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Sets of integral equations are obtained that describe the X-ray diffraction in defective crystals. A simple 
description of defects is suggested both for weakly and strongly distorted regions. In the case of ideal 
crystals, the solution for the wave fields with arbitrary incident beam distribution is given for crystals 
of arbitrary thickness. For distorted crystals, the integral equations give the universal method of treat- 
ment of both weakly and strongly distorted regions. The problem of image determination from strongly 
distorted regions is reduced to the solution of a simple one-dimensional integral equation. The first 
iteration approximation of initial integral equations is shown to give results similar to those of a Fourier 
analysis method with the defect being treated as a small perturbation. 

1. Introduction 

In recent years, there have appeared many works on the 
dynamical theory of X-ray diffraction in distorted crys- 
tals or crystals containing faults (Penning & Polder, 
1961, 1964; Kato, 1963; 1964a, b; Taupin, 1967; Ta- 
kagi, 1962; Schlangenotto, 1967; Dubrovskii, Molod- 
kin, Tikhonova & Tikhonov, 1969; Molodkin, 1969; 
Slobodetskii, Chukhovskii & Indenbom, 1968; Authier 
& Simon, 1968). Nevertheless, the problem at large 
remains far from being solved because of the mathe- 
matical difficulties which arise. One solution is con- 
nected with the works of Penning & Polder (1961, 1964) 
and Kato (1963, 1964a, b) and involves a method close 
to the WKB approximation (phase integral method) of 
quantum mechanics. In these works rather interesting 
results in an analytical form were obtained. However, 
this method is strongly limited to cases of very weakly 
distorted crystals. 

Another approach, developed by Taupin (1967), 
uses direct numerical methods to solve the linear differ- 
ential equations for a wave field in a crystal. These are 
modifications of Takagi's (1962) equations. Although 
this approach allows the problem to be solved for 
many kinds of defects, it deals primarily with the math- 
ematical problems involved without considering phys- 
ical phenomena, which should simplify the analysis. 
Moreover, difficulties arise when one describes strongly 
distorted regions of a crystal. Detailed analysis of 
Kato's  method and equations used by Taupin are given, 
by Schlangenotto (1967). 

The Fourier analysis method is used by Dubrovskii 
et aL (1969) and Molodkin (1969). 

The problem of wave field determination in an ideal 
crystal with arbitrary boundary conditions has also 
been considered. For the solution of this problem, the 
integral formulae, which connect wave fields inside a 
crystal and on the entrance surface, were obtained 
(Kato, 1961, 1968; Slobodetskii et al., 1968; Authier & 
Simon, 1968). 

In the present paper, a new approach based on the 
use of integral equations is developed. A simple de- 
scription of the distorted region in a crystal, including 
strongly distorted regions (cf. § 2), is given. In § 2, the 
set of differential equations of the Takagi kind, which 
also describes the strongly distorted region, is derived. 

In § 3, the sets of integral equations for the wave 
fields in crystals containing faults are obtained for both 
the Laue and the Bragg diffraction cases. First, the 
problem of the field distribution inside the ideal crystal 
is solved by using these equations for the Bragg case, 
when arbitrary boundary conditions are defined. (In 
works by Kato (1961, 1968), Slobodetskii et al. (1968) 
and Authier & Simon (1968) the analogous problem is 
solved for the Laue case only.*) 

In § 4, the one-dimensional integral equations, which 
define the image contrast of the strongly distorted re- 
gion of an arbitrary form, are obtained. 

In § 5, the Fourier analysis of the problem, which is 
based on the method by Afanas'ev, Kagan & Chukhov- 
skii (1968), is carried out. It turns out, however, that 
since the defect is considered to be a small perturba- 
tion, the Fourier analysis method gives the same results 
as the first iteration approximation of integral equa- 
tions. 

2. Derivation of the initial set of differential equations 

To describe the electromagnetic field inside the crystal, 
we use Maxwell's equations for the electrical field vec- 
tor E(r, co) (co is the frequency of the incident wave) 

4zH. 
V2E-grad div E + K2E = -- K 2 . . . .  l (2.1) 

(I) 

* Recently, in the works of Takagi (1969) and Uragami (1969) 
the integration method of solving the problem was also sug- 
gested but in another form than in the present paper. In the 
work of Uragami, a similar problem has been solved for the 
thick crystals. We became acquainted with these papers only 
when the present work was completed. 
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where x =  co/c (c is the velocity of light), j(r, co) is the 
current density induced by the electromagnetic wave, 
which is, in fact, a linear function of E(r, co). 

fl(r, co)= ldr'  cr~(r,r')Ek (r', co). (2"2) 

The convenience of the equation (2.1) lies in that the 
calculation of the current density j, which takes into 
account all possible interactions between the electro- 
magnetic wave and the crystal, can be carried out 
(Afanas'ev & Kagan, 1968). In the general case, equa- 
tion (2.2) describes non-local coupling between j and E. 
This coupling arises owing to photoelectric absorp- 
tion, Compton scattering and, moreover, to inelastic 
scattering by phonons. However, the main contribu- 
tion to cr~ k, connected with Thomson scattering, has a 
strictly local character, that is 

cr~ (r, r ') = cr(r)JtkJ(r-- r ' ) .  (2.3) 

