (2.5). However, these 
terms must be proportional to the invariants, which 
are equal to zero in the coplanar case. There are seven 
invariants of this kind 

2 2 2 2 £2ox2, £20~3, £202a, £2~23, £2hkZ=Sh[Sk X Sd, (2"6) 

V2x,  V22, V23,  V h k :  {Is h M Sk] X [Sl X Sm]}. (2"7) 

Hereafter h , k , l , m - - O ,  1,2,3, h C k # l # m .  Only three 
invariants in (2.6) are independent because the space 
is three-dimensional. It is convenient to choose the 
next six linear combinations (2.6) and (2.7) as linearly 
independent invariants 

C01, C02, C03, Cl2,  C13, C23, 
Chk = ½[ V2l '~ V 2 m - -  ~'~2kl-- ff~2km ] . (2 .8)  

In accordance with the above remarks we can at once 
write A(t0) in the form 

A(~:0) = Z~4Z~4s'~- ~.. ChkBhk(TJ,,~,). (2"9) 
h<k 

To find the coefficients Bnk in (2.9) we consider six 
simple particular cases, where it is easy to calculate the 
determinant. Let, for example, 

S 0 = sI..[_s2_Ls 3 . (2" 10) 

In this case, directing the polarization vectors so that 

S o = S t = e 2 a = e 3 n ,  s 2 = e o n = e l n = e 3 a ,  

s3 = eo,, = exa : e2n , 
we obtain 

A(~o) = A23AoI2Ao13 (2 .11)  
where 

Ahkl = Zkh Zk ZRZ , Ahk = Zl, Zhk . (2" 12) 
Xlh Zlk 7;l ~.kh "(k 

On the other hand in this case Co~ = 1 and the remaining 
Chk=0. Taking into account that A4s=Aol'C2"t'3 w e  find 
finally 

Box = Ao12/fo13A23 - Z~ox'C2TaZJ4 • (2" 13) 

Another five coefficients can be determined similarly 
from consideration of particular cases of the kind 

(2.10) in which two vectors are equal and the rest are 
mutually perpendicular. 

As a result, the dispersion equation for four-wave 
diffraction has the form 

ZJ(E0) = A4Z~4s-]- ~ Chk(ZJhkl/JhkmZflm - ZJhk'Cl'Cm/J4)=0. 
h<k 

(2-14) 

We note that the quantities Chk can also be written in 
the form 

Chk 1 2 2 2 2 = 4[(2hlm + K2klm --  ~hkt  - -  Qhkm + 2~hkZg2hkmStm 

-a t- 2~'~hlm~'~klmShk ] : Shk - -  ShkSklSlh --  ShkSkmSmh 

"~ ShkSklSlmSmh + ShkSkmSmiSlh --  ShkS2m . (2" 15) 

The method outlined above allows the reduction in 
the general case of the determinant of order 2N to a 
sum of the products of determinants of < N. In the 
case N =  3 we obtain the expression which was found 
firstly by Penning (1968). It can be obtained from (2.14) 
as a limit 

A(3)(e0) = lim [z~2A(4)@0)] 

--AaA3s+f2o~2(Ao~Ao2Ax22 -z0zxz2A3). (2.16) 

However, in the case N = 5  the expression for the 
determinant of the form of (2.9) will contain already a 
large number of the terms in the sum over the in- 
variants. We think that for N >  5 a direct numerical 
solution of the problem by means of a computer is 
more convenient. 

3. S i m u l t a n e o u s  d i f fract ion  in a near ly  two-wave  case  

In Afanas'ev & Kohn (1975), the passage from two- 
wave to three-wave case was examined in detail when 
one parameter characterizing the deviation from the 
Bragg condition becomes large. In this section we 
consider the more general problem, namely, a perturba- 
tion of the two-wave solution by the nearby many- 
wave point. The number of diffracting waves can be 
arbitrary. 

We note that this is the case of the most interest 
because parameters aa (2"2) characterizing the devia- 
tion from the Bragg conditions are inevitably tied to 
one another owing to the three-dimensionality of the 
space. We restrict ourselves to the case where all 
reciprocal-lattice vectors lie in the same plane. Let x0 
be the vector exactly satisfying the simultaneous Bragg 
conditions, ax, a2 be the mutually perpendicular unit 
vectors in the plane which is perpendicular to x0, and 
a2K~ =0.  Then 

K = Ko + lc(01al + 02a2) , 
oq = 2t¢- l(axK1)01 , 

~n = 2x-  l[(a~Kh)0~ + (a2K~)02], h = 2 , . . . ,  N -  1 . 

(3.1) 

It is easy to see from (3.1) that if 102[ --+ oo then all ~h 
except ~ become simultaneously large and we pass to 
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the two-wave case with the reciprocal-lattice vector KI. 
On the whole, the many-wave region in the plane of 
parameters 01 and 02 is seen as a spot and the bunch of 
two-wave lines intersect it. 

Let [02] >~ [Z00I" In this case the quantity x =  ]Zoo[/02 is 
obviously a small parameter and we can express the 
whole many-wave determinant AtN)(eo) as a power 
series in x. It is easy to understand that the first terms 
of this series have the form 

zi(N,(80)=(T2. " . TN_I)2[A(02)(~O)..t._ N~I (0A(03) '~ 1 
h=2 l~h=0 

N~I / ~2A(4) \ ] 
<., ._,ol , . .  / 1 

+ ½  . . . . . . .  + . . . .  (3.2) 
h,h' =2 t (~7~h(~7~h" ] ch=th'--0 Th T~h" 

Here (3) dolh(eo) is the three-wave determinant of the 
vectors ko, kl, kn, and At4) is the four-wave deter- zaOlhh' 
minant of the vectors k0, kl, kh, kh,. 

Using formulae (2-16), (2.14) and (3.2), one can 
examine the perturbation of the two-wave solutions 
up to the x z terms. As is known, the amplitudes of 
the diffraction waves decrease as 1/[02[, i.e. only 
slightly. Therefore the formula (3.2) makes it possible 
to obtain the many-wave solutions (which are close to 
the two-wave solution) for a rather wide range of 
the angles and the contribution to the integral intensity 
from this region can just be dominant. 

One of the principal problems in the theory of the 
simultaneous diffraction is the question of the enhance- 
ment of the two-wave anomalous-transmission effect. 
Qualitatively this question can be investigated easily 
from the formula (3.2). We assume that 1021 is large 
enough and restrict ourselves to the terms of the first 
power of x. Then the problem in fact reduces to the 
three-wave case which was examined by Afanas'ev & 
Kolm (1975). 

LOt us consider, as in Afanas'ev & Kohn (1975), the 
crygtal with an inversion centre (when Zhh'=Zh'h). 
Assume that Iz01l _> lZh~,l, h # h', and consider the point 
of the two-wave minimum of the imaginary part of e0, 
that is 

i l l= 1, cq=0, ~0=zl=Z01+e, T ~ - - ~ h .  (3"3) 

Thei maginary part of the quantity e introduced in (3.3) 
directly determines the difference between the many- 

wave minimum absorption coefficient and the two- 
wave one, namely, 

A~tl(N)(o2)=/.I(N)(02) --/X01min"(2) _- - x e "  . (3-4) 

The analogous procedure, which has been used for the 
derivation of the formula (4.11) in Afanas'ev & Kohn 
0975) gives the result: 

(Zo.-X,.)'O:o.-x..)" 
A/ttN)(O2)-- 202 .=2 (a2K.) 

× (1 -s21) (3"5) 

For N >  3 it follows from (3.5) that the simultaneous 
minimum of the absorption coefficient is smaller than 
the corresponding two-wave values, that is the enhance- 
ment of the effect always occurs. The symmetric three- 
wave case is the only exception. The formula (3-5) 
gives a convenient way for the qualitative estimation of 
the anomalous-transmission effect. Although the 
quantities /-'mtn"tN) and A/.ltN)(02) do not correlate directly 
with one another, we can nevertheless make a compara- 
tive estimate of the value ~'min"tm from knowledge of the 
speed of decrease of p(m(02) with a large 1021. According 
to (3.5) Ap tN) is the larger, the stronger the asymmetry is 
0 f the particular three-wave combinati on s of the vectors 
k0,kl,kh. It is interesting that, in spite of this, the 
complete many-wave case can have a high symmetry. 

The other consequence of the formula (3.5) is the 
asymmetry of the many-wave corrections. The absorp- 
tion coefficient increases for one sign of 02 and de- 
creases for the opposite sign. If the simultaneous case 
has the symmetry plane which is perpendicular to a 2 
then two roots with the same imaginary part ~ ,,t2) /x 0l 
exist at large [02[. When ]021 decreases, the imaginary 
part of this root bifurcates and the two branches 
diverge symmetrically up and down according to (3.5) 
These are an example of configurations of the recip- 
rocal-lattice vectors in the form of a symmetrical 
polygon. 

References 

AFANAS'EV, A. M. & KOHN, V. G. (1975). Phys. Stat. Sol. 
(a), 28, 61. 

PENNING, P. (1968). Philips Res. Rep. 23, 12. 