For simplicity, we shall assume local coupling (2.3) for 
the other effects since the mathematical account of non- 
localities is complicated, and, in any case, their pre- 
sence would not greatly affect the final results. Accord- 
ing to (2.3), the right-hand side of equation (2.1) takes 
the form 

4z~i 
- -  j(r, co) = z ( r ) E  (r, co) (2-4) 

(D 

where z ( r )=  a(r)4rci/co is the crystal polarizability. 
Consider a crystal containing faults, which are as- 

sumed to be finite regions with distorted regular struc- 
ture (Fig. 1). In the areas without defects, the polariza- 
bility is a periodic function with the period of the crystal 
lattice. It can therefore be expanded as a Fourier series. 

z(ia)(r) = ~,Z(n ia) exp {iKhr } (2.5) 
h 

where K~ is the reciprocal-lattice vector, multiplied by 
2g. 

We shall divide the region of the defect into two 
parts; a strongly distorted region A and a weakly dis- 
torted region B. Region B is assumed to be such that 
distortions of the crystal lattice can be described by the 
deformation vector u(r) (r being a point of real crystal) 
and, moreover, that the relative displacement is small, 
namely I° 1 ¢ 1. (2.6) 

Condition (2.6) permits the equation for the polariza- 
bility to be used (cf. Kato, 1963, 1964a, b) 

z(r)=z('"~(r-u(r)). (2.7) 

We shall assume area A to be distorted so that any 
diffraction scattering would be practically absent in 
this region. It may be a region without any periodic 
structure (e.g. the nucleus of dislocation) or a region 
where the deformation vector changes so quickly that 

OxkOx= ~:102>>1 , (2"8) 

where /0=(l~cx~oml) -1 is the diffraction length of the 
ideal crystal. In fact, condition (2.8) means that there 
are no areas, with linear dimensions of the order lo, 
where the local reciprocal-lattice vector still satisfies 
the Bragg conditions. 

The absence of the diffraction scattering in region A 
permits us to describe this region as homogeneous, 
with an average polarizability 

1 
) ( r ) = z ° =  v So Z(r)dr (2.9) 

which defines the usual X-ray refraction and absorp- 
tion. The integration in (2.9) is carried out over a vol- 
ume whose linear dimensions are much greater than 
the interatomic distance a. If in region A the density 
is close to that of the ideal crystal (which is the case for 
most conditions), then 

Zo= Z(o ia~ . (2.10) 

We note that r e ,  on A can be extended considerably 
to part of region B. Indeed, the Bragg scattering is 
practically absent in the areas where 

Ic~u~ I-~--/xk ~ [ Z(o'a'I (2-11) 

and since [Z(o ia)] ~ 10 -s to 10-6,regions exist where both 
inequalities (2.6) and (2.11) occur. 

Thus, equations (2-7), (2.9) and (2-10) provide a rela- 
tively simple description of the polarization properties 
of a crystal in all regions of the defect. 

We shall seek the solution of the equation (2.1) in 
the form 

E(r)=exp {iKr}~Eh(r) exp {iKnr}. (2.12) 
h 

Here K is the incident-wave-vector, and the sum is to be 
taken over all reciprocal-lattice vectors of the ideal 
crystal. The absence of the diffraction scattering in re- 
gion A, and the satisfaction of inequality (2-6) in area 
B result in the amplitudes Eh(r) being slowly varying 
functions with the characteristic length of the order 10. 
Therefore, if we neglect, as usual, the second derivatives 
of En(r) and take into account that the electromagnetic 

C 
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region 

/ 
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,/ 

Fig. 1. Crystal containing faults. 
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wave inside the crystal remains practically transverse, 
we obtain from (2.1) 

2i ~ ) 
~ e x p  {iKh, r } eh' Eh,(r) 

1¢ t~Shr 

= z ( r ) ~  exp {iKh, r } Eh,(r) , 
h'  

where 

(2.13) 

/ (2 __ K2 

(Zh- -  K2 ' K h = K + K  h , 

0sh-(s V), sh= IKnl" (2"14) 

Now we multiply the equation (2.13) by exp ( - iKnr ) ,  
and integrate over the volume V with linear dimensions 
/, where 

a ~ l ~ l o  . (2.15) 

Since the amplitudes, Eh(r), change only slightly in the 
length I, they can be omitted from the integration. 
Thus 

1 
I exp {i(Kh--Kh,)r}dr~--~hh , . (2.16) 

P-to 
Then we have 

where 

2i c~ ) 
c¢ h -x 3~h Eh(r)=~Xhh'(r)Eh'(r) (2.17) 

XIr  Zhh,(r)= if-  (r)exp{i(Khr--Kh)r}dr. (2.18) 

In the ideal crystal region, according to (2.5) and 
(2.16) 

c 
Xhh '  (r) - - K h _ _ h  t -  "~ ( id)  • (2" 19) 

In region A, taking into account (2.9), (2.10) and (2-16), 
we obtain 

Zg'~, (r) = X(0 id)l~hh'  • (2"20) 

In area B, according to (2.7), we have 

x?~(ia,, 1 
Z~hr(r) = L,,~ h" --~- j exp {-- iKh"u(r) } 

h ~ 

× exp {i(Kh,,+ K h, -Kh)r )dr .  

In the sum over h", inequality (2.6) allows us to neglect 
all terms except those with Kh,, = K h -  K h, . 

Therefore 

Z f f h , ( r )  =Zh-n, ~ xp {-i(Kh-Kh,)u(r)}dr.  (2.21) 

If u(r) change slowly over a distance of order l, then 
(2.21) turns into the formula 

Z B  r r a _ , , ( l d )  exp {--i(Kh--Kh,)u(r)} (2"22) h h t \  ) - - ,K h- -h  t 

In the case of a rapid change of u(r) in the volume V 
(for example, when inequality (2.11) is satisfied), the 

only integral in (2.21) which would not, in practice, be 
equal to zero would be that for which K h = Kh,. Making 
this substitution, we again obtain equation (2.20). 
Thus, we see once more that area A can be extended to 
area B. Further, we shall assume that region A includes 
the nucleus of the defect as well as the distorted areas 
where 

-- > 1 .  2re 0---~ a -  

Here l is defined by inequalities (2.15). (It may be no- 
ticed that l can always be chosen almost equal to 10, 
because the diffraction scattering is small in both cases.) 
We shall treat the remainder of the distorted region as 
region B, and use equation (2.22). 

Further, we restrict ourselves to the case in which 
only one Bragg reflexion with a corresponding vector 
K1 of the reciprocal lattice exists (two-beam approx- 
imation). Then, passing to the set of equations for the 
scalar amplitudes, we obtain 

gloEo+ g o o - a +  El=gloc/+Eo 
R7 ~ S  1 

2i 
(g00+ W ~-o0) E°+g°lEl=g°~N-E1 (2.23) 

where the following notations have been introduced 

1 in A ,  
N+(r)= 1 - e x p  {T-iKlu(r)}in B ,  (2.24) 

0 in C ,  

__ ~ ( i d l  ~ ,~ h,h' =0,1 g h h , / - - A  h--hr q h q h  r , 

11~ are the polarization vectors. 
Equations (2.23) must be defined by boundary con- 

ditions. In the Laue case, these conditions are deter- 
mined on the entrance surface of the crystal and take 
the form 

Eo(r ) = E(oi~)(r), E l ( r )=0 .  (2.25) 

In the Bragg case, we have E0(r)=E(oin)(r) on the en- 
trance surface, and El( r )=0 on the exit one. Here 
E(oin)(r) is the amplitude of the incident wave. 

Finally, we note that, in regions B and C, replacing 
En(r) by exp { -  iKhu(r)} En(r) gives the set of equations 
which have been obtained by Taupin (1967) and 
Schlangenotto (1967). The set of equations (2.23) is 
more convenient, because it also describes the strongly 
distorted region of a crystal. 

3. Integral forms of the set of equations (2"23) 

(A) The Laue case 
We first consider the common property of equations 

(2.23). It is convenient to introduce oblique coordi- 
nates along the vectors So and sl, such that 

r=s0s0+slsx. (3.1) 
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We then make the replacement 

g0o (g00- a) ) En=/~nexp ix-~-so+ix-----~--Sx.  (3"2) 

The set of equations for amplitudes l~h has the simple 
form 

i ~E0 
- ~ 0  + c0/~1 = c0 v-E1 

" ~ / ~  +Cl /~O=ClV+/~0  (3"3) , 
where 

Kg01 Kgl0 
c0= 2 ' c l -  2 

2 . 

From (3-3), we also have 

L o,l=Fo,, 
where 

" ~ V - , +  
F0,1 = c2L'0,R(V+ + V- - V+V-) - icl,oEl,o ~S 1'0 

c 2 = CoC~ and L is the differential operator 

82 
L = ~ -  -+C 2 " 

gSotgS~ 

(3.4) 

• (3 .5)  

(3.6) 

The equations (3.4) are hyperbolic and their charac- 
teristics are the sets of straight-line curves parallel to 
the vectors So, s~. The fields inside the region G (Fig. 2) 
are strictly determined by amplitudes Eo and E~ on seg- 
ment AO)AO). Moreover, by using the Riemann method, 
integral equations can be obtained, which connect the 
fields at the point P and the fields inside the region G, 
(cfi Courant, 1962). 

We introduce the function R which is the solution of 
the equation 

LR=O (3.7) 

with boundary conditions 

c~R[ =0  ~R I = 0 ,  
t~S0 S l ~ S l p  ' t~Sl S0~S0p 

I 

R[  = 1 .  
(3.8) 

I SO = SOp 

S1 = S i p  

The solution to the problem is 

R =  Jo(2C V(so2o-so) (sly-s1)) (3"9) 

where Jo(Z) is a Bessel function of zero order, and s01o, 
suo are the coordinates of point P. Using equations 
(3.4) and (3.7), we obtain directly 

Using Green's theorem, the left-hand side of equation 
(3.10) can be turned into the integral over the boundary 
of the region (7. According to (3"8) and (3.3), we have 

I Iadsods,[RLE1- [~,LR] = E,(P) -/~I(A (')) 

6qR E l  (3-11) +icl fA,O)AodSlREo(1--V+)+ ImO,A,, dso-~o • 

The final result is given by 

~ R  /~1 F~'(P) =/~1(A(1))- IA~O,AO, dso 

-iCl SA,O)Ao)dslREo(1-V+)+ I SadSOdslRF1. (3.12) 

The equation for/~o(P) can be obtained from (3.12) by 
replacing the indices 0 by 1, + by - and vice versa. 

In the Laue case, when the boundary conditions on 
E0(r) and El(r) are defined on the same (entrance) sur- 
face of a crystal, we obtain the set of integral equations 
for the fields which automatically takes into account 
the boundary conditions (2.25). 

Eo(P)  ) - IAO).4,o) ds 
+ I IadsodslRFo (3.13a) 

 x    iclLAcodSl '  + ÷SSod'ods,"l 
(3.13b) 

If the crystal does not contain defects, i.e. g/+ = ~ ' -=0,  
equations (3.13) give the direct connexion between the 
field in an arbitrary point of a crystal and the fields on 
the entrance surface 

EC°id)(P) = Ec°in)(A°))+ IA~o)Ao)dSl 

E(lia)(p)= icl I dsxRJECo i") " 
JA(DA(0) 

(3.14) 

This problem had been solved earlier by Slobodetsldi 
et al. (1968) and Authier & Simon (1968). 

Equations (3.13) can be also written in the following 
form: 

Fig. 2. Fields inside the region G. 
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ff~o( P ) = ff'(oid )( P ) - ico I ds0/~'~ff- 
dA(o)P 

• 8R 
+ l ladsodsx [cZREo~++tCo-~-j-(ffq~ - ] (3.15a) 

F"I(P)= JE~i~)(P)- icl IAO,P dsaE°~'+ 
8R ~ 

The sets of equations we have obtained are in a con- 
venient form for determining an approximate solution 
by an iteration procedure. In a region of type A, the 
double integrals in (3-15) can be transformed into the 
integrals along a contour (cf § 4), and this greatly sim- 
plifies the treatment of strongly distorted regions. In 
region B, it is convenient to use equations (3.13) 
because here the derivatives 8~,/8s are small, and 
moreover 

~,++ ~ , - -  ~ + ~ - - 0 .  (3.16) 

(B) The Bragg case 
If the boundary conditions are defined on different 

surfaces as in the Bragg problem, then it turns out that 
the treatment of closed integral equations such as (3.13) 
is more complex. 

Consider a crystal in the form of a plate of thickness 
t. Let the finite beam of X-rays fall on to the crystal in 
the direction of the vector K (Fig. 3). We shall find 
the field of the reflected wave at point Px on the en- 
trance surface of a crystal. The field at this point is 
determined by fields inside the region G which is lim- 
ited by the line AP, A~ ~) in the scattering film. Evidently, 
the ampli tude/~ equals zero on the segment AB. Let 
the function R~ ) satisfy equation (3.7), but with the 
boundary conditions 

8R~) I 8R~ ) ] =0, 
0So AP1 = 0 ,  8s, So=Sop 

R(~) 1 = 1 .  (3.17) 
S 0 ----- S O p 
S, ~S,p 

S o ~ \  \ \ ~ / S ,  

P4 x 

At'. ~z 

B Ai  ') P3 D Ai ') 

Fig. 3. Schematic d iagram representing the scattering of  an X-ray 
beam by the crystal.  

The solution of this problem is given by 

R ]  )= Jo(2c ]/'(Sop- So) (Sip- s,) ) 

(s°p-s°) (2c]/~oop-So)(Slp-sl)) (3.18) 
-P (s,,,-sO 

where fl= 70/71, 70,1 = (ns0,,) and n is the vector of the 
inner normal to the entrance surface. The analogous 
procedure which has been used for the derivation (3.12) 
gives the following result 

E,(P,)= icz IAe dsIR(~)E(~n)(1- ~' +)+ f ladsodslR(~)F1. 
(3"19) 

Equation (3-19) is valid for the points P, lying on the 
area A C of the entrance surface. For the points lying 
to the right of C (e.g. P2) the following integral must be 
added in the right-hand side of equation (3.19): 

A/~I(P2)=-ic,  IeAO> ds:R~)/~0(l-~t+) • (3"20) 
d a 

If the crystal is sufficiently thick, so that pt > I, where 
/t is the absorption coefficient, then it can be easily 
shown that this integral gives an exponentially small 
contribution, and can be neglected. Thus, in the case of 
a thick absorbing crystal, equation (3.19) defines the 
field/~t at all points on the entrance surface• 

For an ideal crystal, when g+ = 0, according to (3.19) 
we have 

-(DE(m) . (3"21) ff'l(P)=icl fApdSll(l~ O" 

Equation (3.21) defines, in the general case, the field of 
a reflected wave on the entrance surface for an arbitrary 
distribution of the incident wave field. Introducing the 
coordinate x along the crystal surface in the scattering 
plane (A being the zero point) we can rewrite this equa- 
tion for the amplitude E,(x) directly [cf. (3.2)]. 

• CWo i~dx,[Jo(Bxl)+j2(BxX)] 
E' (x) = ' s-in-2o-sB o 

x exp {iAx'}E(~")(x-x ') (3.22) 

where 

(70 + 17,1) 7o l / ~  
A = tcgoo 2 sin 20 B ~c~ 2 sin 20 s , B= 2c sin 20~ 

(3.23) 
If the field E(oin~(x) is constant 

E(oin)(x) = Eo, x > 0,  

then, according to (3.22), when x - +  c~, we obtain 
after a number of simple transformations 

eo [ -  {,/~+g00(1 -/~)} 
El(°°) = 2g01 

+ ]/-{o:fl + goo(1-fl)} z + 4flgoxglo] • (3.24) 

This result agrees exactly with the result of the usual 
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dynamical theory for the thick absorbing crystals (Za- 
chariasen, 1946). 

In addition to equation (3.19) one can obtain, by a 
fully analogous method, the equation which deter- 
mines the amplitude/~0 on an exit surface: 

/~o(P3)= ~(in)l"a(o)~ (3 o) ds I /~(0in) ~ o  , ~  , -  a~ - O ~ i -  

-icoIAA(3o)dsoR(°s)El(l-g/_)+llodsods, R(°s)Fo.(3"25) 

Here 

R~)= Jo(2C V(Sov- S o) ( S l p - - S I ) )  

_ 1  (Sxv--Sl) J2(2cl/(Sov_So)(S~v_sO ) (3.26) 
(So,-S0) 

Moreover, we have the general equations (3.11) for the 
inner points P4 of a crystal where, in a given case, a 
contour AC°~A CD is ~co)ana(~) ~-4 . . . .  4 • Since/~t = 0  on the line 
ABA(41) the integral along A(4 °).. .A(4 ~) is reduced to 
the integrals along the lines AA(4 °) and BA(4 D, then 

~ - -~( in3  (0) OR g(oin ) Eo(P4)-E 0 (A4)--  _ IAA(40) ds1 

OR + 

+fIadsodsiRFo, (3.27a) 

ds RE(-in)(l'o " ~AAIO ) 1 --~l/ +) 

+ aa(4o) dso ~ i~-icl BA(2 ) ds lR/~o(1-~+ ) 

+IIodsodslRF1. (3'27b) 

The sets of integral equations (3.19), (3.25), (3.27) 
permit the use of the iteration procedure to determine 
amplitudes/~0 and/~1 in a distorted crystal. In the case 
of the thick absorbing crystal (/it >~ 1) the integral along 
the line BAq ) in (3.20) and (3.27) gives the exponentially 
small contribution and may be neglected. Therefore, it 
is not necessary to use equation (3.25). 

In the case of the ideal crystal (V* = 0) we have, ac- 
cording to (3.25), 

{ goo Eo(x,t)=ex p ix ~ -  

o 

sin----20--s-- dx' -z 

colTxl 
× J~(Wz) exp {iAx'}ECot'(Xo-X')-i sin 20a 

x__L_' ° ?o ] 

× exp {iAx'}Ej(xo-x',O ) } (3-28) 

where 

z= Vx'(x' + 2l), 2 l = t - -  sin 20 B 
70lyll ' Xo = x -  t V 1 - ~,o2/Yo . 

Here we use the true amplitude (3.2) again. The equa- 
tion (3.28) contains the field Ex defined by equation 
(3.22). Knowing the field E0 on the segment BD, we ob- 
tain easily the field E1 on the segment CE which now 
is defined by sum of equations (3.20) and (3.22). The 
equation (3.20), we rewrite in the detailed form 

C17o { (goo--OO t } 
AEI(X)=-i sin 20 B exp f l c ~  [Ya[ 

[ x ] 
x dx' Jo(Bz)+ J2(Bz) 

~,o x' + 2l 
x exp {iAx'}Eo(xx-x',t), (3.29) 

where x 1 = x - t  1/1-  ylz/[yx[. Since the field El(x ) on the 
segment CE is known, the field Eo(x, t) can be defined 
in the points to the right of D and so on. 

The procedure outlined above permits the reflected 
wave field to be determined over the entire surface of a 
crystal, but this is rather cumbersome. Nevertheless, 
the formula for El(x) may be obtained in a more com- 
pact form. By substituting into equation (3.29) for E o 
[from equation (3.28)] and for the field E1 on the line 
AC [from equation (3.22)], the expression for AEI(X) 
on the line CE breaks up into the sum of single, double 
and triple integrals. The double and triple integrals can 
be transformed into a single integral, so that the final 
expression for the field AEI(x) has the form: 

70 f x , i (in) t AEl(x)=icl sin 20s ~ o dx Gl(x ,2/)E o ( x - x ) ,  (3"30) 

where 

Gn(x,21)---O(x-2ln) ( -  1) n exp {lAx} {~n-lJ2n_2(Bt7) 
+ 2~nS2.(B~)+~n+lJ2.+2(Bq)} , (3"31) 

x-2 ln  
~ -  x + 2ln ' r l = ~ ( 2 l n ) Z '  

0(x) = {0 x < 0  x > 0 .  (3.32) 

For the general case one can obtain the following 
expression for the field E~(x) at an arbitrary point in 
the surface: 

7o I~ dx'G(x')E(o'n)(x-x') , (3.33) El(x) = icl sin 20 s 

where 
?lnl&x 

G(x) = Go(x) + ~ Gn(x,21) . (3"34) 
n= l  

Here nmax is the integer part of x/21; Go(x) is deter- 
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mined from equation (3.22) 

G0(x)=exp {lAx} {Jo(Bx)+ Jz(Bx)} (3.35) 

and represents Green's function approximated for an 
infinitely thick absorbing crystal. Gn(x,2l) is given by 
equations (3.31) and (3.32) and describes the n-fold 
reflexion by the lower surface of the crystal. 

Fig. 4 shows the reflected wave intensity, which is 
proportional to [a(x)l z, for a O-functional source. It is 
seen from the Figure that, in this case, intensity peaks 
appear near the points x = 2In. If the incident radiation 
has a finite spread d>  l0 and is collimated over a range 
of angles, then an integration over this spread in equa- 
tion (3.33) results in a practically complete cancelling 
of the field E~(x) because of strong oscillations of the 
Gn(x,21) function in these regions. 

However, if the incident beam is not collimated and 
one measures the integral ir]tensity, then these addi- 
tional peaks will be well displayed. Indeed, in the case 
of an uncollimated beam the incident fields Eo(x) are 
incoherent at every point in the crystal. In this case, 
the integral intensity is given by 

6(x)=1c11 = 2n7o I~ dx']G(x')12]E(°ln~(x-x')[2" 
x sin 2 20n 

(3.36) 

In Fig. 4 the integral intensity is plotted for an inci- 
dent plane wave passing through a slit of width d. As 
can be seen from the plot, the peaks have an apparent 
magnitude but lack the fine structure, characteristic of 
a J-functional source. 

4. Strongly distorted region 

Consider, as an example, the case in which only the 
strongly distorted region exists in a crystal, i.e. a region 

L A 
, , ; , , 

0 4 8 20 24 2'8 

B 

40 44 

o ,~ 8 

x 4  x 4  

" '  20 24 28 40 44 48 x/~ 

Fig. 4. Integral intensity curves for the first reflexion from the 
lower surface of the crystal. The upper curves are for a J-func- 
tional source and the lower curves for a slit of width d= 2/0. 
The parameters of the calculation correspond to the follow- 
ing experimental conditions" Si crystal, M o Ke radiation, (220) 
reflexion, 1,61 = 1, 21= 2010 (curves A) and 2l= 4010 (curves B), 
10 = 1/Icl=12/z. The decrease of maximum intensity on the 
upper curves is due to absorption. 

of type A where diffraction scattering is absent. This 
case, as it will be seen below, is more simple for anal- 
ysis, than a general case and can give a comprehension 
of a general picture of the image contrast formation. 

For the sake of simplicity we shall continue the anal- 
ysis for the Laue case. Let region A (Fig. 5) be the 
section of a distorted area of a crystal by a scattering 
plane. Alterations in the fields caused by this defect 
will occur on the segment AO)A(o) only. In the case 
given, it is convenient to use the integral equations 
(3.15), because ~,+-- 1 inside region A. Considering this 
fact and using equations (2.23) and (3.3), we transform 
the double integrals of (3.15) into integrals along a con- 
tour. Then the integral equations (3.15) will have the 
form. 

OR 
E°(P)=Ebia'(P)+ic° Ira ds°Rff;'+ Ira a s , - ~  Eo 

(4.1a) 

~ OR ~ 
El(P)=Elia)(')-icl IrA ds'RE°- Ira ds° ~o-o E1 

(4.1b) 

where ffoa) are the ideal crystal fields, and Fa is that L-0,1 
part of the boundary of region A which lies inside the 
region G. For points P, when the region A lies fully 
inside the region G the contour F a is simply the boun- 
dary of the region A. For points of type P~, the contour 
is P~B°)CCI)D(x)P'IP~'. 

Now we introduce the quantities 

e0 1(P) =/~o 1(P) - ~-aa)(p a (4.2) , , ~ "  O ,  1 k ~ /  

which define directly the wave-field distortion, caused 
by the defects. The equations (4.1) now are 

+ I 
OR 

eo(P) = ico tr A ds°Rel ' r'74 dsl ~ e0 (4.3a) 

el(P)=-iqlr,adslReo-lr,adso OR el • (4.3b) 

In obtaining (4.3) we used the following obvious equal- 
ity 

I I c3R ~Od)=0 (4"4) iCo, x ds0,1R/~]l,~' + dSl.o ~-~1.0 ~0,1 

where 7 is an arbitrary closed contour in the scattering 
plane. Since the fields/~0,~ are equivalent to ideal fields, 
namely e0,1 = 0, on the contour B (1)B(0) the integration 
in (4.3) is carried out only along the lineB o)CO)DO)..- 
B (0). 

According to (4.3), the problem of determining the 
fields in a crystal is reduced to the problem of finding 
the fields %1 along the contour Fj .  For the solution of 
this problem, we note, first of all, that inside region A 
the field E0 is constant along the lines, parallel to the 
vector So and the field E1 is constant along the lines, 
parallel to s~. This can be seen directly from the equa- 
tions (3.3). Using this fact, we deduce that the fields 



e0 and ex along the lines DO)D(O)B(o) and B(1)DO)D(o) 
respectively are defined by simple transition, that is 

t ~ ( i d )  " ~(id) , D(DD(O)B(O) eo(P2)=Eo (P2) -Eo  (P2) on 
el(P;) = ~ta)(p~,)_/~i,o(pi) on B(I)D(1)D (°) . (4"5) 

To determine the fields eo.t along the remainder of 
the contour, we use equation (4.3). The equation for 
the field e0 along the line B(1)C (1) is 

S'o aso S' ds . eo(l)=ic o dl' ~ Re1+ o dl' dl'l 3s,1 e o (4.6) 

where l is a coordinate of a point along the line B o)C o). 
The first integral term in (4.6) contains known func- 
tions, since e~ is defined exactly along this contour. 
Thus, we have a Volterra's inhomogeneous integral 
equation for the determination of the field eo(l) along 
the line B(1)C (1). The field e0 along the line C(1)D (1) is 
defined by transition from the line B(1)C(1). To define 
the field ex along the contour B(0)C(0), we have the 
analogous equation. 

Thus, the problem has been reduced to the solution 
of a relatively simple one-dimension integral equation. 
Specific examples will be considered in the next work. 

5. Fourier analysis  

In this section, we examine another approach to the 
general problem. This is the transformation from the 
set of differential equations (2.22) to a set of algebraic 
ones for the Fourier components of amplitudes E0(r), 
El(r). 

We shall assume the distortion of a crystal to be 
sufficiently weak for the alteration in the wave field 
to be small. 

where 

- o o  E~ l (r ) ,  ' L'ool (5"1) Eoa(r ) -  Eo. 1 (r) + . IEoal ~ "o,l ,- 

Further, we shall restrict ourselves to the Laue case. 
Let a plane wave fall on to a crystal at an angle close 
to the Bragg angle. Then the fields inside a ideal crystal 
are known (cf. Zachariasen, 1946). 

E(ot~)(z)= ~ E(o~ exp {itce(o °') ~o} (5.2) 

where z =  (nr), ~= 1,2 

E~o,.2)_ 2e~2"'- goo E~,.2)_ flg,o 
- 2(eCo2.,)_ - ) ( 5 . 3 )  

e(o 1'2)= ½goo + ¼ [ - (a f t  + goo(1 -fl))  

+. V(afl+goo(1-fl))2 +4fig~g-lo] ; (5.4) 

the sign of the radical is 'defined so that 

e(o 1)" > e(o 2)" (~=~' -t- ie"). (5.5) 

Now we expand the fields Eo.l in the following Fourier 
series 

E•.,(r)= ~ exp {iqr} ~ E(o.°31q exp {iXe(o O z ~ .  (5.6) 
q~:O 6 y o J  

Making the substitution Eo.l=E(ot.~) in the right-hand 
side of equations (2.23), we obtain for the Fourier com- 
ponents E(o~, 

+goo)e'o  +go,e   (5.7) 0q 

g E(O~l±r 2e(o~ +goo)E{~ g,oC'+(q)E~o ° 10 Oq ~ k - -  l q  

I 

C(o~q=e,o~ + (qSo,~) e~o3 = a e(o °3 
, 2 ( 5 . 8 )  

S l  

Am P~ P ,°2. A(°~ 

428 D Y N A M I C A L  T H E O R Y  OF X-RAY D I F F R A C T I O N  IN CRYSTALS WITH D E F E C T S  

Fig. 5. Section of a distorted area of a crystal by a scattering plane. 
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The system of type (5.7) has already been obtained 
(Afanas'ev, Kagan & Chukhovskii, 1968), where the 
method for its solution was also given. Here, two con- 
ditions are essential. The first one is that the set of 
equations (5.7) must be defined by boundary condi- 
tions for the waves scattered by faults, and a second is 
that it is necessary to account for the solution of corre- 
sponding homogeneous sets of equations [cf. Afanas'ev 
et al. (1968) for details]. Considering these two condi- 
tions, the final expression, for example, for Eo(r ) is 
given by 

E;(r)= ~ exp {iqr} ~ (-1)6"flg°lg'° 
.~o aa' 2(g(o 2)- g(o 1)) 

x ( E e g + ( q ) +  2g~°~-g°° Eeg_(q) ) 
glo 

(exp {ixe(o 0 ~-0-o} -exp {iK(g~o°')-a) -~0-o}) 
× . . . . . . . .  

2(4  - 
(5.9) 

where 

, ~0 ~ 0 k  1 '  
K 

2 a 
&=~_ -X~- [q(So-flsO] , ~- + --fl-. (5"10) 

Though the expression (5.9) is complex in form, the 
final result can be written more simply. Turning again 
to the description of the distortion in coordinate space, 
we obtain for the field Eo(r), according to (5.9), 

E;(r)= I dr'['@°°(r'r')N+(r')+N°l(r'r')N-(r')] (5.11) 

where 

~oo(r, r ')= ( ~  dR exp {iq(r-r')} aa' ~ (---,,-o "~c~l)'~'flg°'gl°̀2)-'o v(' )ax 

Z Z 

x E(o a) (exp . . . . . . . . .  {itee(o °~ 7ff } -exp{ix(g(o a', -a )  Yo) 
2(e(~ - gg')) 

(5.12) 

and we have the analogous expression for ~01(r,r'). 
The integration over qu in (5.12) gives d(y-y') ,  where 
y is a coordinate in the direction normal to the scatter- 
ing plane. The integration over qz can be carried out by 
using the residue theorem. As a result of these calcula- 
tions, we have 

• tc fi(y_y,)O(z,)O(z_ z') &0(r, r') = l 

{ z} 
× s ( x -  z') e<o exp iK4 (5.13) 

where 

l(x,z)= I ~_ dqx (-1)~'flgolgio 
oo - ~ -  exp {iqxX } ~ 2(g~o2) - g(o,) ) 

{ z 
x exp -isoxqx Yo + iKg(°a') . (5.14) 

Upon integrating equation (5.14) we obtain 

l a(s°'s'O ] a(x', z') d(y-y')O(z')O(z-z') 

( goo (So_S~)+#c (goo - ~ )  ) x exp ix - ~  2 (Sl-S'l) 

× AooE(ota)(z ') (5" 15) 

where 

Aoo= Jo(2C l/(7o-o - s~) (s I - s'1) ) 

sign (So-SO) + sign (Sl-S~) (5.16) 
× 2 . . . . . . .  " 

For the function -~0b the analogous analysis gives an 
expression in the form of equation (5.15) with the fol- 
lowing changes 

Aoo ~ Aoa- i OAoo E(o la) -+ E(~ ia) . (5.17) 
c I tgs 1 ' 

Thus we arrive at the expression for the field E0 after a 
rather complicated calculation (in the above, only a 
scheme of derivation of the formulae (5.12) and (5.16) has 
been outlined), while the same result can be obtained in a 
straightforward way from the integral equations (3.15) 
as the the first order approximation over ~t. The anal- 
ogous analysis in the Bragg case leads us finally to 
integral equations the form of (3.19). Therefore Fourier 
analysis is not expedient for definition of the field 
caused by static defects, because the integral equations 
(3.13), (3" 19), (3"25) and (3.27) give a much more simple 
method for the solution of the problem. 

It should be noted, however, that in the problem of 
defining diffuse scattering, caused by crystaMattice vi- 
brations, Fourier analysis is probably the only useful 
method. The physical difference between this and the 
static distortion problem is that the scattering of pho- 
nons is essentially an incoherent process. Therefore, one 
can only determine wave intensities, but not the am- 
plitudes and the integral equations for amplitudes, of 
the forms (3.13), (3.19) and (3.25), cannot in principle 
exist. 

The authors wish to thank Professor Yu. Kagan for 
his continued interest in this work and for valuable 
discussions. 
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Ray Tracing with X-rays in Deformed Crystals 
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The propagation of X-rays in an elastically deformed crystal has been studied using a ray-optical 
experimental arrangement. A single incident ray was selected from a Borrmann transmitted beam and 
was then diffracted through a thin crystal which was elastically strained by a temperature gradient. 
From the position and intensity of the rays at the exit surface it has been shown that for symmetric 
transmission, the plane wave boundary condition is maintained in any arbitrary but homogeneous 
strain field and that the migration of the tie points in good agreement with the theory. 

Introduction 

An extension of the dynamical theory of X-ray diffrac- 
tion to include diffraction in slightly strained crystals 
was first given by Penning & Polder (1961). This theory 
was modelled on the propagation of light beams 
through inhomogeneous media and was founded on 
certain ad hoc assumptions. The wave optical founda- 
tion to the Penning & Polder theory was provided by 
Kato (1963, 1964a, b) who showed that Penning & 
Polder's basic equation could be derived by applying 
Fermat's principle to the path of a modified Bloch 
wave through the deformed crystal. Independently, the 
basic assumptions of the theory and their range of ap- 
plicability were investigated by Kambe (1965, 1968). 
Penning & Polder's theory was later developed by 
Bonse (1964a) to allow for the complex nature of the 
vectors characterizing the wave-fields. 

Another approach to the problem has been to con- 
sider directly the modification of the dynamical wave- 
fields by the lattice distortion. With this method Takagi 
(1962, 1969), Taupin (1964) and Schlangenotto (1967) 
have used very general formalisms and have obtained 
differential equations which can be solved numerically 

* Present address: Wolfson Microelectronics Unit, Depart- 
ment of Electrical Engineering, University of Edinburgh, Edin- 
burgh, Scotland. 

for particular experimental cases. Taupin has been 
primarily concerned with the image forms of line de- 
fects whereas the Takagi theory has been used to ex- 
plain some experiments on elastically-strained crystals 
(Malgrange, 1968) where it was shown to give the same 
results as the ray theories over the range of deformation 
studied. 

Experimental verification of some aspects of these 
theories has been obtained by various workers. A de- 
crease in the diffracted intensity from a thick anom- 
alously transmitting crystal has been observed when 
the crystal is subjected to a bending moment (Hunter, 
1959; Cole & Brock, 1959; Okkerse & Penning, 1963) 
or to a temperature gradient (Borrmann & Hilde- 
brandt, 1959; Okkerse & Penning, 1963; Malgrange, 
1968). This decrease has, in the experiments, been quan- 
titatively explained by Penning & Polder's theory. An 
experiment of a different nature has demonstrated 
more dramatically the modification of the crystal wave- 
field vectors. Hart (1966) measured the displacement 
of the Pendell6sung fringes in a crystal strained by a 
temperature gradient. The fringe displacement was cor- 
rectly predicted by calculating the phase advance along 
the ray paths from the ray theory and by Kato's eikonal 
theory. This is not surprising since the existence of the 
eikonal implies ray optics. 

In order to obtain direct evidence of the energy prop- 
agation changes in a strained crystal, it is desirable 


